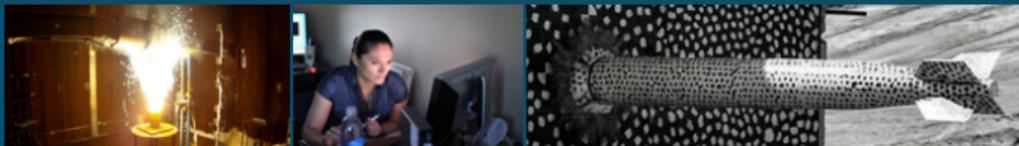


National
Laboratories

A Quantum Advantage for a Natural Streaming Problem



Presented by:

John Kallaugher¹

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 | Streaming Algorithms

Algorithms for **very** large datasets that arrive **one** piece at a time.

Algorithms for **very large** datasets that arrive **one piece at a time**.

Very large datasets being ones (much) too large to fit in memory.

Algorithms for **very large** datasets that arrive **one piece at a time**.

Very large datasets being ones (much) too large to fit in memory.

One piece at a time meaning that we are given the dataset as a sequence of updates.

Algorithms for **very large** datasets that arrive **one piece at a time**.

Very large datasets being ones (much) too large to fit in memory.

One piece at a time meaning that we are given the dataset as a sequence of updates.

Examples

- Calculating traffic statistics on a router.

Algorithms for **very large** datasets that arrive **one piece at a time**.

Very large datasets being ones (much) too large to fit in memory.

One piece at a time meaning that we are given the dataset as a sequence of updates.

Examples

- Calculating traffic statistics on a router.
- Estimating properties of a large social networking graph given as a sequence of friendships.

Algorithms for **very large** datasets that arrive **one piece at a time**.

Very large datasets being ones (much) too large to fit in memory.

One piece at a time meaning that we are given the dataset as a sequence of updates.

Examples

- Calculating traffic statistics on a router.
- Estimating properties of a large social networking graph given as a sequence of friendships.

Primary quantity of interest is *space complexity*.

An algorithm that maintains a *quantum* state as it processes the stream.

An algorithm that maintains a *quantum* state as it processes the stream.

- [Le Gall '06] Can require exponentially less space than classical algorithms (but for a contrived problem).

An algorithm that maintains a *quantum* state as it processes the stream.

- [Le Gall '06] Can require exponentially less space than classical algorithms (but for a contrived problem).
- [Montanaro '16] Quantum advantage for moment estimation with many ($\omega(1)$) passes over the input.

An algorithm that maintains a *quantum* state as it processes the stream.

- [Le Gall '06] Can require exponentially less space than classical algorithms (but for a contrived problem).
- [Montanaro '16] Quantum advantage for moment estimation with many ($\omega(1)$) passes over the input.

In this talk: a quantum advantage for a natural one-pass streaming problem.

Quantum-Classical Separations

We need two things.

We need two things.

- A classical lower bound that does not generalize to the quantum setting.

We need two things.

- A classical lower bound that does not generalize to the quantum setting.
- A quantum algorithm that beats it.

5 Triangle Counting

One problem satisfying the first criterion: counting triangles in graph streams.

One problem satisfying the first criterion: counting triangles in graph streams.

- [K., Price '17] Tight classical bounds (in some parameter regimes) from the *Boolean Hidden Matching* problem.

One problem satisfying the first criterion: counting triangles in graph streams.

- [K., Price '17] Tight classical bounds (in some parameter regimes) from the *Boolean Hidden Matching* problem.
- [Gavinsky, Kempe, Kerenidis, Raz, Wolf '07] BHM *exponentially* separates quantum and classical one-way communication complexity.

6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).

