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Abstract—Neural networks (NN) have become almost ubiquitous
with image classification, but in their standard form produce
point estimates, with no measure of confidence. Bayesian neural
networks (BNN) provide uncertainty quantification (UQ) for NN
predictions and estimates through the posterior distribution. As
NN are applied in more high-consequence applications, UQ is
becoming a requirement. Automating systems can save time
and money, but only if the operator can trust what the system
outputs. BNN provide a solution to this problem by not only
giving accurate predictions and estimates, but also an interval
that includes reasonable values within a desired probability.
Despite their positive attributes, BNN are notoriously difficult
and time consuming to train. Traditional Bayesian methods use
Markov Chain Monte Carlo (MCMC), but this is often brushed
aside as being too slow. The most common method is variational
inference (VI) due to its fast computation, but there are multiple
concerns with its efficacy. MCMC is the gold standard and given
enough time, will produce the correct result. VI, alternatively, is
an approximation that converges asymptotically. Unfortunately
(or fortunately), high consequence problems often do not live in
the land of asymtopia so solutions like MCMC are preferable to
approximations.

We apply and compare MCMC- and VI-trained BNN in the con-
text of target detection in hyperspectral imagery (HSI), where
materials of interest can be identified by their unique spectral
signature. This is a challenging field, due to the numerous
permuting effects practical collection of HSI has on measured
spectra. Both models are trained using out-of-the-box tools on
a high fidelity HSI target detection scene. Both MCMC- and
VI-trained BNN perform well overall at target detection on a
simulated HSI scene. Splitting the test set predictions into two
classes, high confidence and low confidence predictions, presents
a path to automation. For the MCMC-trained BNN, the high
confidence predictions have a 0.95 probability of detection with
a false alarm rate of 0.05 when considering pixels with target
abundance of 0.2. VI-trained BNN have a 0.25 probability of
detection for the same, but its performance on high confidence
sets matched MCMC for abundances >0.4. However, the VI-
trained BNN on this scene required significant expert tuning to
get these results while MCMC worked immediately. On neither
scene was MCMC prohibitively time consuming, as is often
assumed, but the networks we used were relatively small. This
paper provides an example of how to utilize the benefits of UQ,
but also to increase awareness that different training methods
can give different results for the same model. If sufficient
computational resources are available, the best approach rather
than the fastest or most efficient should be used, especially for
high consequence problems.
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1. INTRODUCTION
Aerial and aerospace assets collect imaging data in a variety
of forms, and the remote detection of trace, sub-pixel targets
in that image data is an important topic for a variety of
applications. Hyperspectral imagery (HSI) contain hundreds
of contiguous spectral bands which provide powerful in-
formation to detect material that would otherwise be near
impossible. Aerial sensors with HSI measuring capabilities
collect data that looks like Figure 1, the three-dimensional
cube containing both spatial information and spectral infor-
mation. Target detection using HSI is a research area which
has received significant attention in recent years [1], [2], [3],
and results have shown it is effective at finding rare targets
[3]. Uncertainty quantification (UQ) of model predictions is
becoming a necessity in high consequence problems [4], [5].

Figure 1. Example of a hyperspectral image cube. Spatial
coordinates are shown in the X/Y plane while the spectral
coordinate is the Z plane. Image credit: https://en.

wikipedia.org/wiki/Hyperspectral_imaging.

Aerospace sensors searching for targets of interest often use
automated algorithms to make detections. Simple detectors
such as the adaptive cosine estimator have proved time and
again to give strong results [6], but in the era of machine
learning (ML) and artificial intelligence (AI), the common
thought is that more advanced algorithms and detectors ought
to provide better performance and generalization. However,
traditional ML and AI methods only provide a best estimate,
and do not provide an estimate of the model’s confidence
in oneself. This can be problematic for many high-risk
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aerospace target detection applications.

