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P Motivation

Full-order model (FOM) simulations of hypersonic HIFIRE-1 / Run 30
vehicles is expensive

- Mitigate expense by using reduced-order models
(ROM)

« Using a ROM can lead to reduction in accuracy

*  Would like to quantify reduction in accuracy
« Don't want to run blind

« Utilize error models to quantify and predict error
between ROM and FOM
* Able to make better ROM predictions

« Possibly able to update ROM basis with
“knowledgeable” training points

How do we create the error models without adding extra cost?
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Goal: Develop Error Model Efficiently

QOl Error

Os(u) =s(u) — §(pw)




P Develop Error Model Efficiently by focusing on Sampling Methods

* Problem: Developing the error model adds to the computational expense
- FOM is computationally expensive, but...

« Necessary to use FOM for training points for ROM and error model

*  Why not train ROM with more FOM points than develop error model?
« Unpredictability
* Nonlinear domain
* Flying blind
« Solution:
1. Sampling types
2. Sampling strategies




P Sampling Types

Latin Hypercube Sampling (LHS)

2. LHS with maximin criterion
o Adds constraint on distance between sampling points

3. D-Optimal design
o Maximizes determinant of information matrix
o  Reduces variance in results
o Contains replicates not useful for computational experiments
o  Replace replicates with random LHS points
o  End result may not be a true D-Optimal design
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Sampling Strategies

Distinct training set
Augmented training set

Single training set

‘ ROM

Error Model
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Sampling Types Sampling Strategies
1. LHS 1. Distinct Training Sets
2. LHS with Maximin Constraint 2. Single Training Set

3. D-Optimal 3. Augmented Training Sets
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" HIFIiRE-1

Run 30 of CALSPAN University of Buffalo HIFIRE-1 wind tunnel tests [3]
N = 32,768 cells
Steady-state

Boundary conditions:
« Supersonicinlet

» Supersonic outlet
* No-slip enforced at wall
+ Fixed temperature

[3] Wadhams, T. P., Mundy, E., MaclLean, M. G., and Holden, M. S., “Ground Test Studies of the HIFIRE-T Transition Experiment Part 1:
Experimental Results,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1134-1148. https://doi.org/10.2514/1.38338.




/" Modeling the HIFiRE-1
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Reduced-Order

Model Error Mode|

Full-Order Mode|




/ Modeling the HIFiRE-1

Full-Order Model Regligee Olieie;

Model

. Error Model

« Compressible RANS Equations
flgu) =0
p - vector of system parameters
q = [p,pv, pE, pgp] - state vector
* Turbulence modeled using SA

* CFD Solver: SPARC [1]
« Primarily for NNSA's nuclear security programs

* Uses cell-centered finite volume scheme
« Developed for transonic and hypersonic flows

[1] Howard, M., Bradley, A., Bova, S. W., Overfelt, J.,, Wagnild, R., Dinzl, D., Hoemmen, M., and Klinvex, A., “Towards Performance Portability

in a Compressible CFD Code,” 23rd AIAA Computational Fluid Dynamics Conference, Vol. 1, AIAA, Denver, CO, 2017.
https://doi.org/10.2514/6.2017-4407. ﬂ




P/ Modeling the HIFiRE-1
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Full-Order Model Regluaeer e

Model

. Error Model

« Reduced-order model developed using POD with LSPG
» Clipping function to enforcep >0and T > 0

YTAf(h(q°(w) + ®q;p)) =0
L of dh
¥=A7 @5, 7%

* ROM solver: Pressio*
« Open source framework for ROMs

« Solves large-scale nonlinear dynamical systems
« Uses generic programming

*https://github.com/Pressio




P/ Modeling the HIFiRE-1
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Full-Order Model Regluaeer e

Model

« Predict quantity of interest error

Os(u) =s(u) — 5(p)

. Error Model
« Seven regression models [2]

- MLP, SVR with RBF, SVR with linear kernel, k-NN, linear OLS, quadratic OLS, RF
« Features include parameters and residual principal components

quw) = (7]
* k =5 cross-validation to select best hyperparameters
[2] Freno, B. A, and Carlberg, K. T., “Machine-learning error models for approximate solutions to parameterized systems of nonlinear

equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 348, 2019, pp. 250-296.
https://doi.org/https://doi.org/10.1016/j.ca.2019.01.024. ‘




P Distinct Training Sets

* Reduced-order model trained with 50 points

* Error model trained with 3 sampling types
Number of points determined by achieving
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Distinct Training Set Normalized Error

rd

e . D-Optimal and LHS sampling types produced best results

+  D-Optimal little bit better than LHS (R3 = 0.991 > R?,s = 0.990)
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Use D-Optimal sampling type for rest of strategies
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/" Single Training Set

* Leave-one-out cross validation (LOOCV)
« Same training set for reduced-order model and error model

Algorithm

» Set of training points for ROM and Error Model: 4 = {ai}?;‘f‘“
 |terate over training points in 4
» Select training point a* c A
* C(Create new training set, B = {ai}f;'l"‘“_l, where a* ¢ B
* Train ROM with B and predict at a*
« (alculate g at training pointsin A
* Train error model using training points in A




/" Single Training Set Points
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LHS LHS Maximin D-Optimal augmented with LHS
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Normalized Actual Error
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Single Training Set Normalized Error
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/ Single Training Set Error Contours

Highly nonlinear error surface max_, R “ =0.80
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Placement of training points matters!




P Augmented Training Set

* Improve error model by augmenting with additional points

100 Augment Points
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Augmented Training Set Normalized Error
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P Computational Runtime

*  D-Optimal with LOOCV cuts computational expense by 64% compared to Distinct LHS

« Design with 20 augmented points cuts computational expense by 44%

Category Sampllng Type Total Time [s] x10° | Relative Time to Distinct LHS m

Distinct

Single Training Set

Augmented
Training Set

LHS Maximin
D-Optimal
D-Optimal

D-Optimal
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37/
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1.43
1.44
1.22
0.52
0.80
1.08
1.36
1.64
1.91

1.00
1.01
0.85
0.36
0.56
0.75
0.95
1.15
1.34

0.990
0.961
0.991
0.918
0.970
0.954
0.952
0.962
0.985




P Conclusions

« D-Optimal design reduces development cost of error model by 15%
« Reduced total number of training points from 102 to 87

»  LOOCV with D-Optimal design reduces development cost of error model by 64%
+ Adding 20 augment points improves accuracy from R? = 0.92 to 0.97
+ Using 20 augment points reduces development cost by 44%

« May improve overall cost reduction by improving POD updates
* Recalculating POD takes up 30% of overall cost with LOOCV

 Possibility to use rank-1 updates to POD basis [4]

* The authors would like to thank Eric Parish for his feedback.

[4] Brand, M., “Fast low-rank modifications of the thin singular value decomposition,” Linear Algebra and its Applications, Vol. 415, No. 1,
2006, pp. 20-30. https://doi.org/https://doi.org/10.1016/j.1aa.2005.07.021, special Issue on Large Scale Linear and Nonlinear Eigenvalue
Problems.




