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Global tomographic seismic wave speed models can @
* Help to illuminate geodynamic / tectonic structures |
* Provide improved travel time predictions

* Lead to improved earthquake location |

e Reduce location and travel time uncertainties

* Prowvide insights into needed improvements :
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The model that we have developed and will be talking about here 1s referred to as the
SAndia LoS Alamos 3D (SALSA3D) model (Ballard et al., 2010, 2016).

This model was developed under a model parameterization called GeoTess (Ballard
et al., 2009), which consists of 2D triangular tessellations rather than a
latitude/longitude rectangular grid, with radial vectors of nodes associated with each
corner. This parameterization provides a globally consistent spacing of starting

model nodes without polar singularities, and flexibility to refine tessellation size
based on ray density.
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SALSA3D was developed to improve travel-time estimates globally, and was originally derived using
~12 million P and Pz travel-time picks from 13,000 stations and 122,000 (Ballard e7 /., 2010, 2016). The

seismic sources and recetvers are represented by red and green dots, respectively.
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Heterogeneous distribution of both sources and receivers is obvious, and is a problem for all global models.
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SALSA3D addresses heterogeneities in the mantle. The crust and core, which are not
solved for, are dertved from Crustl.0 and ak135, respectively.
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The model exhibits compressional wave velocity features consistent with r

what we know about tectonics and geodynamics of the Earth. Due to the
previously noted source and receiver distribution, however, large regions are
unsampled.
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Filling in the gaps

* In recent years, numerous seatloor
deployments have added to global seismic
observation, through temporary installation
of targeted experiments.

* These sensors are typically deployed for a
year or two at most, after which they are
retrieved and the data downloaded for
evaluation.

* Because of the often noisy seafloor
environment, it is lucky when a large
teleseism is recorded.

* Most such experiments are targeting a local
feature such as axial ridge, transform
system, triple junction, or an acttve source

experiment.
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Science Monitoring And Reliable Telecommunication (SMART) I
Cables — P'_'HO\‘foietal., 2021 L

* The global infrastructure of submarine
telecommunication cables is the backbone of the
world’s connectedness for business, finance, social
media, entertainment, political expression, and
science.

e We look to a future where these cables serve both
as communications infrastructure and a scientific

backbone for monitoring tsunamis, earthquakes, D e —

w/ SMART repeater 1990 2000 2010 2020

and the world’s ocean climate and circulation.

Repeater Pressure Housing

* Technological advances have made it possible to = Acce'emmemr;
i ressure and Temperature Sensors
integrate basic sensors with repeaters on =" _..'m//COUPHng
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It 1s intuitively obvious that the
addition of the SMART cables will,
over time, provide for significantly
improved seismic ray coverage for
global velocity models.

We have sought to quantity this. In
Ranasinghe et al. (2017) we explored
ray coverage improvement through an
ak135 global model for a first glance
at the potential of these cables to
enhance our global models.

In that study we selected earthquakes of M > 6.0 in a 20 year period (green symbols), and

predicted raypaths to actual seismic stations (black symbols) as well as to notional sensors

along SMART Cable routes (pink symbols).
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Comparison of Seismic Sampling With and Without SMART
Cables

Two example sources — one in the

NS
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A== Cook Inlet area of Alaska and one
?i"ﬁ\‘\%ii ,//l on the Korean Peninsula. Top figure
shows rays to Global Seismographic
Network (GSN) stations around the
Pacitic. Bottom figure shows rays for
GSN stations plus the first
generation of SMART cable sensors
as proposed.
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Example cross-sections through the mantle at two latitudes, showing ray coverage

without (top) and with (bottom) SMART Cables.
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@

Ray density without (left) and
with (right) SMART Cables at

three example depths.
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@

SALSA3D model resolution at
three depths (800, 1500 and
1800 km, respectively) for
tomographic results without
(left) and with (right) notional
SMART cable artivals.

We used all M > 6.0 events in
the database. Arrivals at land
stations were real observations;
we used arrival predictions for
the cable sensors.

1 s uncertainty was applied to all
cable arrivals.
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Comparison of travel time uncertainties for station MJAR (in Japan) without (left) and with (right)
SMART Cables arrivals for global teleseisms informing the SALSA3D model.

Absolute values of uncertainties are underestimated due to choice of model damping parameters,

but the qualitative patterns and relative values would not change.
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Comparison of travel time uncertainties for station ILAR (in Alaska) without (left) and with
(right) SMART Cables arrivals for global teleseisms informing the SALSA3D model.

Absolute values of uncertainties are underestimated due to choice of model damping parameters,

but the qualitative patterns and relative values would not change.
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Comparison of travel time uncertainties for station VNDA (in Antarctica) without (left) and with
(right) SMART Cables arrivals for global teleseisms informing the SALSA3D model.

Absolute values of uncertainties are underestimated due to choice of model damping parameters,
but the qualitative patterns and relative values would not change.




Summary:

* Global tomographic models, including the SALSA3D model, suffer from heterogeneous source and
recetver distribution, with sensors largely restricted to specific regions.

* The addition of seafloor seismometers can greatly enhance ray coverage to fill in the blanks, but most
ocean deployments are spatially and temporally limited, reducing the opportunities to exploit potentially
important events.

* The drive towards SMART Cables can significantly enhance our ability to probe the subsurface more
uniformly, leading to more complete models.

* Improved model resolution and model covariance calculations can significantly reduce travel-time

uncertainties over large swaths of the Earth, leading to the potential to improve event location confidence.

Coming soon: Review article about the SMART Cables initiative and latest developments, pending final
revisions: Howe et al. (2021), SMART Subsea Cables for Observing the Earth and Ocean, Mitigating
Environmental Hazards, and Supporting the Blue Economy, Frontiers in Earth Science special 1ssue on seafloor

seismology.
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