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MIMO Definition:
• Test approach used to replicate a desired system response by 

controlling the inputs supplied to the system based on the 
outputs measured on the system.

Applications:
• Replicate a desired field response in a laboratory setting

• Avoid performing costly and timely field tests
• Perform system and component qualification 

Challenges:
• Differences in Field vs. Laboratory system

• Boundary conditions, design, variability, etc
• Affects the ability to control and achieve the desired response

• Test Design
• Instrumentation and which degrees of freedom to control
• Inputs

[1-4]
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Objectives:
• Further demonstrate the capability of a Mean Square Error 

(MSE) based Degree of Freedom (DOF) selection 
approach to assist test engineers with MIMO test design

• Present an additional capability for DOF selection based 
on Optimal Experimental Design (OED)

• Demonstrate the capability of each approach considering:
• Complex and realistic models
• Complex and realistic environments
• Differences in field vs. lab system

Approach:
• Define desired field responses from field models
• Apply the DOF selection techniques to laboratory models, 

with different boundary conditions than the “field” models.
• Compare the laboratory MIMO responses to the field 

responses using DOF selected from each approach.

Field

Lab

Control Set

Field Lab

?
[5]
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Thrust 
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Shaker 
Loads

Field Environment Lab Environment

Aerodynamic loads

Desired

Substitute in Field CPSD

Solve for Lab Input CPSD

Goal  ?

Obtain Lab CPSD

Issues:
• Field environment is not always 

replicated
• Difficult to control large DOF sets
• Some DOF work better than others for 

control
How do we select DOF best for MIMO?

[5]
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[6-8]

ya = � � θ + �Model:

Prediction:

Estimate:

Structural Dynamics Model Linear Regression

Output FRF Input
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[6-8]

DOF   Weight 
Map: 

Estimate:
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System

Test Article 66 DOF

Environment

Goal
• Generic Aerospace System
• Several Subassemblies and 

Components
• Single component selected as test 

article
• 100,000+ Elements
• 1,000,000+ Nodes

6-DOF Shaker

Laboratory

6 Inputs

• Test article mounted to 6-DOF 
shaker

• Model used to simulate laboratory 
test
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Component Density
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DAIC
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DA1
(0.5x)

DA2
(1.5x)

6-DOF Shaker

Laboratory

• 9 Model Variants:
• 3 Damping Cases
• 3 Component Density Cases

• Demonstrate versatility of each 
approach to differences in the field 
component vs. the lab component
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Results: Nominal Model – Nominal Field – Environment A18

OED MSE

RMS MSE RMS MSE
Both approaches 

accurately reproduce the 
responses to the field 

environment loads

18 out of 66 DOF selected
Same Variant Field + Lab Models

Reference: All 
DOF in control 
set
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Results: Overall Performance19

OED MSE
18 out of 66 DOF selected

Same Variant Field + Lab Models

Field environment 
accurately represented 

regardless of model variant
Best accuracy matches field 

environment very well.
Lower accuracy is still a good 

approximation of field
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Results: Model Variant – Nominal Field – Environment A - 
DOF

20

OED MSE

OED consistently selects the same 
DOF despite model variant

18 out of 66 DOF selected
Nominal Variant Field Model
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OED MSE

RMS MSE RMS MSE

Field responses to 
environment loads are 
accurately reproduced 
despite differences in 
Field vs. Lab system

18 out of 66 DOF selected
Nominal Variant Field Model
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Conclusions23

Summary:

• Two DOF selection approaches for MIMO test design were 
presented and demonstrated on complex models of a practical 
system.

• Laboratory responses obtained using DOF selected by each 
approach matched the field responses well for all test cases 
considering:
• Complex field environments
• Boundary condition differences
• Dynamic property differences

Future Work:

• Extend the approach to selection of input locations

• Apply the approach to degree of freedom selection for field 
tests.

Introduction Theory Model Results Conclusions

OED MSE
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