6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).

$$T = 0$$

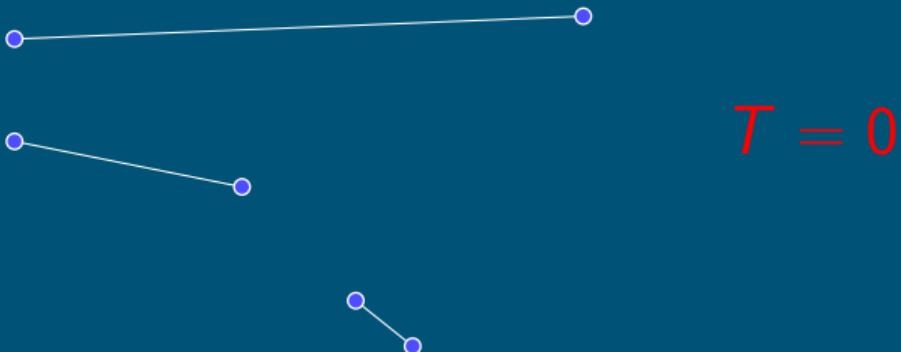
6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).

$$T = 0$$

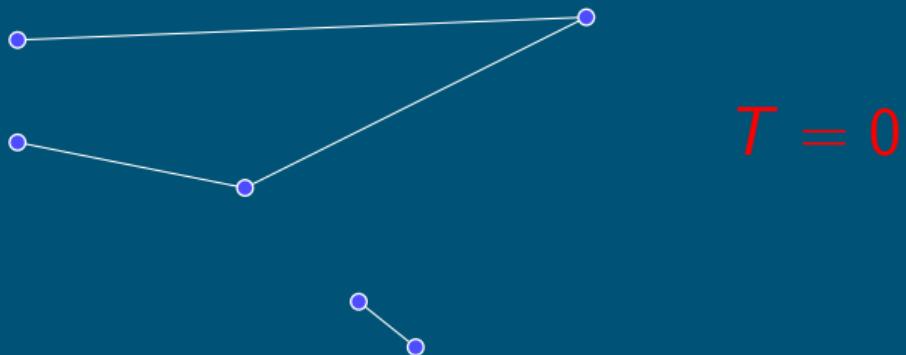
6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



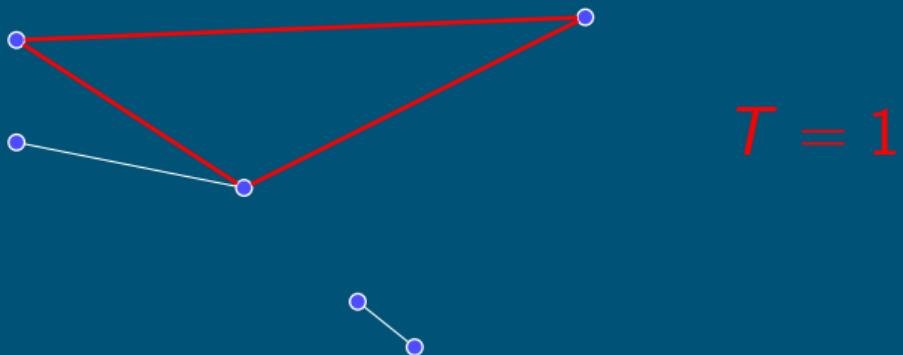
6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



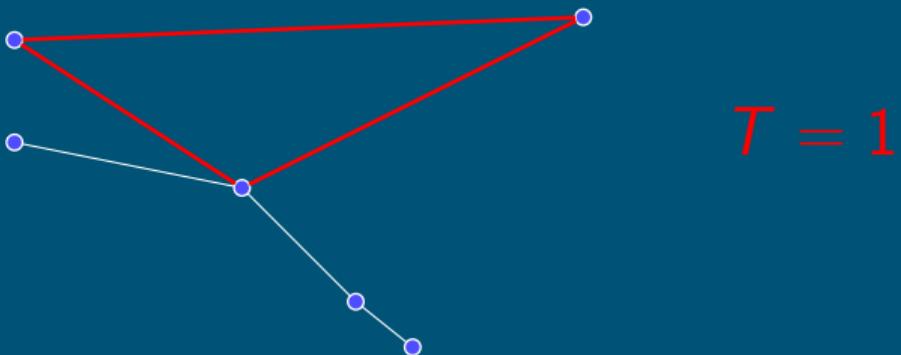
6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



