

WM2022 Conference, March 6 – 10, 2022, Phoenix, Arizona, USA

A Geospatial Data Preservation Strategy at the DOE Office of Legacy Management – 22411

Denise R. Bleakly*, Joshua I. Linard **, and Matthew Cuneo***

*Sandia National Laboratories

**DOE Office of Legacy Management

***RSI Entech

ABSTRACT

Identifying and planning preservation activities associated with geospatial data will improve the ability of the U.S. Department of Energy Office of Legacy Management (hereafter, LM) to support its core mission of protecting human health and the environment. Legacy Management is expected to manage multiformat digital information content, including text documents, geographic information system (GIS) databases, geospatial data sets, survey information aerial photographs, satellite imagery, ground photography (documenting surface conditions), spreadsheets, and relational databases. Due to the fragile nature of digital materials and continually evolving hardware, software, standards, and file formats, challenges exist in implementing an effective geospatial data preservation plan. This paper documents the LM strategy for preserving and curating geospatial data within the context of its data lifecycle-management framework.

The strategy consists of different preservation elements, specific digital preservation activities, and key enabling factors to ensure LM geospatial data maintains its visibility, accessibility, understandability, linkability and interoperability, trustworthiness, and security (VAULTS). Preservation elements enable the effective preservation of LM geospatial data and recognize the need for flexible strategies to adapt to ongoing changes in scale, technology, and standards. Digital preservation activities will leverage a digital preservation infrastructure to ensure data integrity, format and media sustainability, and information security. Key enabling factors, which include responsibilities traditionally associated with program management and sponsorship, are intended to highlight considerations paramount to long-term success.

Preservation elements involve establishing the fundamental logic necessary to evaluate ramifications on geospatial data encountered through its life. Documented standards and procedures will provide guidance on minimum metadata and preferred file formats. A risk-based approach to setting preservation priorities is recommended to establish scheduled assessments to identify at-risk formats. Geospatial data will be managed in a repository designed to provide reliable, long-term access to its owners. Data authenticity will be determined and maintained to ensure the record accurately represents the original. Metadata and ancillary data documentation will be created to provide essential contextual, administrative, descriptive, and technical information. To identify emerging risks, practices, and standards to continually improve its geospatial data preservation program, LM will actively engage with the DOE and local, national, and international digital preservation communities to share information and experiences, seek guidance, and collaborate to address digital preservation challenges.

Digital preservation activities comprise the specific operations and maintenance necessary to fully leverage geospatial data preservation strategies. Infrastructure comprising hardware, software, networks, storage, related equipment, and facilities used to develop, test, operate, monitor, manage and/or support information technology services need regular evaluation to ensure they meet preservation requirements. Detailed processes defining data integrity and quality checks must be regularly conducted and assessed for continued relevance. Data format and preservation media must be regularly assessed to ensure geospatial data sustainability. Information security processes require definition for controlled access to preserved data and change documentation.

Long-term geospatial data preservation requires commensurate budget resources to ensure achievable goals, a human resources capital plan to ensure knowledge management, and advocacy to clarify to senior managers the organizational value of sustained data governance and infrastructure.

INTRODUCTION

Preserving LM's geospatial data will support future efforts to understand mission-related decisions by ensuring the long-term retrievability and use of data within its original context. To support its core mission of protecting human health and the environment, LM has been charged with the responsibility for long-term surveillance and maintenance, workforce restructuring and benefits, property management, land use planning, and community assistance for 101 legacy sites in the US and the territory of Puerto Rico (Fig. 1). [1] Geospatial data that supports mission execution comprises temporally variable two- and three-dimensional survey coordinates, boundaries, and areas (i.e., Global Positioning System [GPS] locations, fence lines, property boundaries, remotely sensed imagery, digital elevation models, analytical samples, or groundwater contaminant plume extents). This complex data, consisting of numerous related data arrays, data layers, and data formats, requires sophisticated applications and infrastructure for use and requires subject matter experts (SMEs) to understand the content and context. Those responsibilities are managed by LM's Environmental and Spatial Data Management (ESDM) Department and includes managing the risks mitigated by geospatial data preservation.

Fig. 1 DOE Legacy Management Legacy Site Locations.

