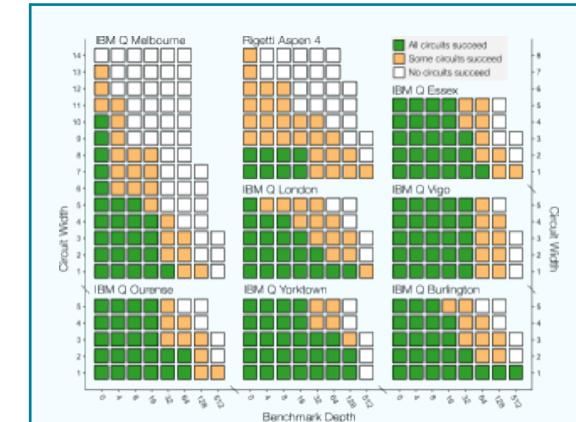


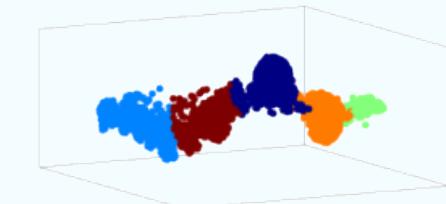
Quantum Information Technologies: a New Frontier for Visualization

Mohan Sarovar, Timothy Proctor, Kevin Young, Tzvetan Metodi, and Janine C. Bennett, Sandia National Laboratories

Challenge: Quantum Information Science (QIS) technologies introduce a fundamental shift in computing paradigm


- *Vis for Quantum*: near-term systems are akin to noisy experiments
 - Generate massive data that must be harnessed for control, optimization, and verification
 - Shift from binary, deterministic regime to probabilistic based on qubits
 - Data is discrete, high-dimensional (exponential in # of qubits), stochastic, underlying non-Markovian dynamical system
 - Parametrized high-dimensional probability distributions
- *Quantum for Vis*: Nascent research on vis tools enabled by processing data using quantum computers

Opportunities: Strategic engagement between Vis & QIS communities


- Immediate: R&D to enable QIS community to extract insights from benchmarking data
 - Explore high-dimensional data interactively
- Near-term: Co-design algorithms/tools to visualize quantum-enabled science
 - Analyze functions of distributions: variational optimization, adaptive execution, and verification
- Long-term: Explore unique directions for visualization enabled by quantum computing hardware
 - Extend research in quantum manifold learning to extract insights from extreme-scale data

Timeliness: QIS is a national technology and strategic priority

- National Quantum Initiative Act
- DOE SC investments across program offices & in large interdisciplinary QIS research centers
- ASCR investments in quantum testbeds, algorithms, networking, & software stack research

Vis for Quantum: Benchmarking generates rich high-dimensional data but static 2D vis is state-of-the-art [1]

Quantum for Vis: Ongoing quantum algorithm research in manifold learning aims to enable dimensionality reduction of extreme-scale data [2]

Potential for impact: broadly enabling DOE science capabilities currently out of reach to high performance computing

[1] T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout, "Measuring the Capabilities of Quantum Computers," (2008) <http://arxiv.org/abs/2008.11294>

[2] A. Kumar and M. Sarovar, "Manifold Learning via Quantum Dynamics," (2022) <https://arxiv.org/pdf/2112.11161.pdf>

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. National Nuclear Security Administration under contract DE-NA0003525.