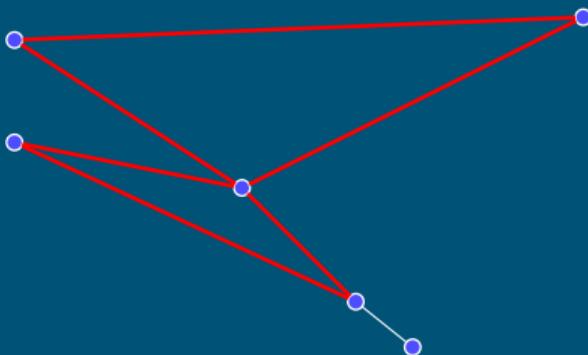
6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



6 Triangle Counting

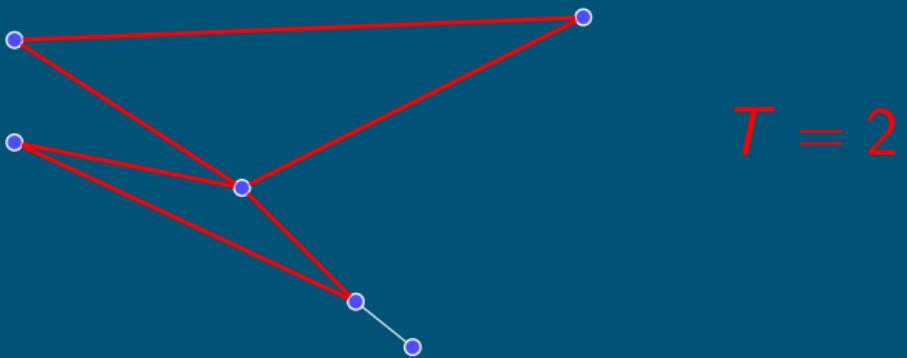
Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



$$T = 2$$

6 Triangle Counting

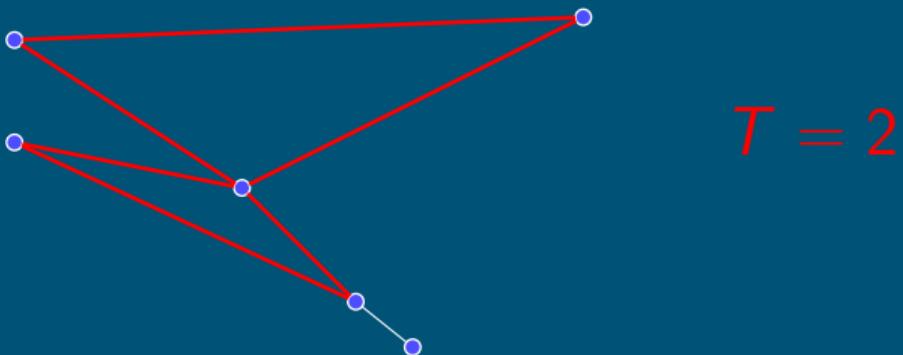
Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



- [Braverman, Ostrovsky, Vilenchik '13] Non-trivial results require parametrization even if $T = \Omega(m)$.

6 Triangle Counting

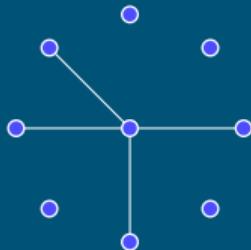
Given a graph as a stream of edges, estimate the number of triangles (three-cliques).



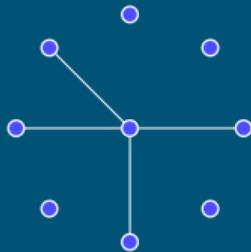
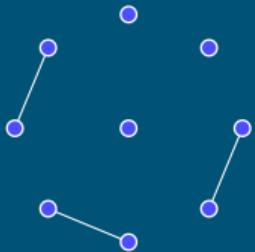
- [Braverman, Ostrovsky, Vilenchik '13] Non-trivial results require parametrization even if $T = \Omega(m)$.
- For this talk assume m edges, $T = \Theta(m)$ edge-disjoint triangles.

Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.

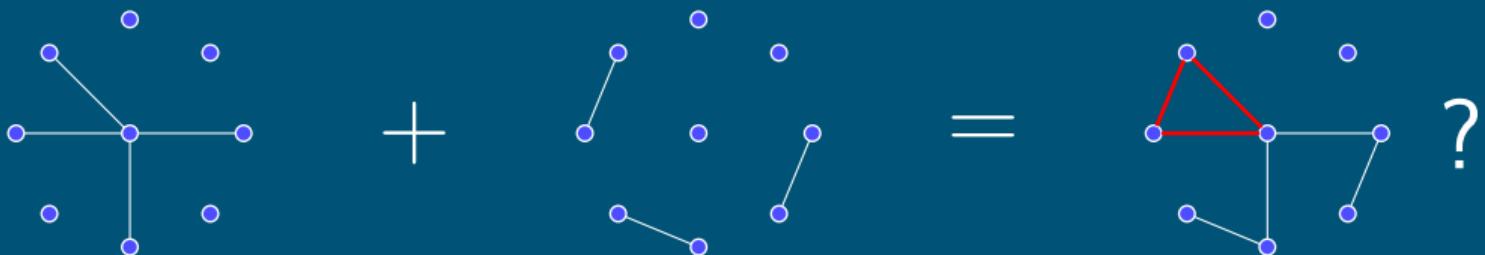
Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.



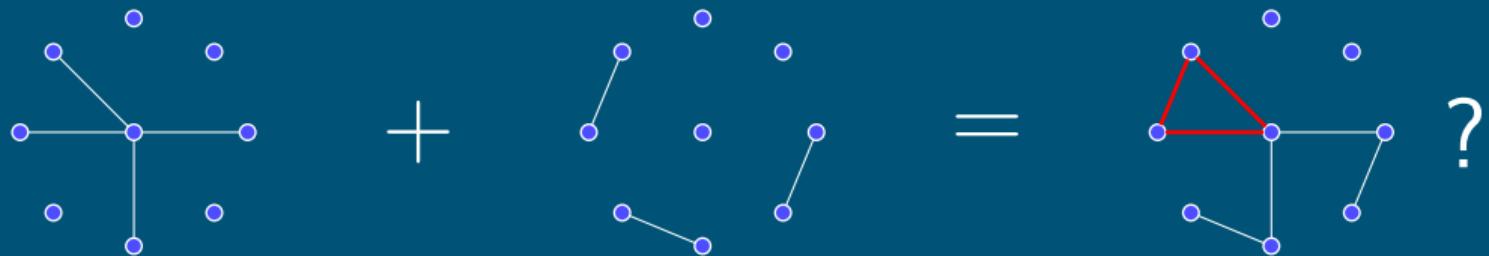
Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.



Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.

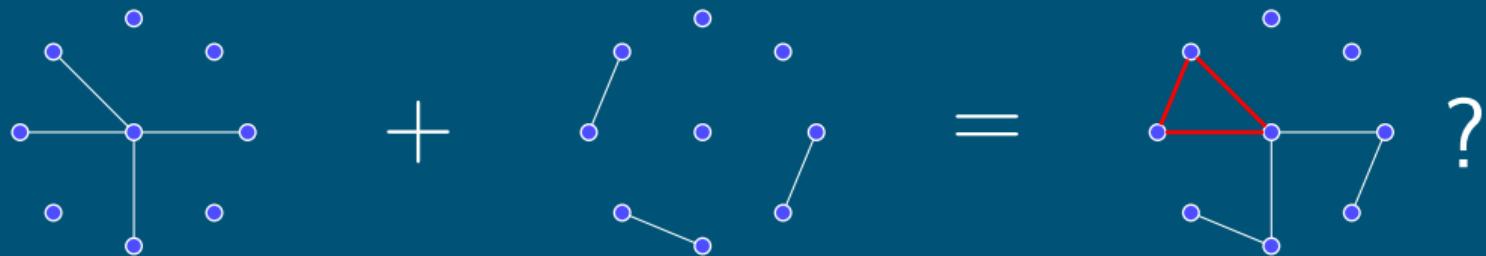


Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.



