Thislpaperldescribeslobjectiveftechnicallresultslandlanalysis. JAnyisubiective views or opinions that might be expressed in SAND2022-0409C
h f

helpaperfdojnotinecessarilyfrepresent] helU.S . of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Automated Test Generation for Performance
Portable Programs Using Clang/LLVM and Formal

Methods

Keita Teranishi, Noah Evans, Sam Pollard, Shyamali Mukherjee,
Alessandro Orso, Vivek Sarkar

Jan. 14, 2022. DOE ASCR XSTACK Kick-Off Meeting

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

SandialNationall Laboratorle islafmultimission laboratory managed and operated by National-Technologvi&-Engineering:Solutions, of Sandia,, LLC 1a whollyiowned
International,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. ation under contract DE-NAO0O03525.

P Team Members

Keita Teranishi (Sandia National Labs, PI)
Noah Evans (Sandia National Labs)
Shyamali Mukherjee (Sandia National Labs)
Samuel Pollard (Sandia National Labs)

Alessandro Orso (Georgia Tech)
Vivek Sarkar (Georgia Tech, Institutional-coPI)

y
Outline

Motivation
* Performance Portable Programming Model

* Our Approach
* Klokkos Automatic test case generation framework

* Project Highlights
* Formal Specification
e Compiler Assisted Checking/Testing

* Differential Testing
* Risks

* Q&A

e Motivation
/

« Performance Portable Programming Models

- Standard for DOE HPC Systems (Kokkos, Raja) _
i

° H ete ro ge N e ity Intel Multicore Intel Accelerators NVIDIA GPUs
« Performance Tuning

AMD AMD GPUs IBM Power
Multicore

« Writing performance portable code with
correct behavior is challenging
« Templated C++ Programming

* Need to test all heterogeneous HPC systems
 Availability of Future computing platforms
« Some “vague” specifications

* The code runs on CPUs, but crashes on GPUs

* Get correct results on CPUs, but wrong on GPUs

e Qur Goal

« Create automatic testing framework for
Performance Portable Programming Model

Kokkos Performance Portable Programming

double A[100][100];
for (size_ti=0;i<N; ++i)
{
o for (size_tj=0;j < N; ++j){
@ ATIIG] = N,
}
}
Kokkos::View<double **> A(100,100); // Allocated in the default device
Kokkos::View<double **>::HostMirror HostA = Kokkos::create_mirror(A);
Policy team = Kokkos::team_policy(CUDA,N);
Kokkos::parallel_for (myTeamm, KOKKOS LAMBDA (Policy::member_type team)
{
S int i = team.league_rank;
=< Kokkos::parallel_for (Kokks::TeamThreadRange (team, N), [=] (const int &j)
< {
A(i,j) = i+N7);
1;
b;
Kokkos::fence();
Kokkos::deep_copy(HostA, A); // Data copied from the accelerator to the host

« Single Source for Multiple Platforms!

Kokkos allows non-portable

implementation.

* A program can run on CPUs, but crashes on
GPUs.

« A program can run correctly on CPUs but
incorrect on GPUs.

Writing correct and portable code requires
good knowledge of multiple platforms.
« Itis not what Kokkos is intended for.

w
2
o
o
o
£
-
(=]
¥4
w
w
25
> O
o w
» =
a
@
o o
£ 3
t
E{U
I
e
c
a
~ ‘0
=
eio
= v
2 3
o
o £
1)
8w
c 2
o o
-
]
I

Writing Portable and Correct Program Across Multiple Platform

Kokkos: :View<double **> A(N,N); // Allocated in the default device
for(int i = 0; i < N; ++i) {
Kokkos::parallel for (N, KOKKOS_LAMBDA (const size t &J)
i
A(i,j) = i*N*j;
})i
}

Kokkos: :View<double **> AR(N,N); // Allocated in the default device
Kokkos: :View<double *#*>::HostMirror HostA = Kokkos::create_mirror(A);
for(int i = 0; i < N; ++i) {

