
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc, for the U.S. Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

Using External Memory to Improve Cyber-
Security Stream Monitoring

Shikha Singh (Williams College)
Prashant Pandey (VMWare Research)

Michael Bender (Stony Brook U)
Jonathan Berry (Sandia National Laboratories)

Martin Farach-Colton (Rutgers)
Rob Johnson (VMWare Research)

Thomas Kroeger (Sandia National Laboratories)
Cynthia Phillips, Sandia National Laboratories

SAND2022-0410CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Cyber Streams and Analysis

January 12, 2022 APoCS 2022 2

• Stream is fast
• Interesting events can have multiple pieces that are spread in time and can hide

among non-interesting pieces

Query responses

Standing Queries
On-demand Queries

Database(key, value)(key, value)

e.g. Bro logs, netflow,
relationships

Standing Queries

Database requirements:
• No false negatives
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster)
• Also relevant to other monitoring problems: power, water utilities

January 12, 2022 APoCS 2022 3

Example Cyber Standing Query

Stamp-collector problem
• Given fixed set of cyber events/use of tools

– Learn about system services, software, network configuration…
– See, e.g., the MITRE ATT&CK matrix, https://attack.mitre.org/

• Given a threshold T
• For each user, track the subset of these tools he/she uses
• Report any user who uses more than T of these tools

January 12, 2022 APoCS 2022 4

Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.

January 12, 2022 APoCS 2022 5

Infinite key space

Drifting
window

FIREHOSE
data

structure

Key stream

Expirationhttp://firehose.sandia.gov/

Reportable
Keys

Heavy-Hitters Problem

• Also called the frequent items problem

• Given a finite stream of N items, find ones that appear most
frequently, e.g., items that occur 10% of the time

• Formally, report all items that occur at least ɸN times

– Requires space. For Firehose .

January 12, 2022 APoCS 2022 6

<latexit sha1_base64="aOnHe5X44wUN167Z6kQ79uCyNTM=">AAAB+HicbVBNS8NAEN34WetHox69LBahXmoiRT0WvXizgv2AJpTNdtIu3U3C7kaopb/EiwdFvPpTvPlv3LQ5aOuDgcd7M8zMCxLOlHacb2tldW19Y7OwVdze2d0r2fsHLRWnkkKTxjyWnYAo4CyCpmaaQyeRQETAoR2MbjK//QhSsTh60OMEfEEGEQsZJdpIPbvk3QkYkIp75iVDdlrs2WWn6syAl4mbkzLK0ejZX14/pqmASFNOlOq6TqL9CZGaUQ7TopcqSAgdkQF0DY2IAOVPZodP8YlR+jiMpalI45n6e2JChFJjEZhOQfRQLXqZ+J/XTXV45U9YlKQaIjpfFKYc6xhnKeA+k0A1HxtCqGTmVkyHRBKqTVZZCO7iy8ukdV51L6q1+1q5fp3HUUBH6BhVkIsuUR3dogZqIopS9Ixe0Zv1ZL1Y79bHvHXFymcO0R9Ynz/SApHn</latexit>

⌦(1/�)
<latexit sha1_base64="4+H3vKjCayJ1HoIWSEfdMIXh1Fk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OJJK9gPbJeSTdM2NMkuSVYoS/+FFw+KePXfePPfmG33oK0PBh7vzTAzL4g408Z1v53cyura+kZ+s7C1vbO7V9w/aOowVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjK9Tv/VElWahfDCTiPoCDyUbMIKNlR67d4IOcfn2tNArltyKOwNaJl5GSpCh3it+dfshiQWVhnCsdcdzI+MnWBlGOJ0WurGmESZjPKQdSyUWVPvJ7OIpOrFKHw1CZUsaNFN/TyRYaD0Rge0U2Iz0opeK/3md2Awu/YTJKDZUkvmiQcyRCVH6PuozRYnhE0swUczeisgIK0yMDSkNwVt8eZk0zyreeaV6Xy3VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9wPn8AAHaP1Q==</latexit>

⌦(N)

Academic Streaming

When there are large lower bounds (space required for an exact
solution):
• Use more than fixed (constant) space, but as little as possible
• Use multiple passes
• Approximation (usually randomized)

– Heavy-hitters, trade off space for accuracy [Alon et al. 96, Berinde
et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
16, Charikar et al. 02, 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen
et al. 16, Manku et al. 02., Misra and Gries. 82, etc.]