Risks to the long-term retrievability and use of data within its original context increase with time and is complicated by workforce succession, evolving technology, and organizational changes. Successive personnel need to understand as much context as possible to contrast past and current conditions. Understanding the context of data often relies on capturing metadata by personnel engaged in the initial data lifecycle, from planning through use. Technology continues to evolve and can impact data, supporting applications, and underlying hardware. Documentation of the current data management framework and the activities associated with maintaining that framework can facilitate the transition to emerging technological advances. Organizations can also change over time in terms of mission, scope, and structure and can impact the ability to sustain resources needed to preserve data. Mitigation of these risks is supported by curating data through its lifecycle.

Data curation activities are those associated with active data maintenance, in contrast to data preservation, which is associated with the long-term retrievability of data in its original context. The LM data curation

activities align with geospatial data management principles that ensure the data remains visible, accessible, understandable, linked, trusted, and secure (VAULTS). [6] [7] [8] Data curation begins during planning when data is identified for achieving organizational goals and initial preservation requirements established (e.g., retain the data for 75 years). As the data moves through its lifecycle (Fig. 2), context and content accumulate and must be curated so, when the data is ready for preservation, there is confidence that a future user has enough information to understand data provenance. At some duration threshold (e.g., 10 years), the preserved data must be curated to reduce threats to its long-term value and digital obsolescence. If risks are identified, a mitigation planning effort initiates a new lifecycle at the end of which data is preserved again.

Fig. 2. DOE Legacy Management Data Lifecycle Management Framework.

The importance of data preservation was recognized by the US government in that the U.S. National Archives and Records Administration (NARA) was established and preserves records to protect citizens' rights, ensure government accountability, and document the national experience. [3] Inclusive to that responsibility, the NARA provides access to the digital record and digital surrogate content determined to have sufficient historical or other value to warrant continued preservation by the Federal Government per 44 U.S.C. §§ 2107 and 2203(g). [3] [4] The determination of data value is often coordinated with federal agencies managing data who must ensure data are included on records schedules approved by NARA. [5] Correspondingly, LM will transfer permanent records to NARA, according to NARA-approved LM records retention schedules.

The LM Records, Information, and Knowledge Management (RIKM) Department is responsible for policies, protocols, and procedures for preserving and dispositioning LM's unclassified sensitive and unclassified program materials and administrative records and information. Associated record schedules indicate the duration for which they must be managed (e.g., 75 years). Historically, these records and information mostly consisted of hard-copy documents, although the receipt of digital records and information is increasingly common. Adapting preservation processes for digital data is difficult, and more so for complex data like geospatial data. [9] [10] [11] [12] Some of the unique and challenging aspects of geospatial data are [11] [13] [14] [15] [16]:

- No Uniform Data Model – geospatial data are represented in a wide variety of data types: vector and raster; topological and non-topological; and discrete and continuous domains.
- Proprietary Formats – formats are closely tied to specific software systems, which are not always backward compatible (e.g., ESRI Geodatabases).
- Multiple granule sizes – data range from individual features to thematic layers of features to heterogeneous spatial databases.
- Relational Data systems – store complex datasets.
- Large Size – gigabyte sizes growing by terabytes are common.
- Long-lived Programs – geospatial data sets can be long-lived; years or decades of data collection is common.
- Extensive context – capturing enough contextual information around a geospatial data set can be challenging.
- Dynamic Data – some datasets change daily and are ever-growing, capturing contextual data and processing methods for preservation is a challenge.

Adapting preservation processes to account for these challenges requires a collaborative, strategic approach. In many instances, geospatial data may require extensive, product-specific proprietary formats and context information to interpret and render; responsibilities managed by LM’s ESDM Department. The specific details of preserving and dispositioning LM records, information and knowledge is maintained by LM’s RIKM Department. The combined expertise of the ESDM, with collaboration from Sandia National Laboratory, and RIKM Departments (hereafter, LM team) contributed to the development of a geospatial data preservation strategy.

PRESERVATION STRATEGY DEVELOPMENT PROCESS

To identify best practices for incorporation into its geospatial data preservation strategy, the LM team initially assessed approaches taken by public and private industry. References with specific consideration of the data lifecycle and the associated curation activities needed to responsibly preserve digital data, were of special interest.

