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> I MagLIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation

without B,  with B,

Magnetization: 10-30T at t=0
* Reduces electron heat
loss during implosion
* Traps charged particles
at stagnation

random helical

dial thermal
n losses

slow implosion
thick target walls

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).
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MagLIF is a Magneto-lnertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation

* Laser preheat: 100-200 eV
e Uses Z-Beamlet Laser

 Relax convergence requirement
* CR=RinitiaI/RfinaI= 120 - 20-40

At ~ 50 ns Phusion

0.8

Magnetization Preheat 05t

* Suppress radial thermal - lonize fuel to lock in B- 0_4;_ Pypr
conduction losses field 025_

* Enable slow implosion * |ncrease adiabat to limit ' :
with thick target walls required convergence 0y

time () ) <10

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).



+ I MagLIF is a Magneto-Inertial Fusion (MIF) concept
Relies on three components to produce fusion conditions at sta '
B, >
1 g i
O Magnetically Driven Implosion
* Relatively low implosion
velocity ~100 km/s
* B-field amplified to >few kT
'Magnetization Preheat Implosion
» Suppress radial thermal < lonize fuel tolockinB- - PdV work to heat fuel
conduction losses field - Flux compression to
* Enable slow implosion ¢ Increase adiabat to limit amplify B-field
with thick target walls required convergence

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).



MagLlIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation
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Stagnation

* Several keV
temperature,
~1 g/cm? fuel
density

* Several kT B-field

traps charged fusion
products

agnetization Preheat Implosion
Suppress radial thermal -« lonize fuel to lock in B- PdV work to heat fuel

conduction losses field Flux Compression to
* Enable slow implosion ¢ Increase adiabat to limit amplify B-field
with thick target walls required convergence

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).



We have been using the multi-MJ Z pulsed power facility and the adjacent
multi-kJ Z-Beamlet laser to perform integrated tests of the MagLIF concept
since 2015
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Magnetically Driven Implosion

1/20 MA)Z Diameter = 33 mete

Pmag(Mbar) = 62 ( R/1mm

A Beryllium liner (MagLIF)

drive Diameter = 6 mm

current

Peak electrical current ~ 20 MA
Rise time ~ 100 nanoseconds

1
~7 Mbar - >100 Mbar during expt.



7 ‘ Both Omega and NIF are being used to study key aspects of the physics

Laser entrance
hole with CH foil

Preheat beam
1000x in drive energy

Axial-field coils
not shown Axial-field coils
Z:19 MA OMEGA: 14.5 kJ
~1 MJ in target Laser- (P ~1 kJ in target
r=3mm heated I r=03mm
fuel
40 beam for
compression
Start 6f'-i-iner
compression 10x in linear dimensions
Omega Facility

Z Facility

W’

J.R. Davies et al., Phys. Plasmas (2017).
D.H. Barnak et al., Phys. Plasmas (2017).
E.C. Hansen et al., Phys. Plasmas (2018).
J.R. Davies et al., Phys. Plasmas (2019).
E.C. Hansen et al., Phys. Plasmas (2020).
D.H. Barnak et al., Phys. Plasmas (2020).
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B. Pollock et al., APS-DPP 2021



s | Integrated MagLIF experiments on both Z and Omega have demonstrated |
the fundamental principles of MIF

Thermonuclear neutrons, multi-keV
temperatures from high aspect-ratio, 0
cylindrical fuel assemblies.

Hallmark of MIF: significant fusion only when
both the laser preheat and magnetization stages
are present.
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determine the plasma conditions and Lawson parameter for our
o I integrated experiments®
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. i * We analyzed a database of 36 MagLIF
0\ ' experiments dating back to 2015
2% * Includes a wide range of neutron
05 \ o yields, preheat configurations, initial
\ . magnetic field strengths, fill
\2 densities, etc.
-—20 % .
— * Method finds plasma parameters
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\ different data, not just a handful of
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* P.F. Knapp et al., manuscript in preparation.



Multiple existing data points show the ability to scale to self-heating at

10 % realizable drive current
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* P.F. Schmit and D.E. Ruiz., Phys. Plasmas 27, 062707 (2020)
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e Using analytic scaling theory*, we
can assess the performance of
experimental data points at
larger driver energy

* We choose a scaling path that
preserves implosion time,
radiation losses, ion-conduction
losses, and end-losses
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A design utilizing optimized input parameters on Z scales to tens of MJ’s at

~60 MA
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*S.A. Slutz, et al., Physics of Plasmas 23, 022702 (2016)
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z3179 40 MA 49 MA

z3236 1.1 38 MA 44 MA 5-9
z3576 0.7 45 MA 62 MA 5-10
*Opt. 21 28 MA 41 MA 3-4.2

* The optimized target exceeds Y, =1 MJ at
the lowest drive current

* Yield amplification due to a-heating is 3-4x

* At 60 MA this target produces >40 MJ



The NNSA has begun working toward a Next Generation Pulsed Power
12 I project that Sandia anticipates will be capable of tens of MJ yields

Acting NA-113 director Sarah Nelson memo
to James Peery on September 30, 2021

* We are presently working on defining the specific
mission need and requirements with the NNSA

Department of Energy
National Nuclear Security Administration

and our nuclear security enterprise partners
* The nominal proposal is a facility that would be I R
~3x the size and ~9x the power of the existing Z | e s
facility at Sandia National Laboratories CT i'jEZLZ“:E’:Z‘S?,ZSI,ZT;‘EEZ:ZLm ——
* Like Z today, it would support the missions of all | -
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