Bayesian neural networks (BNN) were first popularized by
David MacKay [7], [8] and his student Radford Neal [9],
[10]. Neal’s dissertation introduced Hamiltonian Monte
Carlo (HMC) to sample the posterior distribution of a BNN,
providing a practical way of training. To this day, HMC is
considered the gold standard for BNN training due to its the-
oretical backing and lack of approximations. Before HMC,
Gaussian approximations were typically used [7], [8]. [11]
followed this up with alternative Markov Chain Monte Carlo
(MCMC) methods for fixed architectures and [12] proposed
an approach which treated the model architecture as unknown
and estimated its posterior distribution with reversible jump
MCMC (RJMCMC). [13] extended this work on RJMCMC.

There were early applications of BNN in the statistics liter-
ature, including in time series [14], medicine [15], [16], and
with count data [17]. [18] provides a review of BNN and their
common estimation methods at the time, MCMC, Gaussian
approximation, and early variational inference (VI), from a
statistical perspective.

Due to the increasing size of network architectures and the as-
sociated computational costs, faster sampling or approxima-
tion methods to obtain posterior distributions were explored.
[19] introduced stochastic gradient HMC which uses a noisy
estimate of the gradient from a subset of the data instead
of the exact computation using all the data. [20] extends
this by applying variance reduction tricks which help speed
convergence.

Variational inference (VI) is the most popular method of
Bayesian inference for NN [21]. [22] gives an extensive
review of VI methods. [23] introduced Bayes by Backprop
which is a practical stochastic VI algorithm to train a BNN.
A common criticism of standard implementations of VI is the
mean-field assumption, or assuming posterior independence
of all parameters. [24], [25] each proposed new approaches
to VI which allowed for training of full covariance variational
distributions. [26] introduced probabilistic backpropagation
for scalable learning. Wang and Blei (2019) [27] established
the frequentist consistency properties of VI, including asymp-
totic posterior Normality and consistency and asymptotic
Normality of the posterior VI expectation, establishing VI as
a serious large-sample alternative to MCMC.

Although the introduction of new methods to provide UQ
in deep learning is popular, there is less focus on ensuring
the UQ provided by these methods is useful and transparent.
[28] compared UQ performance using various BNN training
methods and using various metrics. The authors concluded a
new metric for assessing predictive uncertainty is needed.[29]
argue using various performance metrics that standard BNN
can perform poorly with respect to UQ and propose using
temperature scaling, otherwise known as weighted likelihood
to make training adjustments.

In this paper, we explore the performance of two different
estimation methods for Bayesian inference and prediction.
Although both methods will give the same results asymptot-
ically under mild conditions, it is not always clear how fast
asymptopia arrives nor do many applications in aerospace
typically have large numbers of (labeled) observations of
targets of interest. The quality of approximation for MCMC
is determined by computer run time, or how long the MCMC
sampler is run, while the quality of approximation for VI is
determined by the data sample size. In a data poor environ-

ment, the ability of VI to produce similar results to MCMC
needs to be assessed. By estimating the same BNN with
MCMC and VI with the same training data, we will evaluate
the relative performance of each. We compare MCMC on two
data sets, a simple simulated regression problem and a high
fidelity simulated HSI target detection problem.

This paper is organized as follows. In Section 2, the high
fidelity simulated HSI scene, Megascene, is described as
well as what the targets are and how they were added to
the scene. In Section 3, the model and model fitting details
are explained. Results are presented in Section 4 regarding
predictive power and its intersection with UQ. Section 5
summarizes our conclusions and discusses implications and
future research directions.

2. DATA
In order to have a scene for which we know ground truth and
that represents our problem, we opted to create a synthetic
dataset from DIRSIG Megascene [30]. Megascene is mod-
eled after a section of Rochester, NY and contains manmade
objects such as houses and roads as well as natural features
such as trees and grass. The simulator uses an AVIRIS-like
sensor measuring 211 spectral bands ranging from 0.4 to 2.5
µm, creating a datacube similar to Figure 1. The images were
created over the scene at an elevation of 4 km which gives a
pixel size of 1 m2. A total of nine images were generated
across three atmospheres (mid-latitude summer (MLS), sub
artic summer (SAS), tropical (TROP)) and three times of day
(1200,1430,1545). Figure 2 shows a pseudo color rendering
of MLS 1200.

