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Cyber Streams and Analysis
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• Stream is fast
• Interesting events can have multiple pieces that are spread in time and can hide

among non-interesting pieces 

Query responses

Standing Queries
On-demand Queries

Database(key, value)(key, value)

e.g. Bro logs, netflow,
relationships



Standing Queries

Database requirements:
• No false negatives
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster)
• Also relevant to other monitoring problems: power, water utilities
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Example Cyber Standing Query

Stamp-collector problem
• Given fixed set of cyber events/use of tools

– Learn about system services, software, network configuration…
– See, e.g., the MITRE ATT&CK matrix, https://attack.mitre.org/

• Given a threshold T
• For each user, track the subset of these tools he/she uses
• Report any user who uses more than T of these tools
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Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.
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Infinite key space

Drifting 
window

FIREHOSE 
data 

structure

Key stream

Expirationhttp://firehose.sandia.gov/

Reportable
Keys



Heavy-Hitters Problem

• Also called the frequent items problem

• Given a finite stream of N items, find ones that appear most 
frequently, e.g., items that occur 10% of the time

• Formally, report all items that occur at least ɸN times

– Requires               space. For Firehose           .

January 12, 2022 APoCS 2022 6

<latexit sha1_base64="aOnHe5X44wUN167Z6kQ79uCyNTM=">AAAB+HicbVBNS8NAEN34WetHox69LBahXmoiRT0WvXizgv2AJpTNdtIu3U3C7kaopb/EiwdFvPpTvPlv3LQ5aOuDgcd7M8zMCxLOlHacb2tldW19Y7OwVdze2d0r2fsHLRWnkkKTxjyWnYAo4CyCpmaaQyeRQETAoR2MbjK//QhSsTh60OMEfEEGEQsZJdpIPbvk3QkYkIp75iVDdlrs2WWn6syAl4mbkzLK0ejZX14/pqmASFNOlOq6TqL9CZGaUQ7TopcqSAgdkQF0DY2IAOVPZodP8YlR+jiMpalI45n6e2JChFJjEZhOQfRQLXqZ+J/XTXV45U9YlKQaIjpfFKYc6xhnKeA+k0A1HxtCqGTmVkyHRBKqTVZZCO7iy8ukdV51L6q1+1q5fp3HUUBH6BhVkIsuUR3dogZqIopS9Ixe0Zv1ZL1Y79bHvHXFymcO0R9Ynz/SApHn</latexit>

⌦(1/�)
<latexit sha1_base64="4+H3vKjCayJ1HoIWSEfdMIXh1Fk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OJJK9gPbJeSTdM2NMkuSVYoS/+FFw+KePXfePPfmG33oK0PBh7vzTAzL4g408Z1v53cyura+kZ+s7C1vbO7V9w/aOowVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjK9Tv/VElWahfDCTiPoCDyUbMIKNlR67d4IOcfn2tNArltyKOwNaJl5GSpCh3it+dfshiQWVhnCsdcdzI+MnWBlGOJ0WurGmESZjPKQdSyUWVPvJ7OIpOrFKHw1CZUsaNFN/TyRYaD0Rge0U2Iz0opeK/3md2Awu/YTJKDZUkvmiQcyRCVH6PuozRYnhE0swUczeisgIK0yMDSkNwVt8eZk0zyreeaV6Xy3VrrI48nAEx1AGDy6gBjdQhwYQkPAMr/DmaOfFeXc+5q05J5s5hD9wPn8AAHaP1Q==</latexit>

⌦(N)



Academic Streaming

When there are large lower bounds (space required for an exact 
solution):
• Use more than fixed (constant) space, but as little as possible
• Use multiple passes
• Approximation (usually randomized)

– Heavy-hitters, trade off space for accuracy [Alon et al. 96, Berinde
et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
16, Charikar et al. 02, 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen 
et al. 16, Manku et al. 02., Misra and Gries. 82, etc.]

• But we require no false negatives (no approximation that drops)
• Need fast response, eventually on infinite streams (no 2-pass)
• Constant space (e.g. the size of RAM) will not be enough
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Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.
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Infinite key space

Drifting 
window

FIREHOSE 
data 

structure

Key stream

Expiration

How much working space do we need 
relative to the active set size?

http://firehose.sandia.gov/

Reportable
Keys



Critical Data Structure Size

• Testing with benchmark reference implementation in Waterslide
– 50M keys (varying counts)
– Stable window

• Accuracy of cyber-analytics depends on keeping enough data
• Difficult to determine what to throw away

– Most keys act the same at their start
• Keep as much data as we can!
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Table
Size

Generator
Window Size

Reportable 
keys

Reported 
keys

Packet 
drops

2^20 2^20 94,368 62,317 0

2^20 2^21 63,673 15,168 0

2^20 2^22 17,063 9 0

h9ps://github.com/waterslideLTS/waterslide



What is Happening?
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• Waterslide uses ‘d-left hashing’
– Two rows of buckets
– Constant-size
– Fast
– Waterslide adds LRU 

expiration per bucket

• 1/16 of all data is always subject 
to immediate expiration in 
steady state

• As active generator window 
grows, FIREHOSE accuracy 
quickly goes to zero

Even when window size is only
4x data structure size, most

reportable data are lost before
It is reported.