Kokkos::parallel for (N, KOKKOS_LAMBDA(const size_ t &3j)

{

A(i,j) = i*N*j;

i
}
Kokkos: : fence() ;

Kokkos: :deep_ copy(HostA, A); // Data copied from the accelerator to the host

Kokkos: :View<double **> A(N,N); // Allocated in the default device
Kokkos: :View<double **>::HostMirror HostA = Kokkos::create_mirror(A);
Policy team = Kokkos::team policy(DefaultExecutionSpace,N);
Kokkos::parallel for (myTeamm, KOKKOS LAMEDA (Policy::member type team)
{

int i = team.league_rank;

Kokkos::parallel for (Kokks::TeamThreadRange (team, N),

{

A(i,]j) = i+W*j;

});
i
Kokkos: :fence();
Kokkos: :deep_copy(HostA, RA); // No data copy if A is on HostSpace

[=] (const int &j)

/

/. KLOKKOS

Inspired by KLEE Project https://klee.github.io
Hf\?l\}lhe source code analysis capability of Clang-

Establish a portable formal specification of Kokkos

APIs for model checking.

Apply multiple code testing techniques together

to reduce search space
Static analysis
Symbolic (concolic) analysis
Dynamic analysis
Differential testing

Automatic Test Generation for "suspicious” part of

program source

Ultimately, users do not access the target
Elatforms to check the correctness of their

okkos programs.

C++ Compiler (GCC,
CLANG, CUDAC, Intel g

Our Approach: Auto test-code Generation Framework

Existing Test
(@=ES

C+t)

Platform Specific
Executable

OpenMP. CUDA,
s Q'YCL

Differential
Testing

Kokkos App
Kokkos Calls

LLVM/CLANG

Kokkos Configuration
Formal Specification

CLANG AST for

ACLUGE Template
Transformation

i S “okkos
Applicat ! 0
Cod¢ Static/Dynamic frtual

. achine
EISS

| N =

Kokkos-KLEE
Concolic Execution

Symbolic
Replay on any Test Cases Execution
machines

Error Reports from
Static Analysis and
Symbolic Execution

Kokkos Virtual
M ?,I_ L

Dynamic
PEISS

P Our Approach

Formal Specification of Kokkos
« Kokkos Virtual Machine

« Automatic Testing through Symbolic Execution
« Compiler Analysis (Clang AST/LLVM-IR)

Static Analysis
* Concolic Testing (AKA Dynamic Symbolic Execution)
- Differential Testing
* Dynamic Analysis

* Test Programs

P Formal Specification (Pollard)

Work by John Jacobson (U. of Utah) and Sam Pollard (SNL-CA)

* Goal: Write an operational semantics for Kokkos
* Do this by translating Kokkos' behavior into inference rules

« Will codify the canonical behavior of Kokkos to inform tools and developers
« Decided on small-step operational semantics to granularly describe concurrency

* Process consists of carefully reading wiki, code examples, and Kokkos source and
talking with developers to get an overview, then translating these into inference rules

N :N P : ExecutionPolicy Fn : Functor S : Stmt
ParallelFor(NV, P, Fn); S — dispatch(N, P, Fn) || S

An example inference rule stating that

Kokkos: :parallel for is asynchronous

P Formal Specification Progress

Insight: Machine-readable specs are
not at the right abstraction levels (e.g.
CIVL, murphi)

* Progress

- Asetofinference rules capturing
Kokkos datatypes and operations

« Challenges
« What level of granularity?

. Modeling the entire C++ semantics is
infeasible

« How to model concurrency?

« Start with Communicating Sequential
Processes (CSP), but Kokkos concurrency is
more restricted than that

* Assume very little to work across all
architectures

. Multiple execution space instances in the
latest Kokkos-3.5.