Figure 2. Pseudo color render of Megascene MLS 1200.

To serve as targets, we manually inserted green discs ran-
domly through each scene. Each scene had 125 discs ranging
in size from 0.1 to 4m radii, meaning some targets filled
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multiple pixels while others filled a small fraction of a pixel.
A subset of the discs was made such that they were partially
hidden beneath foliage, so not all the targets were complete
circles. Figure 3 (Figure 6 in [3]), shows an example of
several different sized green target discs placed in Megascene.
Some of the target discs were placed under foliage, as shown
on the right image.

Figure 3. Close up of several different sized target green
discs in Megascene. On the right is a further zoomed in

picture of one of the target discs that is partially hidden by
foliage. Image credit to [3].

Figure 4 shows the spectra for several different green objects
used to create Megascene, these are common confusers for
our green paint target. Most pixels in the dataset will be a
combination, or mixture, of several materials’ spectra since
with a pixel size of 1m2, there is often more than one material
in the area.

The left half of MLS-1200 was used for training the BNN
models. The right half of all nine scenes were used as test
sets. By only training on one scene at a particular time and
atmosphere, we are able to understand the model’s ability
to detect targets in scenes it has never seen before. This
is particularly important for our application since we cannot
expect to have training data in all atmospheres and times of
day due to expense and practicality reasons. Even though
aerospace sensors might be able to collect data at many
different atmospheres and times of day, it is costly to have
labeled data at all these combinations.

Figure 4. Spectra of different green objects used in the
creation of Megascene.

3. METHODS
The BNN contained 3 hidden layers, each with 10 neurons
activated with a sigmoid function. Although ReLU tends to
be more computationally efficient we found sigmoid to give
better results. The priors on the weights were all Normal with
mean 0 and standard deviation 10. The standard deviation
was selected partially to optimize performance, making this a
quasi-Empirical Bayes approach. Although we do not believe
this is the best approach, there are others working on BNN
priors [31] and this serves as a proof of concept.

Because the features are spectra, they are functional data by
nature and contain a correlated structure. The structure has
physical meaning itself and can be used for model explain-
ability [32]. To account for this dependence and help reduce
the dimensionality of the inputs, we employ functional princi-
pal component analysis (fPCA) on the feature functions. We
then use the first 25 functional principal components (fPC)
for each pixel as features. The first 25 fPCs explain 99.999%
of the variability, and later fPCs did not add to the predictive
power of the model. Formally, the model is written as:

Yi
iid∼ Bernoulli(πi), i = 1, 2, ..., n (1)

πi = f(θ,xi) (2)

θj
iid∼ N(0, 10), j = 1, 2, ...J (3)

where Yi is a binary random variable for whether pixel i
contains target with parameter πi ≡ P (Yi = 1), the proba-
bility that pixel i contains target. This is itself a deterministic
function of the 25 fPCs for pixel i, xi, the NN model f(·, ·),
and the NN’s parameters θ. Note πi = πi(xi,θ), but we
drop the dependence for brevity. Because the probability
πi is an unknown parameter, it is treated as a distribution
in Bayesian statistics, with its prior distribution inferred by
the prior on θ. Denote the vectors Y = (Y1, Y2, ..., Yn) and
θ = (θ1, θ2, ..., θJ).

All pixels which had a target abundance greater than zero
were used for training, and about ten times the number of
pixels with target abundance zero were randomly sampled
and used for training. This subsetting sped up training
significantly due to the sparse nature of the targets in the
scene. Reducing the number of non-targets did not affect the
model’s performance. We use numpyro and pyro to fit the
BNN via MCMC and VI, respectively [33], [34].

