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High consequence
components

Why we care




P Sandia needs to ensure parts work as intended

Sandia works with high consequence situations/items

How can we find items that are likely to fail?

o Particularly important for components that are
destroyed or damaged when used (explosives, body
armor, etc.)

o We need non-destructive means of testing as-built
components

X-Ray images
o Non-destructive
o But are just images (grayscale)

o Finding flaws often requires human expertise
ols a 2-D representation of a 3-D object

X-Ray of shaped charge




P X-Ray computed tomography (CT) is a powerful tool but...

High Z material can cause bright and dark “shadow” artifacts in the CT reconstruction
o Complicates finding anomalies

o Is still an image (grayscale), just now in 3-D




We can apply semantic segmentation to get useful information

4 .
Downsides:
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than anomalous ones

o Dealing with class
imbalance means
throwing out some (or
most) of the anomaly-
free data

o Only can reliably learn
to predict anomalies
from the labelled set

We need an unsupervised solution to utilize data better and handle unexpected anomalies




P Two types of unsupervised techniques for anomaly detection

Generative approaches

Generate a close “normal” image to a query image and look at difference to original
*  AnoGAN

« PandaNet

Classification approaches

Classify the image as normal or anomalous directly
« Deep one-class classification

« Feature-based Anomaly Detection System (FADS)




Anomaly Detection

Generative approaches




AnoGAN results highlight cracks and voids in as-built components
Emily Donahue

Real scan image Generated image Anomaly detection
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AnOGAN succeeded in identifying rare features where supervised learning is not possible

AnoGAN from https://arxiv.org/abs/1703.05921
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AnoGAN architecture

Objectives:

* Generator: fool discriminator

e Discriminator: determine if
an image is real or
generated

A Generator

T
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Discriminator

Real or

Set of normal | o generated
. How do you infer with this?
iImages ?




AnoGAN inference uses backpropagation

~ Backprop

Generator

« Start with a random guess (2)

« Backpropagate to change Z using
the image as if it was label

* Repeat until Z changes are small

This works but is slow (seconds per image)
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AnoGAN's successor: f-AnoGAN

/ Decoder

Discriminator
Loss function:

« Generator: fool discriminator and make
sure decoded image is similar to input

» Discriminator: determine if an image is
real or generated

« Matchitor




Introducing PandaNet

A Decoder

Invert gradient

Discriminator

L oss function:

« QOur additions
« MatchZtoZ
« 2-D and 3-D support
« Support for images too large to fit at once into GPU
* Single pass training using gradient inversion

« Generator: fool discriminator and make
sure decoded image is similar to input

« Discriminator: determine if an image is real
or generated

« Matchitor




P PandaNet applied on transformer data

PandaNet learns from a set
of defect free images

Real Image Input PandaNet output Difference

o When predicting an image
with an anomaly, such as
the solder ball in the top
image, it fails to reproduce
it accurately

o The difference highlights
the defect.

o The learned encoder
significantly speeds up the
process

Il

Similar results to AnoGAN in ms




P Moving to full CT image anomaly detection

CT volumes tend to be quite large (typically we
deal with scans on the order of a billion voxels)
o Slice of overall image to right and there are almost
1000 slices in that scan’s volume

o Seconds per image for AnoGAN would mean days
for a single full 3-D image to be inferred!

Labels for testing are difficult
o Labelling all anomalous voxels by hand is
impractical

o Thin flaws can be practically invisible in a slice by
slice view

o Solution: Synthetic anomalies Slice of whole image
Small inset is region used in prior work

Cannot fit in a GPU alongside a reasonable model
o Solution: Split into smaller chunks of the whole




P Stitching chunks has flaws

Solutions bring their own problems

o Chunks have to be stitched back
together during inference

o Can create artifacts along edges
from lack of context

o Overlap and weighted average to
reduce stitching artifacts

Zoomed in slice of reconstruction




/" Full size 3-D anomaly detection on transformer

Original

Reconstruction

Abs difference

L abel

Slice of image

Original Reconstruction
Abs difference Label
- |

Zoomed in on synthetic anomaly




P Full size 3-D anomaly detection on transformer (cont)

ROC curve created against abs difference Lo (AUC = 0.8303)

of each voxel
Small, high-Z Gaussian anomalies added to
images to make a test dataset 0.8 -
o Similar to solder ball flaws
o Label is the whole volume of the Gaussian g
cube (voxels labelled anomalous when not) = 0.6 o
o Placed randomly in the images =
o Can be over already high-z areas &
o There may be existing flaws that are not 3 047
labelled -
o Very small portion by volume (1 in 6 million
voxels is part of a synthetic anomaly) 0.2 1
ﬂ.ﬂ I ! I I
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P/ Shaped charge detection hampered by unimportant anomalies
4

Original Reconstruction

/ Challenges:

