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I ABSTRACT AND OBJECTIVES

Completion efficiency is determined by stimulated reservoir
volume (SRV), fracture sizes, and geometry. These factors are
mainly controlled by the completion design such as cluster
spacing, clusters per stage, and stage length, pumping rates etc.
Studies so far on completion efficiency and well spacing in
unconventional reservoirs have been majorly based on simple
models such as a single cluster model or models with the same
fracture length and geometry at every stage, related to rate
transient analysis. However, complex fracture modeling can
predict production more realistically b both pu g and
production data are used for hlstory matchlng anaIyS|s,
considering heterogeneous geomechanical properties (Ajisafe et
al. 2017). This work seeks to present a method utilizing data-
driven machine learning techniques to optimize design
components to maximize productivity of a single well while also
presenting surrogate models with the ability forecast the
cumulative production of a single well with real world data-set.
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« With a history-matched reservoir model, the right completion
strategy for a single well can be predicted in a shorter period.
« With an optimized completion strategy for the parent well, the
right spacing for child well can be determined.
Most important inputs out of all possible completion design
components are identified. It is used to develop a proxy
model to estimate the productivity and fracture growth with a
small number of cases.
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Two wells are selected from a field in the Southern Midland
Basin. Only a segment of the geo-model is used. There are three
steps:

« Two, history matching processes are performed for hydraulic
fracturing and production. Specifically, hydraulic fracturing
simulation is performed, matching real pumping data. After
the history-matched hydraulic fractures are created, reservoir
simulation is performed, matching real production data (Fig.
1).

« Various scenarios of the development plan for a single well
are generated by changing parameters of completion design
(using Random for use in the ML algorithm. Total of 90 cases
were found sufficient. (Fig. 2)

*« LSTM based learning algorithm is trained to predict
Geometry and Cumulative production. The algorithm is
chosen for its general utility in dealing with time series data
as well as stationary data for regression tasks (shown in Fig.
3). Training Parameters:

v Dataset size: 90 (75-15-10 split between training,
validation and test sets).
v Epochs : 500
v Learning Rate : 0.01
v Batch Size: 10
Fig. 4 summarizes the entire process used in this study.
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Figure 1. (a) History-matched results between pumping data and

hydraulic fracturing simulation. (b) Hydraulic fracture geometry and
history-matched pressure profile after 6 months production.
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Figure 2. Random-sampling based combinations for completion
parameters.
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Figure 3. LSTM Model
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SUMMARY AND CONCLUSIONS

The proposed workflow can be used for op of p

design by integrating hydraulic fracture modeling, reservoir
simulation and machine learning, which can test many completion
designs numerically before real field development.
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Figure 4. Workflow Diagram
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Thus, it can expedite the decmon-makmg process of the f|eld
development plan without rep g
procedures. Eventually, we can increase efflmency and reduce
costs. The Site-Specific Single Well Proxy Model is able to predict
Fracture Parameters (Length, Height and Surface Area) as well as
Productivity with accuracy while taking major completion
parameters into consideration
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