The key resources that helped frame the LM data preservation strategy include:

- The NARA Digital Data Preservation Strategy, which provided LM with the format and content it needed to address. [2] The team thought mirroring the NARA strategy would provide confidence in identifying the issues that would need to be addressed in a preservation strategy.
- The Wheaton College Library and Archives Digital Preservation Plan, [16] which provided an outline of data preservation activities to consider from a library and archives perspective and provided an understanding of a risk-based approach to prioritizing data sets for preservation, as well as some of the challenges libraries and archival programs face with data preservation activities.
- The Oak Ridge National Laboratory, Distributed Active Archive Center (DAAC) [17] [18] from which the team identified data management best practices, the need to assign a persistent digital object identifier, and a data preservation perspective from the data archive perspective.
- The National Digital Stewardship Alliance (NDSA) – The Levels of Digital Preservation [19] from its “Levels of Digital Preservation” chart, the team identified the five functional areas (Storage, Integrity, Control, Metadata, and Content) and the four levels of preservation activities (Level 1 – Know your content, Level 2 – Protect your content, Level 3 – Monitor your content, and Level 4 – Sustain your Content) of data preservation. This provided the team with direct

actions to help increase the likelihood of digital geodata being preserved over the long term.

- The first six chapters of “*Ecological Informatics, Data Management and Knowledge Discovery*” [20] provide a grounding in the topics of data management and planning, scientific databases, quality assurance and quality control of scientific data, the creation and managing of metadata, and the preservation of data for long-term use.
- The United States Geological Survey (USGS), Data Management Website. [21] The USGS has invested time and resources to provide a data management website addressing the USGS requirements in a direct and helpful way. The site discusses and fully explores each aspect of the science data lifecycle, explains requirements under public law and USGS policies and procedures, and provides additional resources for training and further information. From this site, the team learned of a systematic way to explore the science data lifecycle of another federal government agency other than the DOE.

While considerations of the data lifecycle were limited, these references helped the LM team frame discussions, discover important considerations, and to realize the topic was much more extensive than anticipated. The volume of geospatial data LM collects and manages increases each year and these sources helped the team to better understand data management activities and the potential value of tying them to the data lifecycle. That association could allow for curation check-points (or data curation “relay points” [11]) that increase the likelihood that curated data is able to achieve preservation objectives. Because LM’s preservation objectives aligned with those of NARA and NARA already had its “*Strategy for Preserving Digital Archival Materials*,” LM used that document as a template for its strategy. That document provided the LM team with the format and content needed to develop its geospatial data preservation strategy.

LM’s geospatial data preservation strategy will assist the LM Team in adapting its data preservation processes to account for complex digital data. That strategy consists of preservation strategy elements, digital preservation activities, key enabling factors, and data preservation best practices for digital data preservation. Note, the preservation strategy presented here has been generalized for this article by removing specific LM actions and more generically discusses the actions and activities that enable adoption by other organizations.

PRESERVATION STRATEGY ELEMENTS

Legacy Management will employ the following elements to enable the effective preservation of its geospatial content while recognizing the need for flexibility to adapt to ongoing changes in scale, technology, and standards. The goal is to reduce risk and use best practices to preserve and maintain access to its digital geospatial content.

Documentation of Standards and Procedures

This element documents existing LM internal standards and procedures related to records and data management. Wherever possible, they are, explicitly tied to DOE and NARA standards and procedures. Using these as a starting point, LM maintains guidance on minimum metadata and preferred file formats for its digital geospatial data that promotes the use of open standards-based formats and accepted voluntary, community-based standards to help facilitate future access and preservation. LM uses NARA’s preferred file formats for file acceptance. [22] Currently, NARA’s geospatial data preservation formats include ESRI Shapefiles, GeoTIFF, Geographic Markup Language (GML), Topologically Integrated Geographic Encoding and Referencing Files (TIGER), Keyhole Mark Up Language (KML), Vector

WM2022 Conference, March 6 – 10, 2022, Phoenix, Arizona, USA

Product Format (MIL-STD-2407), ESRI Arc/Info Interchange File Format TerraGo Geospatial PDF (GeoPDF) and the Spatial Data Transfer Standard (SDTS). [22]

Data Curation

This element accounts for the active management of a collection of data that reduces threats to data long-term value. Legacy Management practices data curation throughout the data lifecycle including the preservation stage. Once preserved, data actively curated through its lifecycle can enable data discovery and retrieval, maintain data quality, and aid in reuse over time through data authentication, data archiving, metadata review and creation, digital preservation, data transformation, and mitigating digital obsolescence. Curation activities occurring during the preservation lifecycle stage include the traditional archival activities of assessing and selecting data products and processing details for long-term preservation. [23][24] [25]

Legacy Management will use VAULTS principles to guide its data curation activities through a high-level workflow. The VAULTS principles (TABLE I) have been adopted by the ESDM Department [6] and specifically supports its geospatial enterprise architecture. [7] [8]

Vaults Principles	
V	Visible – can the data be discovered?
A	Accessible – can the data be accessed?
U	Request missing information or changes (tracking provenance of any changes and why)
L	Linked and Interoperable – Is there enough documentation to determine whether the data is reusable? What formats are the data available in? What standards were followed?
T	Trustworthy – Can we assess the quality of the data?
S	Secure – Is the data secure? How is the data protected?