BNN output a posterior distribution for πi, denoted p(πi|Y).
A posterior mean can then be used as a point estimate by
taking E(p(πi|Y)). Uncertainty around πi can be quantified
using confidence intervals (sometimes called credible inter-
vals.) These intervals are constructed by taking the α/2th
and (1−α/2)th quantiles of p(πi|Y) , denoted as Lα,i, Uα,i,
respectively, to create a 1 − α confidence interval. Based on
Bayesian probability, P (Lα,i < πi < Uα,i|Y) = 1− α. The
value of α is chosen depending on the risk desired.

One way to incorporate the UQ provided by the BNN is using
high confidence (HC) sets. An HC set contains predictions
that are either close to 0 or 1 indicating a high probability of
either no-target or target and with a corresponding confidence
interval that spans no more than a specified width. More
formally, pixel i is included in the HC set Ω:
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i ∈ Ω ⇐⇒ P (πi < L|Y) > 1− α OR P (πi > U|Y) > 1− α
(4)

where L (U) is the value the estimated target probability for
pixel i (πi) needs to be less (greater) than, and 1 − α is
the desired confidence that πi is less (greater) than L (U).
Therefore, if pixel i is in the high confidence set, we can say,
there’s at least a 1−α probability that πi is less thanL (greater
than U). This ensures two things: (i) the estimated probability
of pixel i containing target is either close to 0 or close to 1, as
defined by chosen L and U , and (ii) we are confident in the
estimated probability of pixel i containing target since there’s
at least a 1− α chance that πi is less than L (greater than U).
For this application we choose L = 0.2,U = 0.8, α = 0.2.
This set contains predictions which are strongly target or non-
target and the model has high confidence in that prediction.

4. RESULTS
The MCMC model ran on 2 chains for 2500 iterations with
500 burn in period. The chains were run in parallel and total
MCMC training time was about 21 minutes on a Intel(R)
Xeon(R) CPU E5-2650 v4 2.20GHz. Posteriors estimated
from MCMC must be checked for proper convergence, but
overparameterized BNN weights may not be identifiable.
Checking convergence of predictions across chains is the
alternative to ensure the MCMC behaves accordingly. We
checked many pixels’ prediction traces and there were no
signs of non-convergence meaning the MCMC is behaving
as expected. VI was optimized using Adam with a learning
rate of 0.01 for 450 epochs, monitoring the validation loss
for overfitting. The VI training was much faster, taking only
about 4 seconds on the same CPU. The VI model could have
been trained using a GPU, which often trains faster than CPU,
but given the relatively simple architecture it was unnecessary
to do so. In this situation, 21 minutes is not cost prohibitive
for a real life target detection algorithm, so the differene in
computation time is of minor concern compared to model
performance.

Figure 5 shows the proportion of data in the HC set for each
scene for both the MCMC- and VI-trained models. Overall,
the MCMC model creates larger HC sets. For MLS and
SAS scenes the MCMC-trained model contains over twice
as many pixels as VI. The MCMC model has a large drop in
HC set pixels for TROP, but still more than VI. VI is fairly
constant across scenes. This is interesting since theory tells
us uncertainties from mean-field VI should under represent
the true uncertainties due to independence assumptions on
the posterior, and although this result is not exactly a test
of that theory, it is unexpected that the VI model appears
to have refrained from being overly confident. However,
note that the proportion of data within the HC set is not an
evaluation of the model, rather an outcome. That is, pixels are
included or excluded based on the UQ given by the model,
therefore an overly conservative model may not include all
pixels that are truly high confidence or an overly optimistic
model may include pixels that have no business being called
highly confident. Future work needs to address the quality of
UQ given by models to ensure membership to HC sets retains
its quantitative meaning.

Figures 6 and 7 show ROC curves for MCMC- and VI-
trained BNNs on the full SAS 1430 scene, respectively. We
only show ROC curves from one of the nine scenes, but the

Figure 5. Proportion of pixels in high confidence set across
nine tests scenes for MCMC- and VI- trained BNN.

trends are the same for all scenes. The lines denote ROC
scores for the sets of pixels containing target in proportions
up to the denoted fraction. This allows evaluation at dif-
ferent abundance levels to see how good the models are at
finding different sized targets. This is important because
depending on the resolution of the remote sensing device,
a pixel could represent a relatively large area, and sub-pixel
detection is necessary. Overall, the MCMC BNN has much
better performance, often having area under the ROC curves
about 10 percentage points higher. Additionally, the MCMC
model tends to have much higher detection rates at low false
alarm rates, which is important in high consequence national
security problems.