• But we require no false negatives (no approximation that drops)
• Need fast response, eventually on infinite streams (no 2-pass)
• Constant space (e.g. the size of RAM) will not be enough

January 12, 2022 APoCS 2022 7

Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.

January 12, 2022 APoCS 2022 8

Infinite key space

Drifting
window

FIREHOSE
data

structure

Key stream

Expiration

How much working space do we need
relative to the active set size?

http://firehose.sandia.gov/

Reportable
Keys

Critical Data Structure Size

• Testing with benchmark reference implementation in Waterslide
– 50M keys (varying counts)
– Stable window

• Accuracy of cyber-analytics depends on keeping enough data
• Difficult to determine what to throw away

– Most keys act the same at their start
• Keep as much data as we can!

January 12, 2022 APoCS 2022 9

Table
Size

Generator
Window Size

Reportable
keys

Reported
keys

Packet
drops

2^20 2^20 94,368 62,317 0

2^20 2^21 63,673 15,168 0

2^20 2^22 17,063 9 0

h9ps://github.com/waterslideLTS/waterslide

What is Happening?

January 12, 2022 APoCS 2022 10

• Waterslide uses ‘d-left hashing’
– Two rows of buckets
– Constant-size
– Fast
– Waterslide adds LRU

expiration per bucket

• 1/16 of all data is always subject
to immediate expiration in
steady state

• As active generator window
grows, FIREHOSE accuracy
quickly goes to zero

Even when window size is only
4x data structure size, most

reportable data are lost before
It is reported.

Broder, Andrei, and Michael Mitzenmacher. "Using multiple
hash functions to improve IP lookups." INFOCOM 2001

External Memory Model

January 12, 2022 APoCS 2022 11

• Disks, SSD (solid-state drives)
• Data transferred in blocks of size B
• Efficient algorithms ensure most of the block is used
• When possible, delay block transfers to fill blocks
• Theoretical analysis uses B, M, and data size N

– Analysis counts only block transfers

Write Optimization

• The basis for TokuDB

January 12, 2022 APoCS 2022 12

Write-Optimized
Data Structures
(WODS)

Brodal and Fagerberg
SODA 2003

Write optimization:
Cascade filter

[Bender et al. 12, Pandey et al. 17]

3

0

2

1

RAM
FLASH

log(N/M)

● Each level is an efficient hash table with counts

● It greatly accelerates insertions at some cost to queries.

N

M

M

2M

4M

January 12, 2022 APoCS 2022

e.g. N = 1T
M = 8B
8 levels

13

3

0 C,1 D,1 F,1

2

1

log(N/M)

● Items are first inserted into the in-memory hash table.

● When the in-memory table reaches maximum load factor it flushes

N

Ingestion “cascades”

M

RAM

FLASH

January 12, 2022 APoCS 2022 14

3

0

2

1 C,1 D,1 F,1

log(N/M)

● During a flush, find the smallest i such that the items in l0, . . . , li can be

merged into level i.

N

M

Ingestion “cascades”

RAM

FLASH

January 12, 2022 APoCS 2022 15

3

0 H,1 J,1 A,1

2log(N/M)

N

M

Ingestion “cascades”

1 C,1 D,1 F,1

RAM

FLASH

January 12, 2022 APoCS 2022 16

3

0

2 A,1 C,1 D,1 F,1 H,1 J,1

1

log(N/M)

N

M

Ingestion “cascades”

RAM

FLASH

January 12, 2022 APoCS 2022 17

3

0 A,1 D,1 J,1

1

log(N/M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

January 12, 2022 APoCS 2022 18

3

0

1 A,1 D,1 J,1

log(N/M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

January 12, 2022 APoCS 2022 19

3

0 A,1 F,1 H,1

log(N/M)

N

M

Ingestion “cascades”

1 A,1 D,1 J,1

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

January 12, 2022 APoCS 2022 20

0

2

1

log(N/M)

N

M

Ingestion “cascades”

3 A,3 C,1 D,2 F,2 H,2 J,2

RAM

FLASH

January 12, 2022 APoCS 2022 21

0

2

1

RAM

FLASH

log(N/M)