TABLE I. Department of Defense V-A-U-L-T-S Workflow.

The Data Curation Network (DCN) C-U-R-A-T-E-D workflow is a process for data curators to use to establish the condition of the data and associated metadata and documentation [25] (TABLE II).

Additionally, LM will reappraise preserved data periodically to determine whether a particular data set needs further curation through data migration, data refreshing, data archiving, placement in a data repository or whether it can be disposed. [24] The reappraisal process also determines whether the dataset still meets:

- Business needs
- Legal requirements
- Regulatory requirements
- Historical documentation requirement(s)
- Other unique needs.

Curation Workflow	
C	Check files/code and read documentation (risk mitigation, file inventory, appraisal/selection)
U	Understand the data (or try to) (reviews files/environment, QA/QC issues, read me files)
R	Request missing information or changes (tracking provenance of changes and their reasons)
A	Augment metadata for findability (digital object identifier, metadata, discoverability, etc.)
T	Transform file formats for reuse (transformations to simpler file formats, conversion tools, data visualization)
E	Evaluate data for accessibility, interoperability, trustworthiness, and security, which also applies to software licenses, responsibility, standards, and metrics for tracking use
D	Document all curation activities throughout the process (for example, curation logs, correspondence, configuration management, and QA/QC checks over time.)

TABLE II. Data Curation Network C-U-R-A-T-E-D Workflow.

Prioritization

This element describes how LM will take a risk-based approach to setting geospatial data preservation priorities. Curation and preservation activities will occur on a schedule derived by reviewing DOE, and other Federal government regulatory compliance activities required of LM. Performing scheduled assessments of the file formats in LM holdings will alert LM to at-risk formats for which practical preservation strategies are not yet determined or where the necessary actions are technically complex. [2] [16]

File Management

This element describes how LM will store geospatial data in its Geospatial Enterprise system [6] to provide ongoing management and access to the content throughout its lifecycle. Legacy Management will manage and maintain trusted/authoritative copies of geospatial data in its planned master digital repository. The mission of the digital repository is to provide reliable, long-term access to managed digital resources to its designated community, now and in the future. At some point, LM may federate with the Data.gov, or Geoplatform.gov platforms.[26] Legacy Management will minimize the number of file formats that must be actively managed by normalizing files into selected formats. Formats will be selected to retain the significant characteristics of the original format in the operational database, as well as in the longer-term low-access storage. The original data files will be preserved in a low-access archive and curated according to a documented schedule.

Authenticity

This element refers to the trustworthiness of the record as an accurate representation of the original. Legacy Management will ensure authenticity by documenting data lifecycle management activities (i.e., file access and change logs) such that the data provenance and chain-of-custody are maintained. These activities assist in tracing any changes detected between original and preserved data.

Metadata and Data Set Documentation

This element describes how LM will provide geospatial metadata, contextual information, and additional documentation, as needed, for each dataset. Legacy Management is in the process of determining how to assign persistent digital identifiers (such as Digital Object Identifiers (DOIs)) [27] and record preservation metadata about each digital object. Preservation metadata of potential value can include the drivers that required the data, individual data characteristics, the applications used in data manipulation, the underlying infrastructure, and any security concerns associated with the data to aid in the preservation of digital holdings. The format used to document geospatial data is pursuant to ISO 19115X/19139x for each geospatial digital object [28] [29] which includes data fields for any contextual information for the data object. Finally, preservation metadata, which provides essential contextual, administrative, descriptive, and technical information, are preserved along with the digital object.

Organizational Relationships

This element describes how LM will actively engage with the stakeholders interested in the preservation of geospatial data managed by LM. Beyond the normal DOE, local, national, and international communities LM regularly coordinates with, digital preservation communities will be engaged to share information and experiences, seek guidance, and collaborate to address digital preservation challenges. This engagement will help LM identify emerging risks, practices, and standards to continually improve its geospatial data preservation practices.

