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Streaming Algorithms

Algorithms for datasets that arrive
datasets being ones (much) too large to fit in memory.

meaning that we are given the dataset as a sequence of updates.

Calculating traffic statistics on a router.

Estimating properties of a large social networking graph given as a sequence of
friendships.

Primary quantity of interest is space complexity.
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Quantum Streaming Algorithms

An algorithm that maintains a quantum state as it processes the stream.

[Le Gall ‘06] Can require exponentially less space than classical algorithms (but for
a contrived problem).

[Montanaro ‘16] Quantum advantage for moment estimation with many (w(1))
passes over the input.

In this talk: a quantum advantage for a natural one-pass streaming problem.
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4 | Quantum-Classical Separations

We need two things.
A classical lower bound that does not generalize to the quantum setting.

A quantum algorithm that beats it.
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5 | Triangle Counting

One problem satisfying the first criterion: counting triangles in graph streams.
[K., Price ‘17] Tight classical bounds (in some parameter regimes) from the
Boolean Hidden Matching problem.

[Gavinsky, Kempe, Kerenidis, Raz, Wolf ‘07] BHM exponentially separates
quantum and classical one-way communication complexity.
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6 | Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).

o
(e}

S

[Braverman, Ostrovsky, Vilenchik ‘13] Non-trivial results require parametrization
even if T = Q(m).
For this talk assume m edges, T = ©(m) edge-disjoint triangles.
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Reducing from BHM gives an ©(m)-star with triangles (possibly) completed by a

matching.
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Intuitively: if we keep k star edges, we have a ~ T x ( ) = k—; chance of getting
both edges of at least one of T = ©(m) triangles, so we need \/m samples.

Reduction extends this to general (classical) algorithms.
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Consider the two-player version of the problem: Alice has the star, Bob the matching.

%) "
V3 . 1 7
N, EE
vy
V5 Ve

Alice prepares a superposition over the “spokes” of her star and sends it to Bob.

v = W) )W
S SN

Bob measures with (|v) + |w))/v/2 and (|v) — |w))/+/2 for each vw in matching.
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if measurement returns 12=1%

S

0] otherwise.
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Quantum ldea

Measuring \/%Zve,v(u)]v) in the basis {|V>\%W v E I\/l}.
1 tHw

Let X =< —1

v
=
=
1
S
S

>

if measurement returns [v)

S

if measurement returns 12=1%

S

0] otherwise.
Then E [X] =2T/m. Why?

If uvw is a triangle, % appears with probability 2/m.

Otherwise, both basis vectors from vw equally likely.,

Var(X) = O(1), so O(m?/T?) = O(1) repeats suffice to estimate T.
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Quantum ldea

Measuring \/% 2 ven(u)|V) in the basis {|V>\J%W>, |V>\_[£W) vw € I\/l}.
1 if measurement returns ‘V>\+[£W>
Let X = ¢ —1 if measurement returns ‘V>\_[£W>

0] otherwise.

Then E [X] =2T/m. Why?
[v)+|w)
V2

Otherwise, both basis vectors from vw equally likely.,
Var(X) = O(1), so O(m?/T?) = O(1) repeats suffice to estimate T.

Gives a O(log m) qubit protocol.

If uvw is a triangle, appears with probability 2/m.
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10 I Towards an Algorithm

We need two things for an actual algorithm:
Generalize to Alice and Bob holding arbitrary graphs.

Go from two player protocol to full streaming.
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11 | Generalizing the Graph: Alice

Now let Alice have a general graph that Bob might somehow complete to triangles.

1
~ \/ﬁugv ve%/:(u) ’ UV>

We now construct a superposition over the neighborhood of every vertex.

For each of Bob's edges vw we now measure with the basis vectors
|uv)+|uw) |uv)—|uw)

N B for every u e V.
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12 | Generalizing the Graph: Bob

But what if Bob doesn't have a matching?

u w ju) +1v) , [v) +w)
G B

Now the basis vectors generated are no longer orthogonal.



13 | Subsampling

If Bob's graph has max degree d, we can subsample with probability ©(1/d).



13 | Subsampling

If Bob's graph has max degree d, we can subsample with probability ©(1/d).

TN



13 | Subsampling

If Bob's graph has max degree d, we can subsample with probability ©(1/d).

TN

(¢]

The expectation of our estimator is now 2T /md, so we need d? as many repeats.



13 | Subsampling

If Bob's graph has max degree d, we can subsample with probability ©(1/d).

TN

(¢]

The expectation of our estimator is now 2T /md, so we need d? as many repeats.

Not very helpful if d is unbounded.
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Consider the original “hard case” but with Bob possibly having higher degree vertices.

O f@
T .

If all of the potential triangles are in one star Alice holds, at most a few of them are
incident to Bob's high degree vertices.
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For more triangles to involve Bob's high degree vertices (here v), they must be split
among more of Alice’s vertices (here ;).

u3
u2
uy

Uo

But this makes counting them classically easier!

Interpolating gives us an m?/® (instead of \/m) space algorithm.
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Treat every edge as both an “Alice” edge and a “Bob” edge.
Prepare the “Alice” superposition ﬁ D uev 2ven(u)luv) by starting with a
superposition over 2m “dummy” variables and swapping when an edge arrives.

Perform the “Bob” measurement one edge at a time by measuring with three

projectors, onto span({|uv) + |uw) }uev), span({|uv) — |uw)},ecv) and the
remaining space, whenever an edge vw arrives.

Now for each triangle the third edge to arrive will act as a “Bob edge” and the
first two as “Alice edges”.
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Conclusion

Theorem (Informal)

There is a quantum streaming algorithm that uses

m8/5 4/5 1 1
O(WAE Iogn-;logg

space to (&, d)-count triangles in the stream, where m is the number of edges, T the
number of triangles, and Ag the greatest number of triangles sharing any given edge.

Compared with é(m(A—TE + \lﬁ_)) for classical, up to m?/% v. \/m separation.

Best lower bound for quantum is Q(’"?E). Is exponential separation possible?