N

Cascade filter Performance

Number of I/Os per item:

lookup(key)M

3 A,3 C,1 D,2 F,2 H,2 J,2

Look up:

Insertion:

January 12, 2022 APoCS 2022

Queries too slow for standing queries

22

Reminder: Standing Queries

Database requirements:
• No false negatives -> Keep at much data as possible; use external memory
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster) -> write-optimization

– Standing queries have a query per time step
– Can delay reporting to keep up with stream

January 12, 2022 APoCS 2022 23

Time Stretch

● Can’t afford multiple look ups per element
● Compromise: allow a little delay

24

Birthtime
(I1)

24-th occurrence
(I24)

Report time
(IR)

Timeline
Time in system

Delay

delay  ↵ ⇤ time in system

January 12, 2022 APoCS 2022

Time-stretch filter

2

0

1

RAM

FLASH
log(N/M)

● Arrays at each level split into l = (𝛼+1)/𝛼 equal-sized bins. Here l = 2 and ⍺ = 1.

● Flushes at bin granularity on fixed round-robin schedule.

● Will always see the oldest element in time to report

● Bounded delay time, factor (𝛼+1)/𝛼 slower ingestion

● This example: 1 hour for 24 instances to arrive report up to 1 hour late and

system runs 2x slower than when we gave no promises on delay

N

January 12, 2022 APoCS 2022 25

Optimal insert cost for EM &
write-optimized dictionaries

Theorem. Given a stream of size N, the amortized per-element cost of solving

firehose with a time stretch is

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis

January 12, 2022 APoCS 2022 26

Theorem. Given a stream of size N, the amortized cost of solving firehose

with a time stretch is

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis

Factor lost because we only flush
a fraction of each level;
Constant loss for constant 𝛼

Almost-online reporting with no
extra query cost!

January 12, 2022 APoCS 2022 27

How to do immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/M)

Lookup (I)

● In a cascade filter, we would need to perform multiple I/Os for every new

item

RAM

FLASH

January 12, 2022 APoCS 2022 28

Level Thresholds

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/M)

Level
bounds

● At most 𝜏i counts of a key can be stored at level i. Higher closer to RAM.

● Shuffle merge: combine total count for a key on all visible levels, report if

appropriate, otherwise push as low as possible respecting level thresholds.

RAM

FLASH

January 12, 2022 APoCS 2022 29

Popcorn filter: immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

L=
log(N/M)

● Avoid unnecessary I/Os if we can upper bound the total instances on disk

Lookup if

Lookup (I)

January 12, 2022 APoCS 2022 30

Popcorn filter

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

log(N/M)

Lookup (I)

• Immediate reporting
works if keys have power-
law distribution:
probability key count is c
is Zc-θ, where Z is a
normalization constant

Key frequency

N
um

be
r o

f k
ey

s

January 12, 2022 APoCS 2022 31

The number of I/Os per stream element is

Popcorn filter: immediate reporting

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2
When

Note: for θ < 2.96
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

<latexit sha1_base64="Be33oS08Kce7qeKBK6QZMloxyLY=">AAACTHicbZDNSxtBGMZn40dt/Gi0x14GgxAPxt0i1Ysg7aUXRcGokI3h3cm7yeDM7jLzrhCW/QO99ODNv8KLh0opOPk42KQvDDw8z/swM78oU9KS7z95lYXFpeUPKx+rq2vrG59qm1tXNs2NwJZIVWpuIrCoZIItkqTwJjMIOlJ4Hd39GOXX92isTJNLGmbY0dBPZCwFkLO6NRH2QWvgxzyMDYgCb4tgvxFeDpBgL9gtyzlnLyh5KHop8VBhTI1J76wsTsvQyP6AdmcK1W6t7jf98fB5EUxFnU3nvFt7DHupyDUmJBRY2w78jDoFGJJCYVkNc4sZiDvoY9vJBDTaTjGGUfId5/R4nBp3EuJj932jAG3tUEduUwMN7Gw2Mv+XtXOKjzqFTLKcMBGTi+JccUr5iCzvSYOC1NAJEEa6t3IxAAeHHP8RhGD2y/Pi6msz+NY8uDion3yf4lhhX9g2a7CAHbIT9pOdsxYT7IE9s9/s1fvlvXh/vL+T1Yo37Xxm/0xl+Q2RaLFJ</latexit>

