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Motivation
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• Full-order model (FOM) simulations of hypersonic 
vehicles is expensive

• Mitigate expense by using reduced-order models 
(ROM)

• Using a ROM can lead to reduction in accuracy
• Would like to quantify reduction in accuracy

• Don’t want to run blind

• Utilize error models to quantify and predict error 
between ROM and FOM
• Able to make better ROM predictions
• Possibly able to update ROM basis with 

“knowledgeable” training points

How do we create the error models without adding extra cost?



Goal: Develop Error Model Efficiently
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Full-Order Model
• Produce solutions at

• Training points for the ROM
• Training points for Error Model
• Test points

Reduced-Order 
Model

• Produce solutions at
• Training points for the Error Model
• Test points

Error Model • Produce solutions at
• Test Points

QOI Error



Develop Error Model Efficiently by focusing on Sampling Methods
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• Problem: Developing the error model adds to the computational expense
• FOM is computationally expensive, but…
• Necessary to use FOM for training points for ROM and error model

• Why not train ROM with more FOM points than develop error model?
• Unpredictability
• Nonlinear domain
• Flying blind

• Solution:
1. Sampling types
2. Sampling strategies



Sampling Types
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1. Latin Hypercube Sampling (LHS)
2. LHS with maximin criterion

o Adds constraint on distance between sampling points

3. D-Optimal design
o Maximizes determinant of information matrix
o Reduces variance in results

o Contains replicates not useful for computational experiments
o Replace replicates with random LHS points
o End result may not be a true D-Optimal design



Sampling Strategies

• Distinct training set

• Augmented training set

• Single training set
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ROM Error Model



Summary of Sampling Methods

Sampling Types

1. LHS

2. LHS with Maximin Constraint

3. D-Optimal

Sampling Strategies

1. Distinct Training Sets

2. Single Training Set

3. Augmented Training Sets
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HIFiRE-1

8
[3] Wadhams, T. P., Mundy, E., MacLean, M. G., and Holden, M. S., “Ground Test Studies of the HIFiRE-1 Transition Experiment Part 1: 
Experimental Results,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1134–1148. https://doi.org/10.2514/1.38338.



Modeling the HIFiRE-1

9

Full-Order Model Reduced-Order 
Model Error Model



Modeling the HIFiRE-1
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Full-Order Model Reduced-Order 
Model Error Model
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Modeling the HIFiRE-1
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Full-Order Model Reduced-Order 
Model Error Model

*https://github.com/Pressio 



Modeling the HIFiRE-1
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Full-Order Model Reduced-Order 
Model Error Model
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equations,” Computer Methods in Applied Mechanics and Engineering , Vol. 348, 2019, pp. 250–296. 
https://doi.org/https://doi.org/10.1016/j.cma.2019.01.024. 



Distinct Training Sets
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• Reduced-order model trained with 50 points
• Error model trained with 3 sampling types

• Number of points determined by achieving 
statistical power of 80%

• Statistical power: ability to detect whether test 
deviates from null hypothesis

Sampling Type � �����

LHS 52
LHS Maximin 53
D-Optimal 37



Distinct Training Set Normalized Error
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LHS LHS Maximin D-Optimal

Use D-Optimal sampling type for rest of strategies



Single Training Set
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• Leave-one-out cross validation (LOOCV)
• Same training set for reduced-order model and error model

Algorithm



Single Training Set Points
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Single Training Set Normalized Error
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Distinct Training Set



Single Training Set Error Contours

• Highly nonlinear error surface

• Large errors occur where
• Few training points placed
• Highly nonlinear areas

• Improve error model by improving 
spread of training points
• D-Optimal design augmented with LHS
• No distance constraint on augmented 

LHS points
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� max ,� R 2 = 0.880

Placement of training points matters!



Augmented Training Set
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• Improve error model by augmenting with additional points

100 Augment Points



Augmented Training Set Normalized Error
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� aug = 20

� aug = 60 � aug = 100

� aug = 0

Unpredictability



Computational Runtime
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• D-Optimal with LOOCV cuts computational expense by 64% compared to Distinct LHS
• Design with 20 augmented points cuts computational expense by 44%

Category Sampling Type Relative Time to Distinct LHS

Distinct
LHS 102 1.43 1.00 0.990

LHS Maximin 103 1.44 1.01 0.961
D-Optimal 87 1.22 0.85 0.991

Single Training Set D-Optimal 37 0.52 0.36 0.918

Augmented 
Training Set D-Optimal

57 0.80 0.56 0.970
77 1.08 0.75 0.954
97 1.36 0.95 0.952

117 1.64 1.15 0.962
137 1.91 1.34 0.985



Conclusions
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