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Motivations

= Pore scale physics has been significantly improved over the past ~15+ years

= Various studies on hydrodynamics, reactive transport, and coupled processes (e.g.,
chemo-mechanical coupling) are motivated with many subsurface applications
(geologic carbon storage, unconventional resources recovery, nuclear waste
repository, geothermal energy, etc) and Multiphysics in porous media (contaminant
transport, fuelcells, flow& transport in varying saturated media, membrane filter
systems, etc)

= Both experimental and numerical capabilities have been improved with both sensing
and experimental apparatus and computational hardware & algorithms

= A few new emerging techniques can be utilized to improve these continuing efforts

= One overarching question is what fundamental knowledges need to be improved and
how micro- and macro-processes are meaningfully integrated depending on our
scientific and practical interests
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= Fabricated fluidic device (with silicon wafer & surface
treatment) with theoretical/synthetic geometry
= Fast optical (4-10 fps) and confocal 3D imaging at ~0.1-10 um

= Pore scale modeling/detailed continuum modeling have been Testing bed of precipitation/dissolution of calcium carbonate in real-rock

validated mock-up

= Expensive and some artifacts in data analysis = Real-time imaging of change of CaCO; morphology with precipitation/dissolution
= Measurement of effluent concentrations with known surface geometry and media

Zhang et al. (EST, 2010), Yoon et al. (WRR, 2012), Fanizza et al. (WRR, 2013), Boyd

et al. (GCA, 2014), Singh et al. (EST, 2015), Yoon et al. (RIMG, 2016, EST 2019) structure

Oosrom et al. (Com.Geo. 2016), Park et al. (E&F, 2021), Martinez et al. (SAND, 2018))



4 ‘ Chemo-mechanical Coupling
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 Variations in fracture, microfracture, matrix

porosity, and compositions affect

« Aperture and connectivity of fracture network
* Interaction between fracture and matrix

» Permeability response as a function of stress

* Mechanical properties

« Response of fracture varies, hence reactive transport 3D printed fractured media

Martinez et al. (SAND2017-10469) |




Summary
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= Scalable and predictive modeling for flow, transport, and mechanics through natural
porous and fractured media is essential for a variety of engineering applications for
many societal needs (energy, climate change, engineering materials, etc.)

= FAIR (findable, accessible, interpretable, reproducible) principles can be very
powerful to achieve our overarching goals of predictive power of various reactive
transport processes in porous/fracture media

= A few recent community initiatives (e.g., ML works, open data portals) can be
benchmarked in reactive flow/transport community

= Digital rock physics/pore scale physical modeling augmented with new emerging
techniques has a high potential to advance our understanding of coupled flow,
transport, and (poro)mechanics