- Intuitively: if we keep k star edges, we have a $\sim T \times \left(\frac{k}{m}\right)^2 = \frac{k^2}{m}$ chance of getting both edges of at least one of $T = \Theta(m)$ triangles, so we need \sqrt{m} samples.

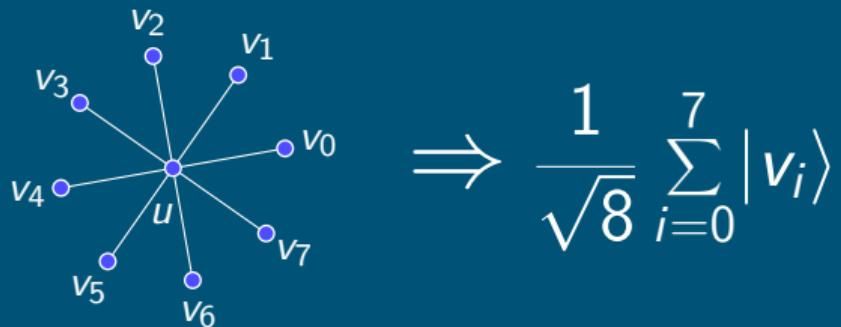
Reducing from BHM gives an $\Theta(m)$ -star with triangles (possibly) completed by a matching.



- Intuitively: if we keep k star edges, we have a $\sim T \times \left(\frac{k}{m}\right)^2 = \frac{k^2}{m}$ chance of getting both edges of at least one of $T = \Theta(m)$ triangles, so we need \sqrt{m} samples.
- Reduction extends this to general (classical) algorithms.

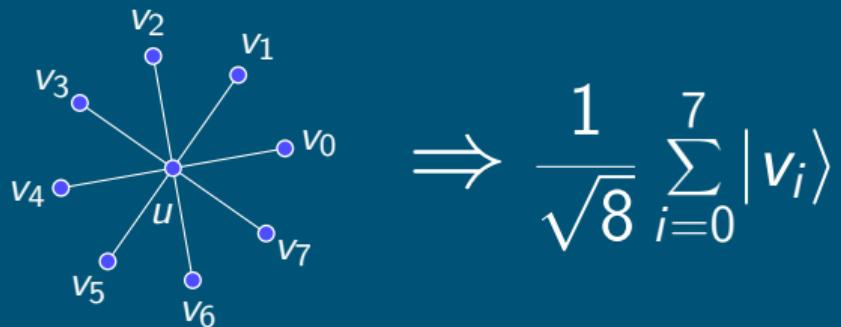
Consider the two-player version of the problem: Alice has the star, Bob the matching.

Consider the two-player version of the problem: Alice has the star, Bob the matching.



Alice prepares a superposition over the “spokes” of her star and sends it to Bob.

Consider the two-player version of the problem: Alice has the star, Bob the matching.



Alice prepares a superposition over the “spokes” of her star and sends it to Bob.

$$v \bullet \xrightarrow{\hspace{1cm}} w \Rightarrow \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}}$$

Bob measures with $(|v\rangle + |w\rangle)/\sqrt{2}$ and $(|v\rangle - |w\rangle)/\sqrt{2}$ for each vw in matching.

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |v\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |v\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |v\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Then $\mathbb{E}[X] = 2T/m$. Why?

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |vw\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Then $\mathbb{E}[X] = 2T/m$. Why?

- If uvw is a triangle, $\frac{|v\rangle + |w\rangle}{\sqrt{2}}$ appears with probability $2/m$.

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |vw\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Then $\mathbb{E}[X] = 2T/m$. Why?

- If uvw is a triangle, $\frac{|v\rangle + |w\rangle}{\sqrt{2}}$ appears with probability $2/m$.
- Otherwise, both basis vectors from vw equally likely.,

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |v\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Then $\mathbb{E}[X] = 2T/m$. Why?

