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Results:
Panel A – Expected information gain for different cutoff frequencies at different background 
noise levels. We see in all cases there is little change in information gain between 0.479 -1.52 Hz  
Panel B, Panel C, Panel D – Information gain for each representative event for the five filters vs 
the true signal power. Background level noise: Panel B σ=2x10-17, Panel C σ=1x10-16, and Panel 
D σ=5x10-16.  We see similar trends between B, C, D, just shifted.

BA

C D

Modeling Capabilities of Waveform-Based Bayesian Inference for Seismic Monitoring
Thomas Catanach, Robert Porritt, and Christopher Young | Sandia National Laboratories

Conclusion
Setup:
• AxiSEM/Instaseis simulations with an 

AK135 earth model, sample rate 3.95 Hz
• Regional domain ±2°in latitude and 

longitude, 40km in depth
• Exponentially distributed log10 moment 

magnitude factor between -2 to 2 and 
isotropic moment tensor

• Source time function width 0 to 5 sec 
and origin time 0 to 152 sec

• Additive white background noise
• Low pass filtered using sinc filter
• Simulated 100 representative events 

Evaluating Bayesian Seismic Monitoring
Goal:
• Computational tools allow high frequency (>1 Hz) seismic simulation; 

however, modeling uncertainties limits the accuracy of these results. How 
would refining these simulations to higher frequencies increase Bayesian 
seismic monitoring capabilities? Do we benefit from higher frequencies?

Bayesian Seismic Monitoring Problem:
• Infer event parameters with uncertainty: Longitude, Latitude, Depth, 

Origin Time, Source Time Function, and Moment Tensor 
• Observations: Filtered seismic waveforms at various locations
• Uncertainty to integrate: Travel time uncertainty, earth structure 

heterogeneity, background noise process

Evaluation Approach:
• We use the approach of Bayesian experimental design where we 

estimate the expected information gain of the Bayesian inference 
problem under different low-pass filter frequency assumptions. This 
replicates the effect of limiting our simulations to certain frequencies.

• Expected information gain (see Mathematical Methods for definition) is 
an information theoretic quantify that broadly measures the change from 
the prior parameter distribution to the posterior distribution.

• Algorithm Outline:
1) Create a representative set of seismic sources with different 

locations and source properties
2) Simulate high-frequency waveforms for each of these sources and 

add background noise from a known noise model
3) For each waveform apply a set of low pass filters with different 

cutoff frequencies
4) For each representative event and filtered waveform solve the 

Bayesian inference problem to find the posterior distribution on the 
event parameters and compute the information gain

5) Average the information gain over all events for each of the filters 
to capture the effect of frequency content on seismic monitoring.
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Experiment and Results

Quantifying Information Gain :
• Bayesian Inference:

• Kullback-Leibler (KL) Divergence
measures information due to inference

• Expected Information Gain (EIG) from a model with filter frequency (S):

Likelihood model in the frequency domain:
• Let ⍵j be the Discrete Fourier Transform (F) of the predicted waveform at 

frequency j for an event characterized by (Lat-Lon L, Depth z, Magnitude 
m, Origin Time to, and STF width 𝜆)

• Then the likelihood of the observed Discrete Fourier Transform (ξ) up to 
frequency f given the predicted waveform is

• Where

Mathematical Methods
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Discussion:
• Using the framework of Bayesian experimental design we can quantify the 

utility of different frequency content in high fidelity seismic simulation for 
seismic monitoring.

• Under the assumptions of an AK135 earth model and white background 
noise process, we observe that the contribution of higher frequency 
information is limited above 0.5 Hz for this regional setup.

Future Directions:
• We would like to extend this analysis to frequencies up to 10Hz. To do 

that we will need to leverage higher fidelity simulation codes and choose a 
representative earth model with more complexity than AK135.

• We made simple assumptions about the background and source mechanism 
to facilitate computation, relaxing the assumptions and using more realistic 
models may influence these results.

Illustration of filtered waveform with five filters

Post 3
Prior

Post 1

Post 2

Prior → Post 1 0.5 Bits
Prior → Post 2 1 Bit
Prior → Post 3 1 Bit

Illustration of information gain in bits 
for three posteriors

Distribution of hypothetical data KL Divergence to measure 
information gain
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