L
E
MS
MT
|4

Stmt
P

LayoutLeft | LayoutRight | LayoutStride

Cuda | HPX | OpenMP | Serial | Threads
CudaSpace | CudaHostPinnedSpace
CudaUVMSpace | HostSpace

Unmanaged | Atomic | RandomAccess | Restrict
View< T, R, [L, [MS, [MT]|| >

stmt ;

initialize(); list Stmt finalize();

An early draft of the grammar

P/ Kokkos Virtual Machine (Evans)
‘8

‘4

Biggest problem in symbolic testing: state explosion
Many testing frameworks don't test all of runtime and system libraries
* unimportant, application state space matters

 solution: write a simplified virtual machine which can model the runtime while minimizing
the implementation details that need to be explored by the framework.

Goal: Embody Kokkos Formal Semantics in a virtual machine such that the developer can
symbolically test their application in tractable time and have a reasonable degree of
assurance that their application will work correctly.

Technical Details: Catch template instantiations at the AST level and replace them with
library calls to the virtual machine. The virtual machine is an interpreter for the formal
Kokkos semantics (sequential initially). This abstracts away the Kokkos implementation while
ensuring correct use.

/~ Testing Coverage Overview

4
/

TEST TYPE Important Techniques Behavior and Platform Coverage

Static Analysis Formal Specification, Compiler All possible executions paths and
AST platforms

Dynamic Analysis Compiler, Kokkos Virtual Machine One input for multiple platforms

Concolic Testing Formal Specification, Compiler, All possible execution paths and
SMT Solver, Kokkos Virtual platforms for a subset of concrete
Machine inputs

Differential Testing Knowledge Base, Kokkos Virtual ~ Heterogeneous, Application-Driven
Machine (Sequential VS Parallel)

4

v

Concolic Testing (Mukherjee)

Our Approaches are:

Address the application state through
Kokkos APl and Class (View) level

Focus on Kokkos View's metadata
(template properties, array sizes) rather
than their numerical contents

Use inputs to force code to symbolically
execute towards path of Exception or
Error return block

CLANG AST has the capability to source
match, which will very valuable for
testcase validation and correctness.

Feasible to control state explosion using

bias in terms of function name, instead of
symbol or branch name in assembly code

generated by LLVM-IR serving Kokkos
VM

CLANG AST for
Kokkos

LLVM-IR

Byte Code l

KLEE

Kokkos-KLEE
Concolic Execution

Kokkos Specific Kokkos Virtual
Constraints Machine

Kokkos Formal Specification

7 Partial Symbolic Execution (Orso and Sarkar): Overview

/. Symbolic execution is a powerful and sophisticated test-input generation strategy but has many limitations
« Highly structured inputs

« Constraint solver limitations (theories, sheer complexity)
« External libraries, whether symbolically executed or modeled (large, inaccessible)
« Path explosion

=) Limited coverage, affecting tasks that depend on it (testing, dynamic analysis)

« To mitigate this problem, we propose Partial Symbolic Execution [1,2]
» Consider increasingly smaller parts of the program

« Utilize scaffolding to execute program fragments
- Different strategies:
« Symbolic input state: Traditional SE

« Symbolic external state: Execution of each function with symbolic input parameters and symbolic global state

« Symbolic stubs: Execution of each function with symbolic input parameters, symbolic global state, and all callees replaced by
symbolic stubs

[1] R. Rutledge and A. Orso, “PG-KLEE: Trading Soundness for Coverage”, 42nd IEEE and ACM SIGSOFT International Conference on Software Engineering (ICSE, demo track), 2020.
[2] F. Ye, J. Zhao, and V. Sarkar. “Detecting MPI usage anomalies via partial program symbolic execution” International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2018

/
7/

Program Instrumented
/ Program

%] . Program - El- ICFG_
— Instrumentation — Analysis

ICFG & Lexical
Information

Partial Symbolic Execution: Technique

Test
Generation

Test
Cases

Scaffolding
Setup

Replay

Scaffolding

-

« Program Instrumentation: identify paths of interest and performs some refactoring