- If uvw is a triangle, $\frac{|v\rangle + |w\rangle}{\sqrt{2}}$ appears with probability $2/m$.
- Otherwise, both basis vectors from vw equally likely.,
- $\text{Var}(X) = O(1)$, so $O(m^2/T^2) = O(1)$ repeats suffice to estimate T .

Measuring $\frac{1}{\sqrt{d_v}} \sum_{w \in N(u)} |v\rangle$ in the basis $\left\{ \frac{|v\rangle + |w\rangle}{\sqrt{2}}, \frac{|v\rangle - |w\rangle}{\sqrt{2}} : vw \in M \right\}$.

Let $X = \begin{cases} 1 & \text{if measurement returns } \frac{|v\rangle + |w\rangle}{\sqrt{2}} \\ -1 & \text{if measurement returns } \frac{|v\rangle - |w\rangle}{\sqrt{2}} \\ 0 & \text{otherwise.} \end{cases}$

Then $\mathbb{E}[X] = 2T/m$. Why?

- If uvw is a triangle, $\frac{|v\rangle + |w\rangle}{\sqrt{2}}$ appears with probability $2/m$.
- Otherwise, both basis vectors from vw equally likely.,
- $\text{Var}(X) = O(1)$, so $O(m^2/T^2) = O(1)$ repeats suffice to estimate T .
- Gives a $O(\log m)$ qubit protocol.

Towards an Algorithm

We need two things for an actual algorithm:

We need two things for an actual algorithm:

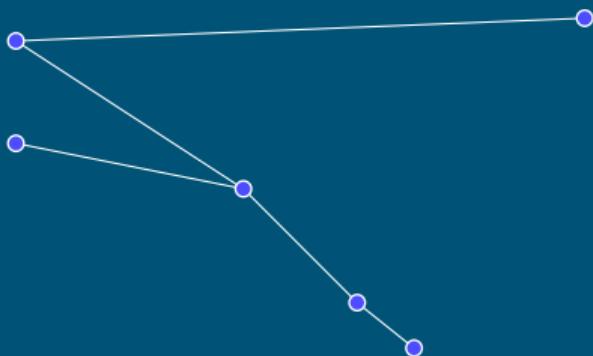
- Generalize to Alice and Bob holding arbitrary graphs.

We need two things for an actual algorithm:

- Generalize to Alice and Bob holding arbitrary graphs.
- Go from two player protocol to full streaming.

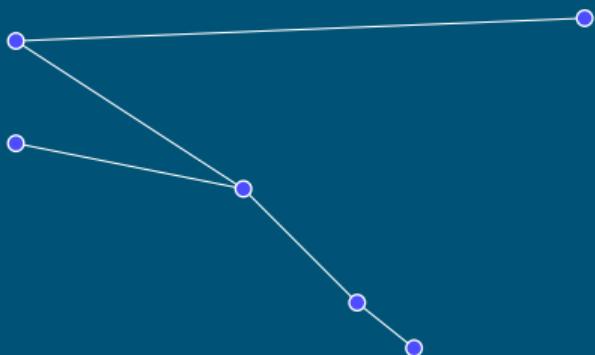
Generalizing the Graph: Alice

Now let Alice have a general graph that Bob might somehow complete to triangles.



Generalizing the Graph: Alice

Now let Alice have a general graph that Bob might somehow complete to triangles.

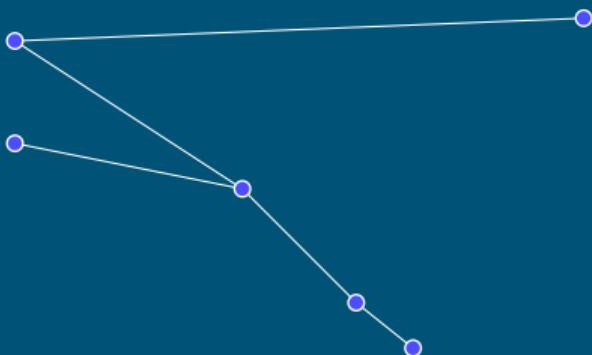


$$\Rightarrow \frac{1}{\sqrt{2m}} \sum_{u \in V} \sum_{v \in N(u)} |uv\rangle$$

- We now construct a superposition over the neighborhood of *every* vertex.