� =
e1/(⇥�1)

e1/(⇥�1) � 1
·
✓
N

M

◆1/(⇥�1)

<latexit sha1_base64="Ve6+kEgCPiKjjH8DkFdNje2+q3k=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquiHqSohdPUsF+QHcps2m2DU2yS5IVaukv8eJBEa/+FG/+G9N2D9r6YODx3gwz86KUM20879sprKyurW8UN0tb2zu7ZXdvv6mTTBHaIAlPVDsCTTmTtGGY4bSdKgoi4rQVDW+mfuuRKs0S+WBGKQ0F9CWLGQFjpa5bDtIBw3f4Cgd9EAK6bsWrejPgZeLnpIJy1LvuV9BLSCaoNISD1h3fS004BmUY4XRSCjJNUyBD6NOOpRIE1eF4dvgEH1ulh+NE2ZIGz9TfE2MQWo9EZDsFmIFe9Kbif14nM/FlOGYyzQyVZL4ozjg2CZ6mgHtMUWL4yBIgitlbMRmAAmJsViUbgr/48jJpnlb98+rZ/Vmldp3HUUSH6AidIB9doBq6RXXUQARl6Bm9ojfnyXlx3p2PeWvByWcO0B84nz9BvZIy</latexit>

�N > �

January 12, 2022 APoCS 2022

< 1/100 for Firehose for θ=2.96 and N/M=25
< 1/16 for Firehose for θ=2.5 and N/M=25

About 1/1000

32

Count stretch

A count-stretch of ⍵, we must report an element no later than

when its count hits (1+ ⍵)T. In immediate reporting ⍵ = 0.

Birthtime T-th occurrence Report count
CR

Timeline

January 12, 2022 APoCS 2022

⍵T instances arrive

33

Popcorn filter: Count Stretch

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2

When

Note: for θ < 2.96
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

● Do as with the popcorn filter, but report when count in RAM is ɸN
● Set level thresholds such that maximum on disk is ωɸN
● Amortized I/Os per stream element is:

<latexit sha1_base64="OWzp7p34Vq1qx66lbMSzkm2xpUY=">AAACK3icbVDLSgNBEJz1bXxFPXoZDIIeEndF1JOIXjyJQqKBbAyzk95kcHZnmekVwrL/48Vf8aAHH3j1P5w8DmosaCiquunuChIpDLruuzMxOTU9Mzs3X1hYXFpeKa6uXRuVag41rqTS9YAZkCKGGgqUUE80sCiQcBPcnfX9m3vQRqi4ir0EmhHrxCIUnKGVWsVTP+kKekF93lZIfRVBh9Fj6oea8QxuM2932692AVnZ28nzMaXs5YVWseRW3AHoOPFGpERGuGwVn/224mkEMXLJjGl4boLNjGkUXEJe8FMDCeN3rAMNS2MWgWlmg19zumWVNg2VthUjHag/JzIWGdOLAtsZMeyav15f/M9rpBgeNTMRJylCzIeLwlRSVLQfHG0LDRxlzxLGtbC3Ut5lNia08fZD8P6+PE6u9yreQWX/ar90cjqKY45skE2yTTxySE7IObkkNcLJA3kir+TNeXRenA/nc9g64Yxm1skvOF/f6jGlBA==</latexit>

�N · ! >
e1/(⇥�1)

e1/(⇥�1) � 1

<latexit sha1_base64="FsblxEJHPSzS+Ly2uReO3YX6gGU=">AAACI3icbZDLSgMxFIYz9VbrbdSlm2AR6qbMSFFxVerGjVrBXqBTSibNtKGZC8kZoQzzLm58FTculOLGhe9i2s5CWw+E/Hz/OSTndyPBFVjWl5FbWV1b38hvFra2d3b3zP2DpgpjSVmDhiKUbZcoJnjAGsBBsHYkGfFdwVru6Hrqt56YVDwMHmEcsa5PBgH3OCWgUc+8Ktw7gnlQcjxJaGKnSS3FjggHeI7xnN+lya3mkg+GcJpdPbNola1Z4WVhZ6KIsqr3zInTD2nsswCoIEp1bCuCbkIkcCpYWnBixSJCR2TAOloGxGeqm8x2TPGJJn3shVKfAPCM/p5IiK/U2Hd1p09gqBa9KfzP68TgXXYTHkQxsIDOH/JigSHE08Bwn0tGQYy1IFRy/VdMh0SHAjrWgg7BXlx5WTTPyvZ5ufJQKVZrWRx5dISOUQnZ6AJV0Q2qowai6Bm9onf0YbwYb8bE+Jy35oxs5hD9KeP7Bwqmo/E=</latexit>