DIGITAL PRESERVATION ACTIVITIES

Legacy Management digital preservation activities will undergo ongoing assessment using appropriate voluntary, community-based assessment instruments, such as the National Digital Stewardship Alliance (NDSA) Preservation Levels [19], which measure program capabilities and maturity. Digital preservation will be achieved through a digital preservation infrastructure that ensures data integrity, format and media sustainability, and information security.

Infrastructure

These activities assess the LM digital preservation infrastructure (hardware, networks, storage, related equipment, and facilities used to develop, test, operate, monitor, manage and/or support information technology services) includes such topics such as:

- Storage, network capacity, systems, and tools for the ingest or creation, processing, active file management, and preservation of LM acquired and managed geospatial datafiles.
- Processes to regularly review and update infrastructure that may be developed or procured by LM to meet preservation needs.
- Affordable, managed, replicated content storage infrastructure for geospatial data managed by LM. Replication includes one preservation copy in a different storage environment, preferably in a remote geographic region.
- Tools to inventory all born-digital files and digital surrogates upon ingest.
- Tools for file format transformations to perform file migrations over time as formats become obsolete and at-risk.
- Standardized workflow processes for associating native digital files and digital copies (digital surrogates) with record identifiers and metadata and ensuring files are in appropriate preservation storage and access server locations (on-premises or in the cloud).

Data Integrity

The activities assess activities that review, ensure, and document a dataset is appropriately documented and has not been changed or modified from its original intended form. Examples include:

- Inventory all incoming files and log the results of all ingest events, as well as all later lifecycle events, such as format transformations, file movement, and audits.
- Ingest files, a process that includes malware scanning and the checking of file fixity, which refers to the validation that a file has not been altered from a previous state.
- Copy content off physical media, incorporating the use of write-blockers, devices that prevent accidental damage to the content on the physical media, as appropriate.
- Performs periodic audits of all born-digital electronic record files and digital surrogates stored in the preservation repository, including fixity checks.
- Repair and/or replace files with fixity issues.
- Perform yearly audits of logs to validate whether files in the preservation repository have remained unchanged and uncorrupted over time.
- Perform an annual sample audit of media containing permanent records that are retained by LM in accordance with the DOE Records retention schedule.
- Before media containing permanent records are 10 years old, recopy onto tested and verified new electronic media.

Format and Media Sustainability

These activities assess data formats and media sustainability; a process to determine the data file format, and evaluates whether the data format is sustainable by activities, such as:

- The characterization and validation of file formats at the point of ingest. Characterization refers to the identification and description of a file's technical characteristics, such as its production environment. It is usually captured by technical metadata. Validation refers to confirming that the file in hand conforms to the expected characteristics of its type.
- Create a process which identifies file formats that are no longer sustainable (e.g., are no longer created by or accessible through current software).
- Create normalized versions of at-risk format files. Normalization refers to converting all files of a particular type (e.g., maps, color images, etc.) to a chosen file sustainable format.
- Perform automated and manual format migrations or other preservation activities based upon identified unsustainable file formats.
- Monitor the larger preservation community and technological environment for signs of unsustainability and obsolescence in formats, media, and equipment.

Information Security

These activities assess information security and the strategies that protect the data over the short and long term, includes:

- Identifying who has access to the physical media items; access to ingest and processing systems and services; and read, write, and execute authorization to folders and files on inhouse servers and in cloud storage systems
- Performing a scheduled review of individuals and groups who have read, write, and execute authorization to folders and files on servers
- Ensuring no one person has write access to all files
- Maintaining a system of record logs of actions on files, including deletions and preservation actions and who has done these actions.

KEY ENABLING FACTORS FOR SUCCESSFUL LONG-TERM GEOSPATIAL DATA PRESERVATION EFFORTS

Many factors will contribute to the ultimate success of LM's Geospatial Data Preservation and this section is intended to highlight key enabling factors that mitigate risks to success. The NARA "Data

Preservation Strategy” [2] discussed what NARA considered to be the key enabling factors for enabling the data preservation, including budget resources, staffing resources, information technology infrastructure, guidance on standards, and guidance and policy on data preservation, which are addressed within the context of the LM data preservation strategy.

Budget Resources

This factor addresses the need to identify future budget needs to support planning efforts. With this preservation strategy, LM acknowledges digital geospatial data preservation is a responsibility for LM. As such, it will develop an analysis of the long-term budget resources necessary to implement and sustain the products of this Geospatial Data Digital Preservation Strategy. Resources for geospatial SMEs for data curation and preservation activities, interactions with the LM RIKM Department, and work with the trusted digital repository are items that will be addressed in the budget resource needs. Equipment and supplies that support data preservation must also be planned. By identifying future budget resource needs and planning for them in a longer-term budget documentation, LM expects that budget resources will be made available.

