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2| Challenge: Green hydrogen production

As climate change worsens, there is increasing interest in H, as a fuel, heat source, and reducing
agent for decarbonization

H, is currently sourced by reforming hydrocarbons, resulting in CO, waste stream

Numerous renewable pathways for H, production via water splitting are under development, but |
efficiency and cost must be improved

High temperature processes of interest for potential high efficiencies and ability to leverage process *
heat & electricity from concentrating solar and nuclear energy, but challenges exist
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3 1 Solution: A Hybrid Thermo- Electro-Chemical Process

A liquid metal solution (LMS) integrated into a hybrid thermochemical-electrochemical
process to renewably produce hydrogen by splitting water
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LMS acts as a conductive medium for heat and electrons to
facilitate water-splitting reaction

Synergy between thermal + electrical energies allows for milder
temperatures (< 1000 °C) and decreased electrical requirement
relative to conventional electrolysis

Heat and electricity can be from nuclear reactor or any
combination of renewable resources
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Interplay between temperature and
electrochemistry allows us to tailor the
hybrid cycle to particular thermal source
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4 ‘ Basic LMS Pr
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= Two-step cycle:
* Thermochemical steam reduction of LMS producing hydrogen and solid metal oxide (O-LMS)
* Thermo-electrochemical reduction O-LMS back to LMS with the subsequent oxygen evolution

= LMS requires at least one redox-active metal to split H,0 (M) and one less reactive or inert carrier
(M) to maintain liquidus phase
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g ‘ Alloy Selection Using Machine Learning*
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Predict equilibrium products of water-
splitting reactor @ P,, Py, T

| Selection of top candidates | } Screen all binary candidates

Mined all Materials Project (MP)?
compounds for M-M’-O-H phase diagram

Applied an ML descriptor that transforms
DFT formation enthalpy to finite T Gibbs
energies: e.g.,

AGp(T) = AHyp ppr(0 K) + 6Gpy (T)
Compute thermodynamic potential @ uy,,
#HzO’ T

Reconfigured MP machinery to perform
Gibbs minimization and predict the
predominant (stable) phases in this
ensemble

1,Jaurll, A., et al. “The Materials Project: A materials genome approach to
accelerating materials innovation,” APL Materials 2013, 1 (1), 011002,

" A oversimplification. (Witman, M., et al. “Machine learning assisted screening and discovery of liquid metals for reversible, low temperature

water-splitting,” in prep.)
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. | Test Run: Sn in Flow Reactor

= Designed and fabricated stagnation flow reactor

= Characterize alloy thermochemistry and
electrochemistry

= Control gas composition, residence time,
pressure, and temperature

= Optical access for video and laser-based probes

= Time lapse video while heating ~15 K/min in 5% H,
from room temperature to 723 K

= Reduction of water by Sn produces H, and oxidizes Sn
surface layer

= Thin SnO, layer appears to inhibit further oxidation
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7 ‘ H, Production in Zn, ,Bi, g Alloy
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H, production observed, but utilization much lower than expected
Why?

* Incorrect thermodynamic predictions?

* Experimental conditions, e.g. mixing? Mixing in the system is performed by a sparger
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8 ‘ Characterization of Reacted Zn, ,Bi, s Alloy

Zn, ,0Bi; 5o Sample collected from the walls of the test tube
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XRD shows evidence of ZnO (circled) on alloy/tube interface, but three interior cross-sections (only one shown) show only Bi, Zn metal
SEM images of tube wall show particles of spike-like morphology consisting of Zn and O (EDX map), supported by line scan
SEM of X-sections show segregation of Bi (light areas) & Zn (dark stripes) with small concentration of O homogeneously dispersed

* Unsure if signifies presence of MOx or artifact/surface layer; homogeneity and lack of ZnO in XRD implies latter
Presence of only small amount of ZnO concentrated on sides of tube support low oxidation results and imply that thorough mixing in reactor
may not be occurring

SSB N e office of ENERGY EFFICIENCY
ENERGY | & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

2021 VIRTUAL MRS SPRING MEETING

|
|
|



? ‘ H, Production in Zn, ,Bi, s Alloy, Part Il
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= Hypothesis: Ineffective sparging results in large bubbles that impede oxidation reaction due to inefficient

mixing and lack of interaction between steam and metal

= New sparger with more efficient mixing (smaller bubbles) was added to reactor

* H, production increased by order of magnitude

* Increasing H,0 flow did not increase conversion percentage, implying bubble formation is likely limiting
factor, i.e., the LMS is exposed to the same amount of steam independent of the flow rate
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°§ Summary

Conclusions

= Hybridized thermochemical - electrochemical water splitting via liquid metal solutions (LMS)
ameliorates the challenges faced by conventional thermochemical and high temperature
electrolysis

= Machine learning was utilized to predict metal alloy combinations with favorable performance
properties, as well as guide experimental conditions

= A Zn-Bi alloy successfully split water to produce H, with up to 50% conversion of Zn = ZnO while
remaining liquidus

= |Intimate steam-LMS contact is essential, requiring efficient mixing
Next steps

= Post-mortem characterization of Zn-Bi alloys to elucidate oxide compositions, particle size,
reaction extent

= Develop efficient mixing methods
= Test additional alloy compositions predicted by machine learning
= Develop thermo-electrochemical metal oxide reduction reactor to regenerate LMS
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