Broder, Andrei, and Michael Mitzenmacher. "Using multiple 
hash functions to improve IP lookups." INFOCOM 2001



External Memory Model
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• Disks, SSD (solid-state drives)
• Data transferred in blocks of size B
• Efficient algorithms ensure most of the block is used 
• When possible, delay block transfers to fill blocks
• Theoretical analysis uses B, M, and data size N

– Analysis counts only block transfers



Write Optimization

• The basis for TokuDB
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Write-Optimized
Data Structures 
(WODS)

Brodal and Fagerberg
SODA 2003



Write optimization:
Cascade filter

[Bender et al. 12, Pandey et al. 17]

3

0

2

1

RAM
FLASH

log(N/M)

● Each level is an efficient hash table with counts

● It greatly accelerates insertions at some cost to queries.

N

M

M

2M

4M
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e.g. N = 1T
M = 8B
8 levels

13



3

0 C,1 D,1 F,1

2

1

log(N/M)

● Items are first inserted into the in-memory hash table.

● When the in-memory table reaches maximum load factor it flushes

N

Ingestion “cascades”

M

RAM

FLASH
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3

0

2

1 C,1 D,1 F,1

log(N/M)

● During a flush, find the smallest i such that the items in l0, . . . , li can be 

merged into level i.

N

M

Ingestion “cascades”

RAM

FLASH
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0 H,1 J,1 A,1

2log(N/M)

N

M

Ingestion “cascades”

1 C,1 D,1 F,1

RAM

FLASH
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2 A,1 C,1 D,1 F,1 H,1 J,1

1

log(N/M)

N

M

Ingestion “cascades”

RAM

FLASH
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3

0 A,1 D,1 J,1

1

log(N/M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH
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3

0

1 A,1 D,1 J,1

log(N/M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH
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3

0 A,1 F,1 H,1

log(N/M)

N

M

Ingestion “cascades”

1 A,1 D,1 J,1

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH
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0
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1

log(N/M)

N

M

Ingestion “cascades”

3 A,3 C,1 D,2 F,2 H,2 J,2

RAM

FLASH
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0

2

1

RAM

FLASH

log(N/M)

N

Cascade filter Performance

Number of I/Os per item:

lookup(key)M

3 A,3 C,1 D,2 F,2 H,2 J,2

Look up:

Insertion:

January 12, 2022 APoCS 2022

Queries too slow for standing queries
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Reminder: Standing Queries

Database requirements:
• No false negatives -> Keep at much data as possible; use external memory
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster) -> write-optimization

– Standing queries have a query per time step
– Can delay reporting to keep up with stream

January 12, 2022 APoCS 2022 23



Time Stretch

● Can’t afford multiple look ups per element
● Compromise: allow a little delay

24

Birthtime
(I1)

24-th occurrence
(I24)

Report time
(IR)

Timeline
Time in system 

Delay

delay  ↵ ⇤ time in system

January 12, 2022 APoCS 2022



Time-stretch filter

2

0

1

RAM

FLASH
log(N/M)

● Arrays at each level split into l = (𝛼+1)/𝛼 equal-sized bins. Here l = 2 and ⍺ = 1.

● Flushes at bin granularity on fixed round-robin schedule.

● Will always see the oldest element in time to report

● Bounded delay time, factor (𝛼+1)/𝛼 slower ingestion

● This example: 1 hour for 24 instances to arrive        report up to 1 hour late and 

system runs 2x slower than when we gave no promises on delay

N
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Optimal insert cost for EM & 
write-optimized dictionaries 

Theorem. Given a stream of size N, the amortized per-element cost of solving 

firehose with a time stretch is  

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis
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Theorem. Given a stream of size N, the amortized cost of solving firehose 

with a time stretch is  

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis

Factor lost because we only flush 
a fraction of each level;
Constant loss for constant 𝛼

Almost-online reporting with no 
extra query cost!
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How to do immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/M)

Lookup (I)

● In a cascade filter, we would need to perform multiple I/Os for every new 

item

RAM

FLASH
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Level Thresholds

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/M)

Level 
bounds

● At most 𝜏i counts of a key can be stored at level i.  Higher closer to RAM.