* The charge has,approximatelé/ 1
billion voxels with roughly 30% being
the region that we care about and 600 1 &%
0.5% defects :

* There were no flaw free charges for
training (model learned to output a
clean image anyway) 2001

« Anomalies are a very small portion of 0 | ——— , .
the Scar" Abs difference Label
* Anomalies had low contrast to T o
surroundings 800 -

Despite learning a clean output, there i _ JR«
was too much noise outside the region of 600 | 1 £
interest to get a clear anomaly signal | i ' 4

This was part of another effort were we 0071
do have segmentations available and we _
were able to focus our view on the 200 -
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/" When we look only at the volume of interest
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4 MVTec Anomaly Detection (MVTec AD) dataset
lo ]

Examples for each category

74

The MVTec AD dataset is comprised of 5000 high-

resolution color images of fifteen different categories
with corresponding pixel-wise anomaly labels

Image Label

Leather category example with a glue defect
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Original Original Original Original Original

Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction

Good Glue Fold Poke

MVTec AD leather examples

Examples from MVTecAD leather with PandaNet reconstructions
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Relaxing the localization of anomalies

Many times, defects do not need to Label Pooled Label
be identified at the pixel level
o Regional for human comparison

o Whole image for rejection

Max pooling to test for coarse
details in anomaly detection
o Pixels are thresholded as normal

o Both prediction and label are max
pooled at various scales

o Gives “credit” for getting close




P/ PandaNet applied naively against all the categories in MVTec AD

| tuned USIﬂg leather AUROC for each pool size
bottles for structured 10 Pool size
None
categones .
All other models use the ——
same hyperparameters (as o8 - 1024
appropriate for texture or
structure) with no tweaks |
0.6
Categories to left of the |
dashed line are dominated |
by texture; those to the o |
right are dominated by |
structure
At this point, while color 02 |
was output, it was not |
considered when testing |
for anoma“es 00— AL L S . . . . e - .
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Anomaly Detection

Categorization approaches




P Deep one-class classification

« An out of distribution detection machine learning algorithm
« Map high dimensional images to some reduced order space

+ Map all the nominal images to the same region in the reduced order space

« A machine learning model provides the mapping

 Use some notion of ‘distance’ from cas the measure of how ‘anomalous’ an image is

Nominal images are input

ML model provides
the mapping

Far from ¢ =
Anomaly

Ruff, L. et al. (2018). Deep One-Class Classification. Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research

80:4393-4402




Anthony Garland

P// Feature Based Anomaly Detection System (FADS)
/

‘4

Extends the deep-one-class classification idea Example nominal data (hazelnuts)
nominal nominal nominal

Works via a pretrained network to provide the
mapping
- Record the activations from the model’s
convolutional filters

- Aggregate each filter to a single value (makx, pominal pominal rominal
min, mean, etc.)

« Develop a statistical model of expected
convolutional activations ( x and o) based on
the nominal images'’ activations

« Atinference time, measure activation of the nominal nominal nominal
inputimage from the same model and
normalize based on the nominal statistics
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xample CNN activations
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CNN activations

Input Image




Aggregate activations
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Collapse each filter's activations to a single value and stack
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Nominal images
(“training” set)

.

Generic Pretrained
Convolutional Model
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Learn the nominal datasets activation stats for each filter

— Mean
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0 20000 40000  GO0OO
Conv filter #




P’ 2-D FADS example - inference normalization
,/ Feature activations
‘4

a0 ] Resnet 152
f, = max

4 N\ 30 -
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— Convolutional Model >
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/" 2-D FADS example - converting to a threshold
3
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125 - Scoring Function Anomaly Scores
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R-vector (standard deviations from
nominal mean)
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FADS on MVTec AD dataset (whole image)

ROC for pill category
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FADs AUC score on each class
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FADs achieves an average AUC of 0.93

transistor
wiood
Zipper




/7 FADS can also highlight the anomalies
/

4 By taking the gradient to minimize the

anomaly score with respect to the input,
the pixels that contribute to
anomalousness are highlighted
o Very sensitive - wood image picks up a
scuff that is barely visible for instance
o Still fast as it uses a single backward pass




/ FADS can also highlight the anomalies
74
-




/" FADS against a real world application
4

/ Additive Manufacturing
(right) Localizing flaws in real prints

(below) Dedicated print testing: Using just
images, identify defective parts with incorrect
print process settings

"Trained” on 18 lattices
*  Result: Avg AUC of 0.99

: Visualization of the regions causing high anomaly scores
3-D Printed Lattice




Open challenges remain
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Localization gives clues as to the problem

nominal nominal nominal nominal

nominal nominal nominal nominal

Nominal or abnormal?




P In summary

Made models that can detect and localize anomalous regions within images
o Work independently of image source/modality

o 2 and 3-D support

A new method that operates using pretrained networks

(Questions?

simlr@sandia.gov

() Sandia National Laboratories




