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4+ 1 Introduction: Multiple Input Multiple Output (MIMO)

> Introduction >

MIMO Definition:

* Test af)_proach used to replicate a desired system response by
controlling the inputs supplied to the system based on the
outputs measured on the system.

Applications:

* Replicate a desired field response in a laboratory setting
* Avoid performing costly and timely field tests

* Perform system and component qualification

Challenges:

« Differences in Field vs. Laboratory system
* Boundary conditions, design, variability, etc
* Affects the ability to control and achieve the desired response

* Test Design
* Instrumentation and which degrees of freedom to control

* Inputs

[1-4]



s | Introduction: Objectives
> Introduction >

Objectives:

* Further demonstrate the capability of a Mean Square Error

(MSE) based Degree of Freedom (DOF) selection
approach to assist test engineers with MIMO test design

* Present an additional capability for DOF selection based
on Optimal Experimental Design (OED)

« Demonstrate the capability of each approach considering:
* Complex and realistic models

* Complex and realistic environments
 Differences in field vs. lab system

Approach:
» Define desired field responses from field models

. Apﬁlylthe DOF selection techniques to laboratory models,
with different boundary conditions than the “field” models.

» Compare the laboratory MIMO responses to the field
responses using DOF selected from each approach.
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) Theory >
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Theory: MSE-Based DOF Selection Approach
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> Theory >

Structural Dynamics Model
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Theory: Optimal Experimental Design Approach
> Theory >
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* The OED algorithm iteratively updates the DOF weight map, P, to minimize the average prediction variance, W, ‘
* The diagonals of P that yield the minimum average prediction variance, identify the DOF that are most important.

* The DOF corresponding to the largest values of P are selected. 6.
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14 I Model: Overview

System
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) Model >
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16 ‘ Model: Field Response
2 Model
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* Considered 6 complex and realistic aerospace environments labeled A - I
* Full system response was simulated for all model variants and environment
variants to use as target environments in the MIMO test:
* 54 total field responses (Syy o)

* Demonstrate the versatility of approach to ditferent field environments
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23 ‘ Conclusions

Summary:

* Two DOF selection approaches for MIMO test design were

presented and demonstrated on complex models of a practical

system.

 Laboratory responses obtained using DOF selected by each
approach matched the field responses well for all test cases
considering:
« Complex field environments
* Boundary condition differences

» Dynamic property differences

Future Work:
« Extend the approach to selection of input locations

* Apply the approach to degree of freedom selection for field
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