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Motivation

Validated models and robust modeling tools for process design and scale-up
R2R industry has greatly benefitted from continuum scale models, and now data-driven models

Guide tool development = reduce iterations
Assist NM-Fab tool and process design

Construct defect-free operating conditions
Operability limits and associated underpinning physical mechanisms

Foundational understanding of the physics and its underpinning competitions....
Drives innovation
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Challenges in Modeling R2R Nanomufacturing Processes
Example: Nanoimprint Lithography
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*  Multiphase flow
* Gas dissolution
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» Disparate length scales = device/machine scale model needs to be reduced-order

» Surface effects, i.e. nanotopology, forces dominate
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Simulation Tool: Goma 6.0

%@l 2014 R&D 100 Award Winner
P aer

e Multiphysics finite element code, suitable for

both research and production

e Fully-coupled free and moving boundary

parameterization — ALE, Level Set, etc.

e Modular code; easy to add equations — currently

has 180+ differential equations

e Open source! Available at http://goma.github.io

e Goma 6.0. training is available!

Goma has been used successfully in coating manufacturing for 3 decades!
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VACUUM PRESSURE

Slot-Die Coating

COATING

Downstream
die lip

~~_ SUBSTRATE

BACKING ROLL

SLOT DIE

» A method ideal for precisely coating single or two layers

» Thickness is set solely by flow rate and coating speed: h =
Q4 U > premetered method

» Coating quality, i.e. uniformity, depends on liquid properties
and operating conditions — coating window

» Goal: Predict coating window to guide process development

WEB SPEED
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Modeling Approach

e Contact lines are not pinned; unique aspect
versus literature
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®  Goma - High Vacuum Limits = = Visco - High Vacuum Limits o/ t=45 coting bead breal -up)
D VR

®  Goma - low Yacuum Limits = = Visco - Low Vacuum Limits =

Romero et al. Journal of Non-Newtonian Fluid
Mechanics 118.2-3 (2004): 137-156.

» 2-D steady state Navier-Stokes with arbitrary Lagrangian Eulerian (ALE) method to deform the mesh

» Predict coating window limits based on the contact lines positions
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Outcome: Coating Window Prediction

Vacuum limits
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Goma Model
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Goma Model

* Predicted vacuum limits of slot-
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* Prediction agrees with experimental
observation
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Creel et al. Journal of Colloid and Interface Science (2021).

Low-flow limit
0.6 — . —————

| Modilgorner Detachment * Predicted low flow limits agrees with experimental works
N —+  reported in literature

T * Uncover physical mechanisms of low flow limits with no
vacuum

* How to coat thinner: Smaller gap, but limited by roll runout
and surface imperfection

* Another approach: Replace backing roll with tensioned web —
ongoing research

Ca (pU/o)
Malakhov et al. AIChE Journal 65.6 (2019): e16593.
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Gravure Printing

Empty Cells A Gravure

Highly 1]
scaled
gravure

Offset

R2R photolithography Inkjet

Based on OE-A Roadmap for
- Organic and Printed Electronics
Laser ablation 2011

Throughput (m?/sec)

1 10 100

1000 4
: Minimum feature size (um)

£ » Suitable for high-speed roll-to-roll system.

c

@ 100+ . .

g ] * Challenge: Smaller feature scale, overlay registration.
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E * Approach: Improve doctoring step to reduce residual

2 i film thickness — elastohydrodynamic lubrication

g -3 il regime

= ] . [ ] A 32mPas

3 ¥ 262mPas . . . . . .
il al * Goal: Predict residual film thickness given operating
—{—Fitled power law .. . . .

1 v condition as well as liquid and blade properties.
1E-10 1E-9 1E-8 1E-7 1E-6

U*
Kitsomboonloha and Subramanian. Langmuir 30.12 (2014): 3612-3624
Hariprasad et al. Journal of Applied Physics 119.13 (2016): 135303.
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Modeling Approach

F
d.=0
Vary blade shape
Doctoring over smooth plate — no cells '. by changing ‘9bev

A/

Blade — 3-D elasticity Printing direction
e

Gap - Lubrication shell

* Fully coupled 3-D elastic blade and lubrication flow underneath

* Predict residual film thickness and likelihood of blade wear as function of printing speed, loading force,
and blade shape (6,..,).
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Outcome: Predicted Residual Film Thickness and Blade Wear

Blade wear metric: R ettt
Film thickness/minimum gap -
o/h
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Tjiptowidjojo et al. Journal of Coatings Technology and Research 15.5 (2018): 983-992.
* Higher doctoring speed leads to thicker residual film — elastohydrodynamic lubrication regime
» Blade shape dictates pressure field =2 residual film thickness

*_Need to consider blade wear in selecting blade shape = optimum blade shape
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Nanoimprint Lithography

Inkjet Dispense Capillary Fill. \ UV Flash

SUupbstrate: Supstrate’ SUubstrate: Supbstrate:

* Dispense Photo-Polymer (Resist) via Ink-Jet — reduces resist
volume and residual layer thickness

J-FIL™ R2R
Implementation

* Imprint the resist layer with template pattern — drop merging and
capillary-driven filling

e UV cure the imprint pattern — photopolymerization

* Separate patterned resist from template — traction separation law

Challenges in drop merging stage:

» Gas trapping (and dissolution) = incomplete filling, voids, longer processing time

» Substrate and template deformation = non-uniform residual layer thickness
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Modeling Approach

Tensioned web — inextensible cylindrical shell theory

Patterned
Substrate

‘Gnkj et

* Representative volume element is a drops lattice

* Flow dynamics is governed by relative permeability
of each phase — presence of one phase impedes flow

of the other phase

» Surface tension forces applied via effective stress

principle
Initial contact Drops trap gas Gas dissolves
ﬁ Escapei ' compresses
t :—>S

T
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Gap Thickness, nm

Outcomes: Drops Merging Rate and Operating Window

Drops Merging Rate
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Cochrane et al. International Journal of Multiphase Flow 104
(2018): 9-19.
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Predict rate of drops merging as well as gas trapping (and dissolution) as a function of roll closure speed

and fluids (liquid and gas) properties

Predict minimum and maximum wrapping angles required to maintain uniform residual layer thickness

— needed to estimate UV-cure residence time.

Next step: Incorporate flow and structural mechanics at the template

GV
1

h

Sandia
National 13
Laboratories



Conclusions

Modeling tools developed under NASCENT has produced simulators for
sheet-to-sheet or R2R gravure printing, precision slot die coating, and R2R
imprint lithography.
* Operability limits can be determined for slot-die and imprint litho
* Models were experimentally validated for slot die coating and gravure
wiping
* Models were qualitatively (through visualization) validated for imprint
lithography

Continuum models for R2R nano-manufacturing challenged by
-Large aspect ratios in full scale process simulations
-Multi-physics (structural, capillary/surface, fluid mechanical)
-Wide range of time scales (ms from capillary to seconds at process

scale
Reduced order models essential for thin structures/regions

Multiphase flow models essential for printing and imprinting (at scale)

Future work: Include template features in imprint litho models; 3D web-
mechanics capabilities; particle effects
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