Staffing Resources

This factor addresses staffing resources needed to responsibly preserve LM’s geospatial data. With this preservation strategy, LM acknowledges digital geospatial data preservation is a significant business process that crosses multiple business units. Skills and associated training must be documented and maintained to inform resource planning. Organizational roles and responsibilities must also be aligned with geospatial data preservation activities for efficient execution. Legacy Management will develop a separate human resource plan to support this function, and lobby for the budget resources to obtain the staff needed for preservation activities.

Information Technology Infrastructure

This factor identifies the need to sustain infrastructure used in geospatial data preservation. Legacy Management will require a planning process that identifies infrastructure needs to support digital preservation, including systems and tools, storage, network capacity, data integrity, and information system security. This should document relevant operational and governance processes, including those for forecasting for storage and network capacity and planning for and implementing additional capacity and technology refreshes.

Guidance on Standards to Records Creators for Geospatial Data

This factor identifies the need for considering geospatial data preservation requirements throughout the data lifecycle beginning with the planning stage. Legacy Management will continue to develop and promulgate guidance to LM transition sites (the long-term stewardship sites that have been remediated and transferred to LM) for technical, format, and metadata standards to ensure the sustainability of geospatial data and digital surrogates (files that have been digitized) of geospatial data products, such as maps. Active curation of data context and content through the lifecycle should mitigate risks to the long-term sustainability of these types of geospatial data.

Guidance and Policy for Digital Geospatial Data Preservation

This factor addresses the broader incorporation of preservation activities into data lifecycle management. The ESDM Department maintains operational directives for managing topical areas identified in the data lifecycle management framework (Fig. 2). The explicit incorporation of preservation activities into these directives will ensure the value of geospatial data context and content is integral to LM workflows.

DIGITAL DATA PRESERVATION BEST PRACTICES

Data preservation best practices have been developed from many different perspectives and applications – from the scientific and environmental data community; [17] from the university data management and library community [11] [12] [30]; from the large-scale data repository community [31] [32], which has published guidelines for data users for submission of data [18]; and from a consortium of European mapping agencies and state archives. [33] All these different sources for data preservation best practices had general and specific recommendations ranging from discussions on format types, standards, the inclusion of a graphic representation of the data in a data package, the use of persistent identifiers, metadata, contextual information, and suggestions of what users in the future might want or need. A common core of 10 best practices for digital data preservation emerged from these sources:

1. Store data in well-supported, open formats
2. Use widely adopted standards
3. Bundle data, metadata, and context information together using a file packaging format, such as “Bagit”
4. Store a graphical representation of the data (e.g., as a pdf) with the data and metadata bundle
5. Ensure data is free from external dependencies
6. Use persistent identifiers/Digital Object Identifiers (DOIs)
7. Ensure all information objects are self-contained and independently understandable.
8. Preserve geospatial data in a way that non-geo-specialists can understand
9. Plan for technological obsolescence – media migration every 3 to 5 years, data format migration every 10 to 25 years
10. Apply the 3-2-1 rule: three data copies in at least two formats, with at least one copy stored in a separate secure location.

CONCLUSIONS

There is no grand strategy, action, or series of actions that will guarantee preservation of geospatial data through time. Legacy Management has the stewardship responsibility for managing its legacy site data for more than 75 years), which has resulted in developing the data preservation strategy discussed here. Due to file content issues, file format, metadata and contextual information, and the need for preservation, whether the preservation method will be either a single geospatial data set or a collection of geospatial data will be individually determined. By sharing its data preservation strategy process, LM intends to assist other agencies in understanding their internal data curation and preservation processes, and to identify areas for implementing best practices thereby increasing the likelihood geospatial data will be preserved well into the future.

