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Motivation
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• Validated models and robust modeling tools for process design and scale-up
R2R industry has greatly benefitted from continuum scale models, and now data-driven models

• Guide tool development à reduce iterations
Assist NM-Fab tool and process design 

• Construct defect-free operating conditions
Operability limits and associated underpinning physical mechanisms

• Foundational understanding of the physics and its underpinning competitions…. 
Drives innovation



Challenges in Modeling R2R Nanomufacturing Processes
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Example: Nanoimprint Lithography

Template
• Feature flow
• Poroelastic

Flow in Gap
• Multiphase flow
• Gas dissolution
• Capillary forces

• Web tension
• Stiff flexure

Substrate

Not drawn to scale!

Feature length ~ 50 – 100 nm
Substrate width ~ 1 cm

Ø Disparate length scales à device/machine scale model needs to be reduced-order

Ø Surface effects, i.e. nanotopology, forces dominate

10,000+ drops



Simulation Tool: Goma 6.0
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• Multiphysics finite element code, suitable for 

both research and production

• Fully-coupled free and moving boundary

parameterization – ALE, Level Set, etc.

• Modular code; easy to add equations – currently 

has 180+ differential equations

• Open source! Available at http://goma.github.io

• Goma 6.0. training is available!

2014 R&D 100 Award Winner

Goma has been used successfully in coating manufacturing for 3 decades!



Slot-Die Coating
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Ø A method ideal for precisely coating single or two layers

Ø Thickness is set solely by flow rate and coating speed: h	=	
Qf/U	àpremetered method 

Ø Coating quality, i.e. uniformity, depends on liquid properties 
and operating conditions – coating window

Ø Goal: Predict coating window to guide process development



Modeling Approach
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Ø 2-D steady state Navier-Stokes with arbitrary Lagrangian Eulerian (ALE) method to deform the mesh

Ø Predict coating window limits based on the contact lines positions

Low Vacuum Limit Low Flow Limit

Contact lines are not pinned; unique aspect 
versus literature

Romero et al. Journal of Non-Newtonian Fluid 
Mechanics 118.2-3 (2004): 137-156.



Outcome: Coating Window Prediction
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Vacuum limits

Low-flow limit

• Predicted vacuum limits of slot-
coated fuel cell ink (Pt in black 
carbon support) – shear thinning 
rheology

• Prediction agrees with experimental 
observation

• Predicted low flow limits agrees with experimental works 
reported in literature

• Uncover physical mechanisms of low flow limits with no 
vacuum

• How to coat thinner: Smaller gap, but limited by roll runout 
and surface imperfection

• Another approach: Replace backing roll with tensioned web –
ongoing research

Creel et al. Journal of Colloid and Interface Science (2021).

Malakhov et al. AIChE Journal 65.6 (2019): e16593.



Gravure Printing
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• Suitable for high-speed roll-to-roll system.

• Challenge: Smaller feature scale, overlay registration.

• Approach: Improve doctoring step to reduce residual 
film thickness – elastohydrodynamic lubrication 
regime

• Goal: Predict residual film thickness given operating 
condition as well as liquid and blade properties.

Kitsomboonloha and Subramanian. Langmuir 30.12 (2014): 3612-3624 
Hariprasad et al. Journal of Applied Physics 119.13 (2016): 135303.



99

Modeling Approach
F
dx=0

Blade – 3-D elasticity

Gap – Lubrication shell

• Fully coupled 3-D elastic blade and lubrication flow underneath

• Predict residual film thickness and likelihood of blade wear as function of printing speed, loading force, 
and blade shape (θbev).

Printing direction

θbev

Doctoring over smooth plate – no cells
Vary blade shape 
by changing θbev
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Outcome: Predicted Residual Film Thickness and Blade Wear

• Higher doctoring speed leads to thicker residual film – elastohydrodynamic lubrication regime 

• Blade shape dictates pressure field à residual film thickness

• Need to consider blade wear in selecting blade shapeà optimum blade shape

hmin

δ

Residual Film Thickness Blade Wear Metric

Blade wear metric: 
Film thickness/minimum gap 

δ/hmin

Tjiptowidjojo et al. Journal of Coatings Technology and Research 15.5 (2018): 983-992.



Nanoimprint Lithography
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• Dispense Photo-Polymer (Resist) via Ink-Jet – reduces resist 
volume and residual layer thickness

• Imprint the resist layer with template pattern – drop merging and 
capillary-driven filling

• UV cure the imprint pattern – photopolymerization

• Separate patterned resist from template – traction separation law

Challenges in drop merging stage:

Ø Gas trapping (and dissolution) à incomplete filling, voids, longer processing time

Ø Substrate and template deformation à non-uniform residual layer thickness

J-FIL™ R2R 
Implementation

Inkjet Dispense Capillary Fill UV Flash 

Mask

Separation

SubstrateSubstrate

Mask

Substrate

Mask

Substrate



Modeling Approach
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Tensioned web – inextensible cylindrical shell theory

Drops merging – Disperse multiphase flow

• Representative volume element is a drops lattice

• Flow dynamics is governed by relative permeability 
of each phase – presence of one phase impedes flow 
of the other phase

• Surface tension forces applied via effective stress 
principle

Initial contact Drops trap gas Gas dissolves

Gas 
Escapes

Gas 
compresses
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𝜋
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𝜋
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Outcomes: Drops Merging Rate and Operating Window
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Drops Merging Rate Operating Window

• Predict rate of drops merging as well as gas trapping (and dissolution) as a function of roll closure speed 
and fluids (liquid and gas) properties

• Predict minimum and maximum wrapping angles required to maintain uniform residual layer thickness 
– needed to estimate UV-cure residence time.

• Next step: Incorporate flow and structural mechanics at the template

Cochrane et al. International Journal of Multiphase Flow 104 
(2018): 9-19.

Cochrane et al. Industrial & Engineering Chemistry Research 
58.37 (2019): 17424-17432.



Conclusions
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• Modeling tools developed under NASCENT has produced simulators for 
sheet-to-sheet or R2R gravure printing, precision slot die coating, and R2R 
imprint lithography. 
• Operability limits can be determined for slot-die and imprint litho
• Models were experimentally validated for slot die coating and gravure 

wiping
• Models were qualitatively (through visualization) validated for imprint 

lithography

• Continuum models for R2R nano-manufacturing challenged by
-Large aspect ratios in full scale process simulations
-Multi-physics (structural, capillary/surface, fluid mechanical)
-Wide range of time scales (ms from capillary to seconds at process 
scale

• Reduced order models essential for thin structures/regions
• Multiphase flow models essential for printing and imprinting (at scale)

• Future work: Include template features in imprint litho models; 3D web-
mechanics capabilities; particle effects  


