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Overview

Computational efficiency: Solution accuracy for given computational resources.

Two new methods increase E3SM Atmosphere Model (EAM) computational efficiency:
I Semi-Lagrangian tracer transport in the HOMME dynamical core.
I Separate physics parameterizations grid with physics-dynamics-grid remap.

Property preserving, to mimic continuum equations:
I Conserve mass.
I Limit extrema (shape preservation).
I Tracer consistent.

High order: Order of accuracy (OOA) is at least 2.
I In general, strict property preservation limits formal OOA to 2–3.

These methods:
I Speed up EAM by roughly 2× roughly independent of architecture and problem configuration.
I Work seamlessly in the Regionally Refined Mesh (RRM) configuration.
I Are also used in the Simple Cloud Resolving E3SM Atmosphere Model (SCREAM).
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Overview

E3SMv1: Physics column at each dynamics grid GLL point.

Many ways to define dycore’s effective resolution. All imply assigning a physics column
to every GLL point is inefficient.

E3SMv2: Physics column at each subcell of a spectral element.
“pg2” has 4/9 as many columns as in EAMv1, better matching the effective resolution.
I >2× greater computational efficiency: approximately the same answer for half the cost.
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Tracer transport algorithms

E3SMv1: Eulerian Spectral Element tracer transport.

E3SMv2: Semi-Lagrangian⇒ very long time steps.

Remap form⇒ communication volume is roughly independent of time step.

Interpolation⇒ extremely efficient, both in computations and data volume of discrete
domain of dependence.

Implementation communicates only partial haloes: no more than what is needed.
Communication-efficient density reconstructor (CEDR) for property preservation.
I Exactly one all-reduce(-like) communication round.
I Clear and practical necessary and sufficient conditions for feasibility.
I Clear and practical bounds on mass modifications.
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Tracer transport time stepping
To exceed the dynamics vertical remap time step:

Reconstruct Lagrangian levels with 2nd-order accuracy.
Apply 2D advection algorithm within levels.
Vertically remap to reference levels.
The CEDR restores properties.
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Dissipation

Eulerian flux-form method requires hyperviscosity for stability.

SL transport does not.

But optionally can apply hyperviscosity.

Example: Specific humidity at approximately 500 hPa, on day 30 in DCMIP 2016 moist
baroclinic instability test.

Eulerian flux-form SL, no hyperviscosity SL with hyperviscosity
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Physics-dynamics grid remap
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Physics-dynamics grid remap: Convergence
Remap a test function from the dynamics grid to physics grid and then back. Compare error
under cubed-sphere grid refinement.
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Performance: C++/Kokkos HOMME
The semi-Lagrangian transport module is available to both the original F90 and new
C++/Kokkos dynamical cores. The C++/Kokkos HOMME dynamical core runs on all
architectures.
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Performance: Atmosphere model

Much of the v2 simulation campaign ran on the ANL LCRC Chrysalis cluster.
Each node has two AMD Epyc 7532 “Rome" 2.4 GHz processors, with 32 cores per processor.
Interconnect: Mellanox HDR200 InfiniBand; fat tree topology.
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Performance: Water Cycle coupled model

The standard-resolution coupled model runs at ∼41 SYPD on 105 Chrysalis nodes.
The RRM coupled model runs at ∼12.4 SYPD on 100 Chrysalis nodes.
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Summary

EAMv2 is roughly 2× faster than EAMv1 roughly independent of architecture and
problem configuration.

The Simple Cloud Resolving E3SM Atmosphere Model (SCREAM) and E3SM-MMF are
also using these methods.

These methods work in Regionally Refined Models.
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