REFERENCES

1. DOE Office of Legacy Management. 2016. *2016-2025 Strategic Plan, DOE/LM-1477*. Strategic Plan, Department of Energy. <http://energy.gov/lm>.
2. National Archives and Records administration. 2017. “Strategy for Preserving Digital Archival Materials.” Strategy. Accessed March 12, 2021. <https://www.archives.gov/files/preservation/electronic-records/digital-pres-strategy-2017.pdf>.
3. House of Representatives, Congress. 2008. “44 U.S.C. 2107 - Acceptance of Records for Historical Preservation.” Washington, D.C>: U.S. Government Publishing office, December 30. Accessed October 2024, 2021. <https://www.govinfo.gov/app/details/USCODE-2008-title44/USCODE-2008-title44-chap21-sec2107>.
4. Congressional Research Service. 2018. *The Geospatial Data Act of 2018*. CRS-R45348, Washington DC: Congressional Research Service. Accessed May 31, 2019. <https://crsreports.congress.gov>.
5. Federal Data Strategy. 2020. *Federal Data Strategy*. Accessed June 17, 2020. <https://strategy.data.gov/overview/>.
6. DOE Office of Legacy Management, Woolpert Engineering. 2019. *Enterprise Geospatial Stgrategy Implementation Plan (November 2019 Draft)*. Implementation Plan, Department of Energy.
7. Department of Defense. 2020. “DOD Data Strategy: Unleashing Data to Advance the National Defense Strategy.” Washington D.C. , September 30 . Accessed July 2021. <https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DATA-STRATEGY.PDF>.
8. —. 2021. “DOD Memorandum: Creating Data Advantage.” May 05. Accessed July 2021. <https://media.defense.gov/2021/May/10/2002638551/-1/-1/0/DEPUTY-SECRETARY-OF-DEFENSE-MEMORANDUM.PDF>.
9. Bleakly, Denise R. 2002. *Long-Term Spatial Data Preservation and Archiving: What are the Issues?* Research Report, Albuquerque: Sandia National Laboratories. Accessed April 13, 2020. doi:<https://doi.org/10.2172/793225>.
10. Janée, Greg. 2009. “Preserving Geospatial Data: The National Geospatial Digital Archive Approach.” Accessed June 30, 2020. http://www.ngda.org/docs/Pub_Janee_Arch09_09.pdf.
11. Janée, Greg, James Frew, and Terry Moore. 2009. “Relay-supporting Archives: Requirements and Progress.” *International Journal of Digital Curation* 4 (1): 57-70. Accessed February 21, 2021. doi: <https://doi.org/10.2218/ijdc.v4i1.78>.
12. Sweetkind-Singer, Julie, Mary L Larsgaard, and Tracy Erwin. 2006. “Digital Peservation of Geospatial Data.” Edited by Jamie Stoltenberg and Abraham Parrish. *Library Trencls* (Board of Trustees, University of Illinois) 55 Geographic Information Systems and Libraries (2): 304-314. Accessed October 2020.

13. McGarva, Guy, Steve Morris, and Greg Janée. 2009. *Technology Watch Report: Preserving Geospatial Data*. Digital Preservation Coalition. <https://www.dpconline.org/docs/technology-watch-reports/363-preserving-geospatial-data-by-guy-mcgarda-steve-morris-and-greg-janee/file>.
14. Downs, Robert R. n.d. “Management, Curation, and Preservation of Geospatial Data: Introductory Perspectives.” *Journal of Map & Geography Liberaries* 11 (2): 117-122. Accessed October 2020. doi:10.1080/15420353.2015.1064848.
15. Lauriault, Tracey P, Peter L Pulsifer, and D.R. Fraser Taylor. 2011. “Chapter 2: The Preservation and Archiving of Geospatial Digital Data: Challenges and Opportunites for Cartographers.” In *Preservation in Digital Cartography, Lecture Notes in Geoinformation and Cartographys*, edited by M Jobst, 25-55. Springer-Verlag Berlin Heidelberg. Accessed April 20, 2020. doi:DOI 10.1007/978-3-642-12733-5_2.
16. Wheaton College Digital Preservation Team. 2019. *Digital Preservation Plan*. June 14. Accessed July 2021. https://library.wheaton.edu/sites/default/files/Digital_Preservation_Plan.pdf.
17. Cook, Robert B, Yaxing Wei, Leslie A Hook, Suresh K.S. Vannan, and John J McNelis. 2018. “Chapter 6: Protecting Data For Long-Term Use.” Chap. 6 in *Ecological Informatics*, edited by Friedrich Recknagel and William K Michener, 89-113. Springer. doi:DOI 10.10007/978-3-319-59928-1.
18. Oak Ridge National Laboratory. 2021. *ORNL Distribute Active Archive Center (DAAC) Data Management*. [Online] 2021. [Cited: February 15, 2021.] <https://daac.ornl.gov/datamanagement/>.
19. Levels of Preservation Revisions Working Group. 2019. “Levels of Digital Preservation Matrix V2.0.” National Digital Stewardship Alliance, October. Accessed April 16, 2021. doi:<https://osf.io/2mkwx/>.
20. Recknagel, Friedrich, and William K Michener, 2017. *Ecological Informatics: Data management and knowledge discovery*. Springer.
21. United States Geological Survey (USGS). 2020. *USGS Data Management Data Lifecycle Model*. Accessed April 4/13/2020, 2020. <https://www.usgs.gov/products/data-and-tools/data-management/data-lifecycle>.
22. National Archives and Records Administration (NARA). 2020. *Appendix A: Tables of File Formats*. Accessed March 30, 2020. <https://www.archives.gov/records-mgmt/policy/transfer-guidance-tables.html>.
23. Data Curation Network (DCN). 2020. *The DCN Curation Workflow, the CURATED Steps*. Accessed December 3, 2020. <https://datacurationnetwork.org/outputs/workflows/>.
24. Bose, Rajendra, and Femke Reitsma. 2005. *Advancing Geospatial Data Curation*. Edinburgh: Digital Curation Centre. Accessed March 19, 2021. <http://www.ukoln.ac.uk/events/pv-2005/pv-2005-final-papers/030.pdf>.
25. Data Curation Network (DCN). 2018. *CURATE Workflow*. Accessed October 13, 2020. <https://datacurationnetwork.org/outputs/workflows/>.