O

✓
1

B
log

✓
N

M

◆◆

January 12, 2022 APoCS 2022 34

So report by count 27

Multithreading and Deamortization
● Data structures run well on average, but some operations take a

long time
● Do a little work for each arriving element

○ Serial count-stretch guarantees still hold.

○ Time-stretch does not in general, does if input stream randomized

35

2

0

1

RAM

FLASH
Cones

January 12, 2022 APoCS 2022 35

Multithreading/Deamortization

2

0

1

RAM
FLASH

Threads

Cones

Each thread has a small chunk of stream elements. Takes a lock at the cone and
then inserts.

January 12, 2022 APoCS 2022 36

Local
CQF

Multithreading/Deamortization

2

0

1

RAM
FLASH

Local
CQF

Local
CQF

Local
CQF

Threads

Cones

If there is contention, thread inserts the item in its local buffer (consolidating
counts) and continues. When buffer full, waits for locks to clear buffer.

January 12, 2022 APoCS 2022 37

Multithreaded Count Stretch

● P = # of threads, T is reporting threshold
● If I thread acquires local count for an element > T/P,

waits to store that one element
● For multithreading, given ⍵ and T > P, guarantees a

count stretch of 2 + ⍵.

3838January 12, 2022 APoCS 2022

Experiments

Machines:
• Most experiments: Skylake CPU, 4 cores, 2.6 GHz, 32GB RAM, 1TB

SSD
• Scalability experiments: Intel Xeon(R) CPU, 64 cores, 512 GB RAM,

1TB SSD

Input stream: mostly Firehose, power-law generator, active set of 1M
key, drifting in larger key space. Read from file.

Stream size: 64M-512M for validation experiments (needs offline
analysis; artificially reduce RAM); 4B for scalability experiments

Baseline comparison: Cascade filter

January 12, 2022 APoCS 2022 39

Time stretch
Ti

m
e

st
re

tc
h

January 12, 2022 APoCS 2022

Deamortization and multithreading had negligible effect on empirical time stretch

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number
of observations: 512M. (I think ⍺ = 1)

40

Time stretch

Values of ⍺ left to right: 1, 0.33, 0.14, 0.06.

Ti
m

e
st

re
tc

h

January 12, 2022 APoCS 2022 41

Count stretch

● Deamortization and multithreading had negligible effect on average count stretch.
Multithreading had more variance.

● level thresholds: (2, 4, 8)

C
ou

nt
 st

re
tc

h

January 12, 2022
APoCS 2022 42

Scalability – count stretch

January 12, 2022 APoCS 2022

Reports all reportable keys. Stream size 4B.

43

Instantaneous Throughput

January 12, 2022 APoCS 2022

About 3x improvement of throughput with 4 threads, more steady

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number
of observations: 512M. (I think ⍺ = 1) – same as before

44

Final Thoughts

Missing detail: Separate data structure in RAM of reported keys
– Reporting a key twice is an error

Summary:
• Algorithms and data structures allow rapid stream monitoring using

“normal” architecture such as SSDs
• Compromise between fast ingestion and queries, but can

approximately have both
• Store as much as you can, while keeping up with the stream, to get

the best information
• This work bridges the gap between streaming and external memory

January 12, 2022 APoCS 2022 45

Prashant Pandey, Shikha Singh, Michael A Bender, Jonathan W Berry, MarUn Farach-Colton, Rob Johnson, Thomas M Kroeger, and
Cynthia A Phillips. 2020. Timely ReporZng of Heavy Hi9ers using External Memory. In Proceedings of the 2020 ACM SIGMOD
InternaZonal Conference on Management of Data. 1431–1446.

And journal version. Same authors (first two authors swapped), same Ztle, ACM TransacZons on Database Systems (TODS) 46.4 (2021):
1-35.

