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Motivation: Trajectory Simulation

Goal: Predict the flight time of an umbrella heatshield reentering the Earth’s
atmosphere with target precision

« Uncertain inputs: initial velocity, wind speeds, etc.
« Quantity of interest: flight time
* Model : Program to Optimize Simulated Trajectories (POST2)

Heatshield Payload
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Motivation: Trajectory Simulation

Goal: Predict the flight time of an umbrella heatshield reentering the Earth’s

atmosphere with target precision

* Uncertain inputs: initial velocity, wind speeds, etc.
« Quantity of interest: flight time
* Model : Program to Optimize Simulated Trajectories (POST2)

Heatshield Payload s o

High-fidelity: timestep = 0.001
Mid-fidelity: timestep = 0.01
Low-fidelity: timestep = 0.1

» Use multi-model Monte Carlo to precisely predict vehicle flight time in less

time by leveraging low-fidelity models and relatively few expensive, high-
fidelity model evaluations
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» Model tuning is important
» How we can do it optimally
» Application to trajectory simulation

Heatshield

Payloa -

Mid-fidelity§}timestep = 0.01
Low-fidelity:\gmestep = 0.1
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Approximate Control Variates (ACV)

M

0=0(2)+ 2 a; (Q\z(zzl) - Ql(zlz))

1=1

» Multilevel Monte Carlo (MLMC)2; and Multifidelity Monte Carlo
(MFMC)3) are instances of this estimator

» New ACV estimatorsi based on independent sampling (ACVIS),
multifidelity sampling (ACVMF)

» Estimator is unbiased (wrt E[Q])

> Var|Q| = Var|Q|(1 — Ric)

[1] Gorodetsky, AA., et al. Journal of Computational Physics (2020) [3] Peherstorfer, B, et al. SIAM Journal on Scientific Computing (2016)
[2] Giles, M B. Operations Research (2008)
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ACV-MF Variance

Var|Q| = Var[Q|(1 — Ricy-mr)

cov of lofi models w.r.t. each other cov of lofi models w.r.t. hifi

sampling ratios 73 \
| 1

Ricy-mr(r) = [diag[F(r)] e c]"[C o F(r)] [diag[F(1)] e c]

Var|Q] .

Matrix representing ACVMF sampling strategy
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ACV-MF Variance

Model tuning parameters f3

cov of lofi models w.r.t. each other cov of lofi models w.r.t. hifi

~

[diag[F(r)] > ¢(B)]"[C(B) o F(r)]™*[diag[F(r)] o c(B)]

RﬁCVMF (r,p) =

1
Var[Q]

In general, these are not known and must be estimated

Model cost may also be a function of 8
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Analytical example

0 = V11y’
Q1 = V7 (cos 01x° + sin91y3)

Q2=\/§(?x+%y),

w=1and w, = 107>

logw, — logw

1 =] +
ogwi = logw, 5, — 0

8

(61 — 67)

Low-fidelity model properties

0.0 A
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Estimators Variance

Analytical

Variance ACV-MF

example

Low-fidelity model properties
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Model tuning can greatly affect estimator variance
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Optimization approach*

> Minimize Var|Q|(N,r,8) st. cost < budget constraint

» Build global surrogate for ¢() and C(f) from pilot samples
» N number values of tuning parameters to investigate
> Npior: nUMber of pilot samples at each set of tuning parameters
» Local quadratic interpolant

» Assume known relationship of model costs

» Gradient based-optimization (SLSQP)

* work in progress
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Trajectory Simulation

Cost properties

—s— vy (Full Physics)
—+— w1 (Reduced Physics})

—_——

Goal: Predict the flight time of an umbrella heatshield
reentering the Earth’s atmosphere within computational

budget

Heatshiel
d

~ %
_Cnﬁ-e—"

P

High-fidelity: timestep = 0.001
Mid-fidelity: timestep = 0.001 < At; < 0.25
Low-fidelity: timestep = 0.25

wy: model cost

p; . correlation between Q, and Q
P12 - correlation between Q, and Q,
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Results: most accurate surrogate

wy: model cost
p1 : correlation between @; and Q
P12 : correlation between Q4 and Q,
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Optimal model tuning is achievable using surrogates for correlation d

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG SHAPING THE FUTURE OF AEROSPACE



Variance
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Results: more sparse measurements
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Correlation

wy: model cost
pq : correlation between Q4 and Q
P12 : correlation between @1 and Q-
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Smoothness is important for gradient-based optimization
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Results: fewer pilot samples

w;: model cost
P4 : correlation between @ and @
P12 : correlation between @4 and Q-
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More accuracy of surrogates impacts optimization d
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Conclusions

» Model tuning can greatly affect estimator variance

» Optimization requires estimation (or knowledge) of correlations/costs as
a function of tuning parameters

» Quality of the correlation surrogate is an important factor in tuning
parameter optimization

Future Work

» Improved surrogates, with adaptive refinement

» Use global optimization rather than local optimization to reduce effect of
noisy correlation estimates

» All-at-once optimization with model hierarchy
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Thank You For Watching!

geoffrey.f.bomarito@nasa.gov
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