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Evaluating

Goal:

* Computational tools allow high frequency (>1| Hz) seismic simulation;
however, modeling uncertainties limits the accuracy of these results. How
would refining these simulations to higher frequencies increase Bayesian
seismic monitoring capabilities! Do we benefit from higher frequencies?

Bayesian Seismic Monitoring Problem:

* Infer event parameters with uncertainty: Longitude, Latitude, Depth,
Origin Time, Source Time Function, and Moment Tensor

e Observations: Filtered seismic waveforms at various locations

* Uncertainty to integrate: Travel time uncertainty, earth structure
heterogeneity, background noise process
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Evaluation Approach:

*  We use the approach of Bayesian experimental desigh where we
estimate the expected information gain of the Bayesian inference
problem under different low-pass filter frequency assumptions. This
replicates the effect of limiting our simulations to certain frequencies.

* Expected information gain (see Mathematical Methods for definition) is
an information theoretic quantify that broadly measures the change from
the prior parameter distribution to the posterior distribution.

* Algorithm Outline:

|) Create a representative set of seismic sources with different
locations and source properties

2) Simulate high-frequency waveforms for each of these sources and
add background noise from a known noise model

3) For each waveform apply a set of low pass filters with different
cutoff frequencies

4) For each representative event and filtered waveform solve the
Bayesian inference problem to find the posterior distribution on the
event parameters and compute the information gain

5) Average the information gain over all events for each of the filters
to capture the effect of frequency content on seismic monitoring.
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Setup:

e AxiSEM/Instaseis simulations with an
AK135 earth model, sample rate 3.95 Hz

* Regional domain 2" in latitude and
longitude, 40km in depth

* Exponentially distributed log,, moment
magnitude factor between -2 to 2 and
Isotropic moment tensor

 Source time function width O to 5 sec
and origin time 0 to |52 sec

* Additive white background noise
* Low pass filtered using sinc filter

* Simulated 100 representative events

Results:

Cutoff Freqg 11

0.014 Hz

-1

Cutoff Freq >

0.047 Hz

—7 -

Cutoff Freq 1.-

0.151 Hz

Modeling Capabilities of VWaveform-Based Bayesian Inference for Seismic Monitoring

Thomas Catanach, Robert Porritt, and Christopher Young | Sandia National Laboratories

SAND2021-15387C

Conclusio

lllustration of filtered waveform with five filters Discussion:
le—16
——Noisy Signal ——True Signal * Using the framework of Bayesian experimental design we can quantify the
o — — — 1 . Lt a1 L .
| | | | | | | utility of different frequency content in high fidelity seismic simulation for
0 25 50 75 100 125 150 175 seismic monitoring
le—16 . .
j N * Under the assumptions of an AK |35 earth model and white background
— LN,
0 \/ ~ noise process, we observe that the contribution of higher frequency
0 25 50 75 100 125 150 175 information is limited above 0.5 Hz for this regional setup.
le-15 . :
: Future Directions:
D-VWM/W . . . .
| | | | | | | * We would like to extend this analysis to frequencies up to 10Hz. To do
0 25 50 75 100 125 150 175

Cutoff Freg
0.479 Hz

Cutoff Freq .

1.519 Hz

—7 -

that we will need to leverage higher fidelity simulation codes and choose a
representative earth model with more complexity than AK135.

* We made simple assumptions about the background and source mechanism

to facilitate computation, relaxing the assumptions and using more realistic

models may influence these results.
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Panel A — Expected information gain for different cutoff frequencies at different background

noise levels.We see in all cases there is little change in information gain between 0.479 -1.52 Hz

Quantifying Information Gain :

Panel B, Panel C, Panel D — Information gain for each representative event for the five filters vs + Bayesian Inference: (0| D) — p(D]0)p(0)
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