26. Federal Geographic Data Committee (FGDC). 2020. “Geoplatform 2020.” *Geoplatform.gov*. July. Accessed October 22, 2020. <https://www.geoplatform.gov/about/>.
27. Cook, Robert B., Suresh K.S. Vannan, Benjamin F. McMurry, Daine M. Wright, Y. Wei, Alison G. Boyer, and J. H. Kidder. 2016. “Implementation of data citations and persistent Identifiers at the ORNL DAAC.” *Ecological Informatics* (Elsevier) 33: 10-16. Accessed February 4, 2021. doi:<https://doi.org/10.1016/j.ecoinf.2016.03.003>.
28. Federal Geographic Data Committee. 2021. *ISO 191** Suite of Geospatial Metadata Standards - Federal Geographic Data Committee*. Accessed October 22, 2021. <https://www.fgdc.gov/metadata/iso-suite-of-geospatial-metadata-standards>.
29. Federal Geographic Data Committee (FGDC). 2019. “FGDC Technical Guidance: Data.gov and the Geoplatform Metadata Recommendations.” Technical Guidance, 32. Accessed April 7, 2020. https://www.geoplatform.gov/wp-content/uploads/2020/01/FGDC_Technical_Guidance_Datagov_GeoPlatform_NGDA_Metadata_Recommendations_20191209.pdf.
30. Smithsonian Libraries. 2018. “Smithsonian Data Management Best Practices Storage, Archiving, and Preservation Preparation.” Washington D.C.: Smithsonian Institution. Accessed April 16, 2020. <https://library.si.edu/sites/default/files/tutorial/pdf/storagearchivingpreservation20180307.pdf>.
31. Geospatial Multistate Archive and Preservation Partnership (GeoMAPP). 2011. “GeoMAPP Key Findings and Best Practices.” Accessed July 2021. https://geomapp.com/docs/GeoMAPP_ProjectFindings_BestPractices20111231.pdf.
32. Hook, Les A, Suresh K. Santhana Vannan, Tammy W Beaty, Robert B Cook, and Bruce E Wilson. 2010. *Best Practices for Preparting Environmental Data Sets to Share and Archive*. Guidance Document, Oak Ridge, Tennessee, U.S.A.: Oak Ridge National Laboratory Distributed Active Archive Center (DAAC). Accessed October 16, 2019. doi:[10.3334/ORNLDAA/C/BestPractices-2010](https://doi.org/10.3334/ORNLDAA/C/BestPractices-2010).
33. Ronsdorf, Carsten, Paul Mason, Jonathan Holmes, Urs Gerber, Andre Strelein, Marguerite Bos, Arif Shaon, et al. 2016. “GI+100: Long Term Preservation of Digital Geographic Information - 16 fundamental Principles Agreed by National Mapping Agencies and State Archives.” Edited by Digital Curation Center. *International Journal of Digital Curation* (University of Edinburgh) 11 (2): 156-168. Accessed April 20, 2020. doi:[DOI: 10.2218/ijdc.v](https://doi.org/10.2218/ijdc.v).