* ICFG Analysis: collect information to support Input Generation and Scaffolding Setup

- Test Generation: perform symbolic execution

+ Scaffolding Setup: leverage the Kokkos Virtual Machine to put in place drivers and stubs
needed to run the generated tests on code fragments

/" Differential Testing
3

« Leverage existing inputs to identify potential issues that results in different behaviors [1]
- Between serial and parallel executions of Kokkos code (fragments)

* Between versions compiled for different platforms (e.g., CPUs (OpenMP), NVIDIA CUDA, AMD ROCm,
SYCL)

rd

‘4

* Our approach
- Serial executions: run Kokkos code using the “sequential execution space”.

- Different platforms: run the code compiled for different targets as described in our overview.
* For each pair of versions v1 and v2 and for each input i:

* Run v1(i) and v2(i)

« Compare their output

* Report anissue in case of discrepancies

« Additional details
« The oracle can be defined at different levels of detail (1/0, return values, internal state)

« The Kokkos Virtual Machine can be used to run the tests while tracking I1/0 and internal state

[1] R. Rutledge and A. Orso, “Automating Differential Testing with Overapproximate Symbolic Execution”, 15th IEEE International Conference on Software Testing, Verification and Validation (ICST), 2922‘

/" Dynamic Analysis (Sarkar)

Concurrency bugs and erroneous memory accesses may occur in Kokkos programs, e.g.,
Data races, Uses of uninitialized memory (UUM), Uses of stale data (USD), Buffer overflows

Our approach to dynamic analysis
Use test cases generated via partial symbolic execution as inputs

Execute instrumented Kokkos program on Kokkos Virtual Machine

Build on our past work on dynamic analysis of data mapping issues in OpenMP [1] to identify illegal
data accesses and data mapping issues using runtime information collected on the host, e.g.,

* Happens-before relations between the host program and kernels
» View accesses with offsets and lengths

Perform dynamic analysis on host using summary information collected on devices

« Datarace mm) happens-before analysis between memory accesses
« UUM & USD m) states checking on the accessed view
» Buffer overflow m) bounds checking on the accessed view
[1]: Yu, Lechen, Joachim Protze, Oscar Hernandez, and Vivek Sarkar. "ARBALEST: Dynamic Detection of Data Mapping Issues in

Heterogeneous OpenMP Applications."” 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021.

P/ Dynamic Analysis Example

A buggy example

{

})s
Kokkos:

Kokkos:
Kokkos:
Kokkos:

// A buffer overflow on A
Kokkos:

A(1)

:initialize(argc,argv);

:View<double *> A("A"

,100) ;

:deep_copy(A, 1.0);

UUM & Buffer Overflow Detected

:parallel for[200, |KOKKOS LAMBDA(const int 1)

static_cast<double>(i);

:finalize();

Dynamic analysis for UUM and buffer overflow

____» Create a shadow memory for view A (length: 100)

———— Mark the state of all A's elements as “Host”

"Host" denotes the view has valid value on the host

allocate update_host

dllocate read_host
release update_target

release write_host

write_host

update_host

write_host

update_target
release

-
-

update_host

write_target

read_target
write_target

;;dnu_host

read_host
read_target update_target

———— Launch states and bounds check on shadow memory

Foriin0-99 For iin 100 - 199
« States check: pass « States check: fail
* Bounds check: pass

¢ Bounds check: failﬂ

P Test Cases

* Mini Applications
« ExaMiniMD (ECP MiniApp Collection)

* MiniFE, MiniAero (Mantevo Collection)
* NimbleSM (Mini Multi-Physics App, Funded by ASC)

+ Collection of Kokkos Mistakes
« Team is writing a suite of common Kokkos mistake examples

- Team is contacting Kokkos application developers to collect more examples and bug report
related to Kokkos programming mistakes.