● Shuffle merge: combine total count for a key on all visible levels, report if 

appropriate, otherwise push as low as possible respecting level thresholds.

RAM

FLASH
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Popcorn filter: immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

L=
log(N/M)

● Avoid unnecessary I/Os if we can upper bound the total instances on disk

Lookup if

Lookup (I)
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Popcorn filter

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

log(N/M)

Lookup (I)

• Immediate reporting 
works if keys have power-
law distribution: 
probability key count is c 
is Zc-θ, where Z is a 
normalization constant

Key frequency

N
um

be
r o

f k
ey

s
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The number of I/Os per stream element is

Popcorn filter: immediate reporting

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2
When 

Note: for θ < 2.96 
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

<latexit sha1_base64="Be33oS08Kce7qeKBK6QZMloxyLY=">AAACTHicbZDNSxtBGMZn40dt/Gi0x14GgxAPxt0i1Ysg7aUXRcGokI3h3cm7yeDM7jLzrhCW/QO99ODNv8KLh0opOPk42KQvDDw8z/swM78oU9KS7z95lYXFpeUPKx+rq2vrG59qm1tXNs2NwJZIVWpuIrCoZIItkqTwJjMIOlJ4Hd39GOXX92isTJNLGmbY0dBPZCwFkLO6NRH2QWvgxzyMDYgCb4tgvxFeDpBgL9gtyzlnLyh5KHop8VBhTI1J76wsTsvQyP6AdmcK1W6t7jf98fB5EUxFnU3nvFt7DHupyDUmJBRY2w78jDoFGJJCYVkNc4sZiDvoY9vJBDTaTjGGUfId5/R4nBp3EuJj932jAG3tUEduUwMN7Gw2Mv+XtXOKjzqFTLKcMBGTi+JccUr5iCzvSYOC1NAJEEa6t3IxAAeHHP8RhGD2y/Pi6msz+NY8uDion3yf4lhhX9g2a7CAHbIT9pOdsxYT7IE9s9/s1fvlvXh/vL+T1Yo37Xxm/0xl+Q2RaLFJ</latexit>

� =
e1/(⇥�1)

e1/(⇥�1) � 1
·
✓
N

M

◆1/(⇥�1)

<latexit sha1_base64="Ve6+kEgCPiKjjH8DkFdNje2+q3k=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquiHqSohdPUsF+QHcps2m2DU2yS5IVaukv8eJBEa/+FG/+G9N2D9r6YODx3gwz86KUM20879sprKyurW8UN0tb2zu7ZXdvv6mTTBHaIAlPVDsCTTmTtGGY4bSdKgoi4rQVDW+mfuuRKs0S+WBGKQ0F9CWLGQFjpa5bDtIBw3f4Cgd9EAK6bsWrejPgZeLnpIJy1LvuV9BLSCaoNISD1h3fS004BmUY4XRSCjJNUyBD6NOOpRIE1eF4dvgEH1ulh+NE2ZIGz9TfE2MQWo9EZDsFmIFe9Kbif14nM/FlOGYyzQyVZL4ozjg2CZ6mgHtMUWL4yBIgitlbMRmAAmJsViUbgr/48jJpnlb98+rZ/Vmldp3HUUSH6AidIB9doBq6RXXUQARl6Bm9ojfnyXlx3p2PeWvByWcO0B84nz9BvZIy</latexit>

�N > �
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< 1/100 for Firehose for θ=2.96 and N/M=25
< 1/16 for Firehose for θ=2.5 and N/M=25

About 1/1000

32



Count stretch

A count-stretch of ⍵, we must report an element no later than 

when its count hits (1+ ⍵)T. In immediate reporting ⍵ = 0.

Birthtime T-th occurrence Report count
CR

Timeline

January 12, 2022 APoCS 2022

⍵T instances arrive
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Popcorn filter: Count Stretch

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2

When 

Note: for θ < 2.96 
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

● Do as with the popcorn filter, but report when count in RAM is ɸN
● Set level thresholds such that maximum on disk is ωɸN
● Amortized I/Os per stream element is:

<latexit sha1_base64="OWzp7p34Vq1qx66lbMSzkm2xpUY=">AAACK3icbVDLSgNBEJz1bXxFPXoZDIIeEndF1JOIXjyJQqKBbAyzk95kcHZnmekVwrL/48Vf8aAHH3j1P5w8DmosaCiquunuChIpDLruuzMxOTU9Mzs3X1hYXFpeKa6uXRuVag41rqTS9YAZkCKGGgqUUE80sCiQcBPcnfX9m3vQRqi4ir0EmhHrxCIUnKGVWsVTP+kKekF93lZIfRVBh9Fj6oea8QxuM2932692AVnZ28nzMaXs5YVWseRW3AHoOPFGpERGuGwVn/224mkEMXLJjGl4boLNjGkUXEJe8FMDCeN3rAMNS2MWgWlmg19zumWVNg2VthUjHag/JzIWGdOLAtsZMeyav15f/M9rpBgeNTMRJylCzIeLwlRSVLQfHG0LDRxlzxLGtbC3Ut5lNia08fZD8P6+PE6u9yreQWX/ar90cjqKY45skE2yTTxySE7IObkkNcLJA3kir+TNeXRenA/nc9g64Yxm1skvOF/f6jGlBA==</latexit>

�N · ! >
e1/(⇥�1)

e1/(⇥�1) � 1

<latexit sha1_base64="FsblxEJHPSzS+Ly2uReO3YX6gGU=">AAACI3icbZDLSgMxFIYz9VbrbdSlm2AR6qbMSFFxVerGjVrBXqBTSibNtKGZC8kZoQzzLm58FTculOLGhe9i2s5CWw+E/Hz/OSTndyPBFVjWl5FbWV1b38hvFra2d3b3zP2DpgpjSVmDhiKUbZcoJnjAGsBBsHYkGfFdwVru6Hrqt56YVDwMHmEcsa5PBgH3OCWgUc+8Ktw7gnlQcjxJaGKnSS3FjggHeI7xnN+lya3mkg+GcJpdPbNola1Z4WVhZ6KIsqr3zInTD2nsswCoIEp1bCuCbkIkcCpYWnBixSJCR2TAOloGxGeqm8x2TPGJJn3shVKfAPCM/p5IiK/U2Hd1p09gqBa9KfzP68TgXXYTHkQxsIDOH/JigSHE08Bwn0tGQYy1IFRy/VdMh0SHAjrWgg7BXlx5WTTPyvZ5ufJQKVZrWRx5dISOUQnZ6AJV0Q2qowai6Bm9onf0YbwYb8bE+Jy35oxs5hD9KeP7Bwqmo/E=</latexit>
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Multithreading and Deamortization
● Data structures run well on average, but some operations take a 

long time
● Do a little work for each arriving element

○ Serial count-stretch guarantees still hold.

○ Time-stretch does not in general, does if input stream randomized
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Multithreading/Deamortization
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Each thread has a small chunk of stream elements. Takes a lock at the cone and 
then inserts.
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Multithreading/Deamortization
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If there is contention, thread inserts the item in its local buffer (consolidating 
counts) and continues. When buffer full, waits for locks to clear buffer.
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Multithreaded Count Stretch

● P = # of threads, T is reporting threshold
● If I thread acquires local count for an element > T/P, 

waits to store that one element
● For multithreading, given ⍵ and T >  P, guarantees a 

count stretch of 2 + ⍵.
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Experiments

Machines:
• Most experiments: Skylake CPU, 4 cores, 2.6 GHz, 32GB RAM, 1TB 

SSD
• Scalability experiments: Intel Xeon(R) CPU, 64 cores, 512 GB RAM, 

1TB SSD

Input stream: mostly Firehose, power-law generator, active set of 1M 
key, drifting in larger key space. Read from file.

Stream size: 64M-512M for validation experiments (needs offline 
analysis; artificially reduce RAM); 4B for scalability experiments

Baseline comparison: Cascade filter
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Deamortization and multithreading had negligible effect on empirical time stretch

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number 
of observations: 512M. (I think ⍺ = 1)
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Time stretch 

Values of ⍺ left to right: 1, 0.33, 0.14, 0.06.
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Count stretch

● Deamortization and multithreading had negligible effect on average count stretch. 
Multithreading had more variance.

● level thresholds: (2, 4, 8) 
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Scalability – count stretch

January 12, 2022 APoCS 2022

Reports all reportable keys. Stream size 4B.
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Instantaneous Throughput

January 12, 2022 APoCS 2022

About 3x improvement of throughput with 4 threads, more steady

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number 
of observations: 512M. (I think ⍺ = 1) – same as before
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Final Thoughts

Missing detail: Separate data structure in RAM of reported keys
– Reporting a key twice is an error

Summary:
• Algorithms and data structures allow rapid stream monitoring using 

“normal” architecture such as SSDs
• Compromise between fast ingestion and queries, but can 

approximately have both
• Store as much as you can, while keeping up with the stream, to get 

the best information
• This work bridges the gap between streaming and external memory
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