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Motivation: Trajectory Simulation

Goal: Predict the flight time of an umbrella heatshield reentering the Earth’s 

atmosphere with target precision

Heatshield Payload

• Uncertain inputs:  initial velocity, wind speeds, etc.

• Quantity of interest: flight time 

• Model :  Program to Optimize Simulated Trajectories (POST2) 
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Motivation: Trajectory Simulation

• Use multi-model Monte Carlo to precisely predict vehicle flight time in less 

time by leveraging low-fidelity models and relatively few expensive, high-

fidelity model evaluations

Goal: Predict the flight time of an umbrella heatshield reentering the Earth’s 

atmosphere with target precision

Heatshield Payload

High-fidelity: timestep = 0.001

Low-fidelity: timestep = 0.1

Mid-fidelity: timestep = 0.01

• Uncertain inputs:  initial velocity, wind speeds, etc.

• Quantity of interest: flight time 

• Model :  Program to Optimize Simulated Trajectories (POST2) 
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Outline

➢ Model tuning is important

➢ How we can do it optimally

➢ Application to trajectory simulation 

Heatshield Payload

High-fidelity: timestep = 0.001

Low-fidelity: timestep = 0.1

Mid-fidelity: timestep = 0.01
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Approximate Control Variates (ACV)

5

➢ Multilevel Monte Carlo (MLMC)[2] and Multifidelity Monte Carlo 

(MFMC)[3] are instances of this estimator

➢ New ACV estimators[1] based on independent sampling (ACVIS), 

multifidelity sampling (ACVMF)

➢ Estimator is unbiased (wrt 𝐸[𝑄])

➢ 𝑉𝑎𝑟 ෨𝑄 = 𝑉𝑎𝑟 ෠𝑄 1 − 𝑅𝐴𝐶𝑉
2

[1] Gorodetsky, A A., et al. Journal of Computational Physics (2020)                                                             [3] Peherstorfer, B, et al. SIAM Journal on Scientific Computing (2016)

[2] Giles, M B. Operations Research (2008)

෨𝑄 = ෠𝑄 𝑧 +෍

𝑖=1

𝑀

𝛼𝑖 ෠𝑄𝑖 𝑧𝑖
1 − ෠𝑄𝑖 𝑧𝑖
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ACV-MF Variance
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cov of lofi models w.r.t. hificov of lofi models w.r.t. each other

Matrix representing ACVMF sampling strategy

𝑅𝐴𝐶𝑉−𝑀𝐹
2 (𝑟) =

1

𝑉𝑎𝑟[𝑄]
𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄 𝑇 𝑪 ∘ 𝑭 𝑟 −1 𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄

𝑉𝑎𝑟 ෨𝑄 = 𝑉𝑎𝑟 ෠𝑄 1 − 𝑅𝐴𝐶𝑉−𝑀𝐹
2

sampling ratios



ACV-MF Variance
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cov of lofi models w.r.t. hificov of lofi models w.r.t. each other

𝑅𝐴𝐶𝑉𝑀𝐹
2 (𝑟, 𝛽) =

1

𝑉𝑎𝑟[𝑄]
𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄(𝛽) 𝑇 𝑪(𝛽) ∘ 𝑭 𝑟 −1 𝑑𝑖𝑎𝑔 𝑭 𝑟 ∘ 𝒄(𝛽)

Model tuning parameters 𝛽

In general, these are not known and must be estimated

Model cost may also be a function of 𝛽



Analytical example
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𝑤1: model cost

𝜌1 : correlation between 𝑄1 and 𝑄
𝜌12 : correlation between 𝑄1 and 𝑄2



Analytical example
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Model tuning can greatly affect estimator variance

𝑤1: model cost

𝜌1 : correlation between 𝑄1 and 𝑄
𝜌12 : correlation between 𝑄1 and 𝑄2



Optimization approach*

➢ Minimize 𝑉𝑎𝑟 ෨𝑄 (𝑁, 𝑟, 𝛽) st. cost < budget constraint

➢ Build global surrogate for 𝒄(𝛽) and 𝐂(𝛽) from pilot samples
➢ 𝑁𝑡𝑢𝑛: number values of tuning parameters to investigate

➢ 𝑁𝑝𝑖𝑙𝑜𝑡: number of pilot samples at each set of tuning parameters

➢ Local quadratic interpolant

➢ Assume known relationship of model costs

➢ Gradient based-optimization (SLSQP)

* work in progress
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Trajectory Simulation

Goal: Predict the flight time of an umbrella heatshield 

reentering the Earth’s atmosphere within computational 

budget

High-fidelity: timestep = 0.001

Low-fidelity: timestep = 0.25

Mid-fidelity: timestep = 0.001 ≤ Δ𝑡1 ≤ 0.25

Heatshiel

d

Payload

𝑤1: model cost

𝜌1 : correlation between 𝑄1 and 𝑄
𝜌12 : correlation between 𝑄1 and 𝑄2
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Results: most accurate surrogate
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Optimal model tuning is achievable using surrogates for correlation



Results: more sparse measurements
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Smoothness is important for gradient-based optimization



Results: fewer pilot samples
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More accuracy of surrogates impacts optimization



Conclusions

➢ Model tuning can greatly affect estimator variance

➢ Optimization requires estimation (or knowledge) of correlations/costs as 

a function of tuning parameters

➢ Quality of the correlation surrogate is an important factor in tuning 

parameter optimization

➢ Improved surrogates, with adaptive refinement

➢ Use global optimization rather than local optimization to reduce effect of 

noisy correlation estimates

➢ All-at-once optimization with model hierarchy
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Future Work



Thank You For Watching!

geoffrey.f.bomarito@nasa.gov
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