y
RISKS

* Availability Kokkos Application Program

* Scarcity of Example Programs
* Mini Applications (Mantevo, NimbleSM, Exascale Mini-App Projects) may not be sufficient to reflect real applications

. II[_)ar o?) real application is hard to test due to the requirements other than Kokkos (other TPLs, difficulty of software
ui

* (Mitigation)
e Partial symbolic analysis address the size and complexity of program source

. (SZur?j’gio)n of Kokkos-mistake program source in collaboration with Kokkos, Trilinos and other Kokkos-users (in ECP and
andia

* Integration of all ideas
* Tools to represent formal specification

e SMT Solvers
 Kokkos Virtual Machine

* (Mitigation)
* Maximize software reuse from well-established frameworks (e.g. KLEE)

P’ Project Plan Year 1

Kokkos Virtual Machine Development

* Initial Formal Specification of Kokkos Operational Semantics

« Demonstration of Concolic Testing for Kokkos programs
Parallel_for (no nest)

Heterogeneity (cudaSpace/ and hostSpace)

« Design of Clang Abstract Syntax Tree (AST) for Kokkos

* Local (Partial) Symbolic Execution of Kokkos Programs

/

v

/" Project Plan Year 2 and 3

Formal Specification of Kokkos Operational Semantics
« Parallel_for with nesting

* Atomics
» Kokkos 3.5 capability (multiple execution space form the same device)

Demonstration of Concolic Testing for more sophisticated Kokkos programs

Static Analysis of Kokkos Programs using Clang AST
* Prune out unnecessary states/paths in symbolic analysis using Kokkos/Application specific knowledge

« Adapting SMT solver to high-level Kokkos programming context

Differential Testing of Kokkos Programs across multiple platforms

Application to Kokkos program source from real applications

/
P Q1 Outcome

 Initial Formal Specification Work on Kokkos Programming Model

. Test Suite of Common Programming Mistakes in Kokkos

Set of small program source to represent Kokkos’ programming mistakes that triggers runtime errors and
inconsistent behavior

* Heterogeneity (nested parallel_for, Memory Space)
« Concurrency Issues (race, atomics, nested parallel_for)
« Soft Copy vs Deep Copy

E) IIIDIS test suite has been a useful guide for initial design of static/symbolic/concolic/dynamic analysis algorithms for
okkos

« Evaluation of KLEE
« Took much longer than expected to analyze a simple Kokkos example program
« This motivated why we need a special version dedicated for Kokkos

« Kokko Virtual Machine
Special Sequential Version
Working on de-templated version

P Collaboration Opportunities

Kokkos Team (SNL, ANL, ORNL)

Ganesh Gopalakrishnan (U of Utah)

Application and Library Developers
Scientific Libraries (ANL,ORNL and SNL)

Kokkos, PETSc and Trillnos
Applications using Kokkos
ExaWind

Tool Developers
« Debuggers

« Performance Tool Developers

/

/" The XSTACK KLOKKOS Project

Performance Portable Programming Model has
become a standard for HPC application

development at ASCR, but writing a correct code

for any platforms is still challenging.

We develop Automatic Test Generation Tool for
Kokkos through integration of

Kokkos Formal Specification
Kokkos Virtual Machine

State-of-the-art concolic analysis
methodology

Ensemble of multiple test/analysis to reduce
state explosion of symbolic analysis

Domain specific knowledge and Kokkos-level
abstraction

C++ Compiler (GCC,
CLANG, CUDAC, Intel g3 Kokkos App

C+) Kokkos Calls

LLVM/CLANG

Kokkos Configuration
Formal Specification

CLANG AST for

ACLUGE Template
Transformation

et Byte Code Kokkos
Application Virtual

e Machine

KLEE

Kokkos-KLEE
Concolic Execution

- Symbolic
Platform Specific Replay on any Test Cases Execution
Executable machines Statistics

OpenMP. CUDA, Kokkos Virtual
HIP. SYCL Machine

