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Presentation Breakdown

* Introduction to electrically detected magnetic resonance (EDMR).

* Investigating the defects involved in spin-dependent recombination
(SDR) in high-field stressed Si/SiO, MOSFETSs.

* Investigating the build-up of defects involved in spin-dependent trap-
assisted tunneling (SDTAT) in high-field stressed Si/SiO, MOSFETs.

* Using near-zero-field magnetoresistance (NZFMR) to observe changes
in interface chemistry through-out the lifetimes of high-field stressed
devices.



Time Dependent Dielectric Breakdown (TDDB)
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Overview of Magnetic Resonance
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Electrically Detected Magnetic Resonance (EDMR)

* Classical EPR is not sensitive
enough to study traps in practical
MOSFETs (sensitivity =
101%defects).

» EDMR sensitivity is about 107
times greater than EPR [1].

* This sensitivity boost makes EDMR
an incredibly powerful analytical
tool for analyzing the chemical
nature of paramagnetic defects in
technologically meaningful
devices.
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Spin-Dependent Trap Assisted
Tunneling (SDTAT)

* Operates on the principles of variable range
hopping.
* Trap to trap tunneling events conserve

momentum; they are a function of both
energy and tunneling distance.

* RF induced resonance events can “flip” the
spins of oxide defects, allowing forbidden
tunneling transitions to occur.
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EDMR via Spin-Dependent Recombination
(SDR)

Shockley-Read-Hall Model for Recombination
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Gated Diode (dc |-V) EDMR !
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Experimental

* Identical 1.89 x 10 cm? Si/SiO, total gate area nMOSFETS with 7.5
nm thick oxides.

* MOS structures consisting of 126 devices, all with 15 by 1 um channel
dimensions.

* During EDMR, dc |-V source/drain biases used were -0.33 V.

* High-field stressing was done at a constant gate bias of -9 V for
various lengths of time.

* All EDMR measurements were done with the magnetic field
perpendicular to the (100) interface plane.



High-field Stressed Si/SiO, SDR

* Interface defect density and EDMR current are
compared below throughout the lifetime of several
devices subjected to different levels of negative gate
stressing.

* Good agreement is found in all cases; likely can be
extended to longer time scales.

» Simulations via EasySpin [3] clearly show that the
defects generated are dominated by the P,y and P
centers.
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Low-Temperature SDR

* Along with the P,y and Py, there is an
additional feature that forms at g = 2.000
with high-field stressing.

* This g-value corresponds to an E’ center,
which is most likely made visible due to a
change in the temperature-dependent
spin-relaxation time of the oxide defect at
200 K.
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SDTAT Results on High-Field Stressed

MOSFETS

 Signal of SDTAT response increases

with high-field stressing time.

* Dominant features were the Pj,
(g = 2.0065) and P, (g = 2.0032)

center.
* The EDMR results are in close

correspondence with the increase in

D;+ measured via dc I-V.

* The lack of E’ defects in the SDTAT
spectra suggest a rate-limiting step.
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Near-Zero-Field Magnetoresistance (NZFMR)

* Can detect both SDTAT and SDR without an RF microwave source.
* No B, is necessary; great potential for analyzing “packaged” devices.

* NZFMR utilizes the mixing of states at near-zero fields due to local
magnetic field interactions.

* The theoretical NZFMR response can be modeled via the Stochastic
Quantum Liouville Equation (SLE), a theory developed by Flatté and
Harmon [4] and advanced for use in MOS devices by Frantz, Harmon,
and Flatté [5].
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NZMFER via SDR

* Changes in line shape are critical in the
analysis of NZFMR spectra.

* These changes can only be due to two
factors: kinetics and hyperfine
Interactions.

* For a constant Vf, the recombination
kinetics must be constant.

* Only magnetic nuclei in the system are
2981 nuclei (4.7%) and H (100%).

* The results demonstrate that hydrogen
must be redistributed throughout high-
field stressing.
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Conclusions

* We provide evidence and chemical identification of both interface
(P, and Ppq) traps and oxide (E") defects generated in Si/SiO,
MOSFETs during the early to middle stages of TDDB.

* We find that the dominant defect in the SDTAT spectrum in these
high-field stressed MOSFETs are the P,y and P, defects.

* We show that the interface-to-oxide tunneling event is the rate-
limiting step in Si/SiO, in the earlier stages of TDDB.
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