Figures 8 and 9 show ROC curves for MCMC- and VI-trained
BNNs on the HC set only on SAS 1430, respectively. These
ROC curves show the performance when we only consider
pixels for which the model determines it is confident in its
prediction. In this case, there is a slight bump in performance
for the MCMC model for abundances down to 20%, and then
there is actually a degradation in performance for abundances
<10%. This isn’t surprising since the model is more likely to
be confident for pixels which contain a high proportion of tar-
get compared to pixels containing a very small amount, where
its target signature could be mixed with the background. The
VI-BNN sees a large boost in performance for abundances
>50%, and slight degradations for abundances <50%, likely
for the same reasons.

For national security problems, low false alarm rates are often
needed. Furthermore, we are most interested in detection
at low pixel abundance levels. Therefore we assess model
performance by looking at probability of detection as a func-
tion of target abundance, for a constant false alarm rate of
5%. Figure 10 shows detection probabilities averaged over
all nine scenes for both HC sets and full test sets, for the
MCMC- and VI-trained BNN. The MCMC BNN performs
much better at low pixel target abundances compared to VI.
This effect diminishes somewhat at an abundance level of
40%. HC sets also provide a boost for both MCMC and VI
methods, but at different times. Although the BNN model is
trained in two different ways, we should still expect results
from the same model to only differ slightly based on training
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Figure 6. ROC evaluated on FULL SAS 1430 test scene for
MCMC-trained BNN. Lines denote ROC scores for the sets
of pixels containing target in proportions up to the denoted

fraction. Area under the curves are given next to each
fraction.

Figure 7. ROC evaluated on FULL SAS 1430 test scene for
VI-trained BNN. Lines denote ROC scores for the sets of
pixels containing target in proportions up to the denoted
fraction. Area under the curves are given next to each

fraction.

approach, and these prediction results show the converse is
true. One consideration is more tuning could be done with
the VI algorithm to improve optimization and thus prediction,
whereas tuning the MCMC was fairly straightforward for this
application.

Another common misconception is the predicted probability
of target, or output of a standard NN classifier, fully quantifies
the uncertainty of the prediction. This predicted probability
only contains the aleatoric uncertainty as determined by the
variance of a Bernoulli random variable (in the case of target
detection). This prediction does not contain the epistemic
uncertainty, part of which is the modeling and sampling
uncertainty. A predicted target probability of 0.99 does not
automatically imply we should be confident in the prediction

Figure 8. ROC evaluated on HIGH CONFIDENCE SAS
1430 test scene for MCMC-trained BNN. Lines denote ROC
scores for the sets of pixels containing target in proportions
up to the denoted fraction. Area under the curves are given

next to each fraction.

Figure 9. ROC evaluated on HIGH CONFIDENCE SAS
1430 test scene for VI-trained BNN. Lines denote ROC

scores for the sets of pixels containing target in proportions
up to the denoted fraction. Area under the curves are given

next to each fraction.

itself, rather that is the model’s best guess if it was forced
to predict. The confidence interval from the posterior deter-
mines the model’s confidence in the prediction, and intervals
are not always symmetric. It is possible for a prediction of
0.99 to have a 90% confidence interval ranging from 0.01
to 0.999. In high consequence national security problems,
decisions should not be made solely with the point estimate
when we can know the model’s confidence in the prediction.
It turns out, this is not an unrealistic scenario.

Figure 11 and 12 show the distribution of low confidence
(LC) predictions on the nine combined test sets for pixels
containing target, for MCMC and VI, respectively. The LC
set is the opposite of the HC set, that is it contains predictions
whose lower confidence bound is less than 0.2 and upper
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confidence bound is greater than 0.8. As expected, most
point predictions are close to 0.5, but many are towards 0
and 1. Although these represent a relatively small number
of the overall predictions, they are not negligible in high
consequence situations where every false positive or false
negative can be extremely costly. The fact that there are
target probability estimates close to 0 or 1 that are in the low
confidence set further confirms that having uncertainty quan-
tification on estimates is imperative to avoid a false degree of
confidence. Predictions which fall in the low confidence set
should receive further review because the model is incapable
of providing information on them, and simply having an
estimate close to 0 or 1 is not evidence enough to make
assumptions about them.

Figure 13 shows the MLS 1200 test set mean prediction,
interval width, absolute prediction error, and rgb image,
respectively for MCMC-trained BNN. These plots are useful
to understand where the model predicts targets, where the
model is confident in its predictions, and where the model
makes mistakes. Looking at the rgb image, the context and
spatial surroundings of the problem can be identified, and
further examination of the spectra can indicate what types
of materials confuse the model or cause the model to be
uncertain. Knowledge of these shortcomings can then be used
to efficiently design future data collection campaigns and be
communicated to operators, so they understand the model’s
shortcomings.

BNN are able to perform target detection on this scene and
utilize their uncertainties to reduce false alarms. Although
the underlying BNN model is the same, the training method
differs and gives surprisingly different results. As the gold
standard, the MCMC results show the true power of the BNN,
especially when considering high confidence sets. The VI
results show promise to the posterior approximation method
and present a computationally efficient alternative. The out-
of-the-box approach for VI requires expert knowledge to
understand, set up the model, and tune the hyperparameters.
Both models show how UQ can be used in practice to handle
high consequence problems and both showed the limitations
of using estimated class probabilities themselves as model
uncertainty.

5. DISCUSSION
In this paper we compared the results in predictive per-
formance and uncertainty quantification for target detection
in a HSI problem using BNNs, trained using both MCMC
and VI. MCMC is generally considered the gold standard
to compare Bayesian model results to, and that held in
this experiment as well. Results from the VI model were
slightly worse than the MCMC model and required more
effort tuning. Given that NN are commonly used “off-the-
shelf” already by practitioners, it is only a matter of time
before BNN are an off-the-shelf tool to provide uncertainty
quantification, and VI is the obvious computationally efficient
tool to provide that training. This paper is meant to provide
an example of how to utilize the benefits of UQ, but also to
increase awareness that the optimization method matters, and
if sufficient computational resources are available, the best
approach rather than the fastest or most efficient should be
used, especially for high consequence problems.

This paper shows there is still work to be done with all-
purpose, generic VI algorithms before they can be used by
non-deep learning experts. Furthermore, we gave examples

Figure 10. Probability of detection as a function of target
pixel abundance for a constant false alarm rate of 0.05.

MCMC-trained BNN results are solid lines, VI-trained BNN
results are in dashed lines. Full data test results are in blue,

and high confidence set results are in orange.

Figure 11. Distribution of low confidence set predictions
from MCMC-BNN on the nine combined test sets for pixels

containing target.

of why uncertainty quantification of estimates and predictions
is important in practice, specifically in classification problems
when researchers and practitioners alike often interpret the
estimated class probability as the uncertainty in that same
prediction.

These results and insights are relevant to the aerospace com-
munity because remote sensing assets collect a wealth of
HSI information that often needs to be analyzed quickly and
accurately. For remote sensing in the national security space,
having a reliable model that is confident in its predictions is
imperative due to the high consequence nature of the deci-
sions. BNN show promise for providing this capability, and
while MCMC provides quality predictions and uncertainty,
it is often computationally infeasible for most problems.
Progress is being made on more efficient, available off-the-
shelf VI, but there still exist limitations for this method to be
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Figure 12. Distribution of low confidence set predictions
from VI-BNN on the nine combined test sets for pixels

containing target.

utilized without a deep learning expert.
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