Generalizing the Graph: Alice

Now let Alice have a general graph that Bob might somehow complete to triangles.



$$\Rightarrow \frac{1}{\sqrt{2m}} \sum_{u \in V} \sum_{v \in N(u)} |uv\rangle$$

- We now construct a superposition over the neighborhood of *every* vertex.
- For each of Bob's edges vw we now measure with the basis vectors $\frac{|uv\rangle + |uw\rangle}{\sqrt{2}}, \frac{|uv\rangle - |uw\rangle}{\sqrt{2}}$ for every $u \in V$.

Generalizing the Graph: Bob

But what if Bob doesn't have a matching?

Generalizing the Graph: Bob

But what if Bob doesn't have a matching?

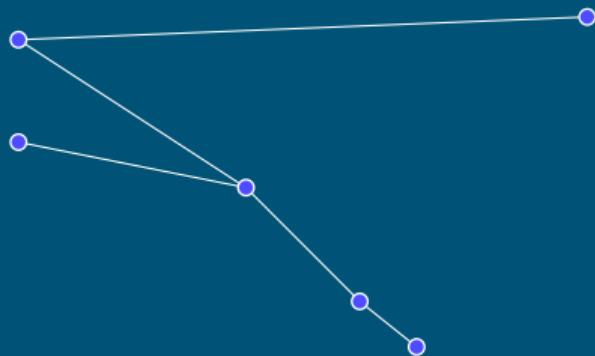
Generalizing the Graph: Bob

But what if Bob doesn't have a matching?

$$\begin{array}{ccc} u \bullet & \diagdown & \bullet w \\ & v \bullet & \diagup \\ & \diagdown & \end{array} \Rightarrow \frac{|u\rangle + |v\rangle}{\sqrt{2}} \neq \frac{|v\rangle + |w\rangle}{\sqrt{2}}$$

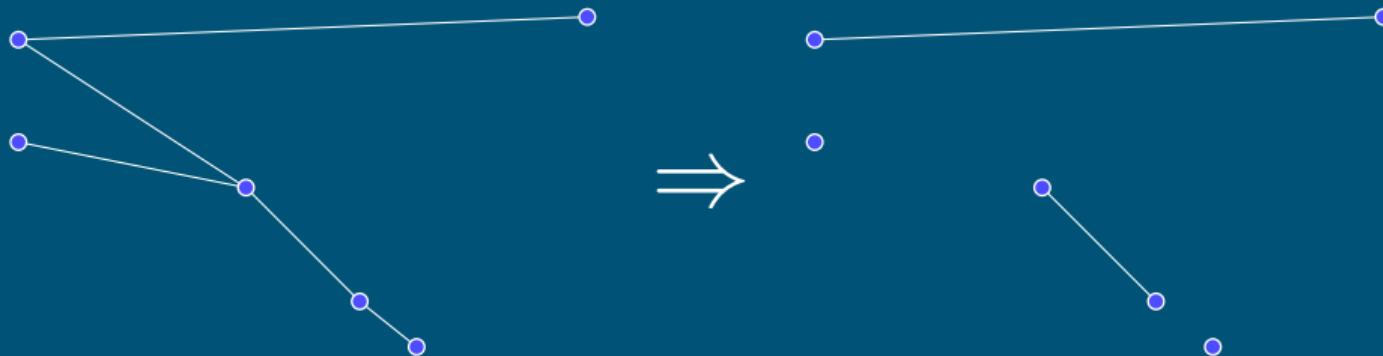
Now the basis vectors generated are no longer orthogonal.

If Bob's graph has max degree d , we can subsample with probability $\Theta(1/d)$.

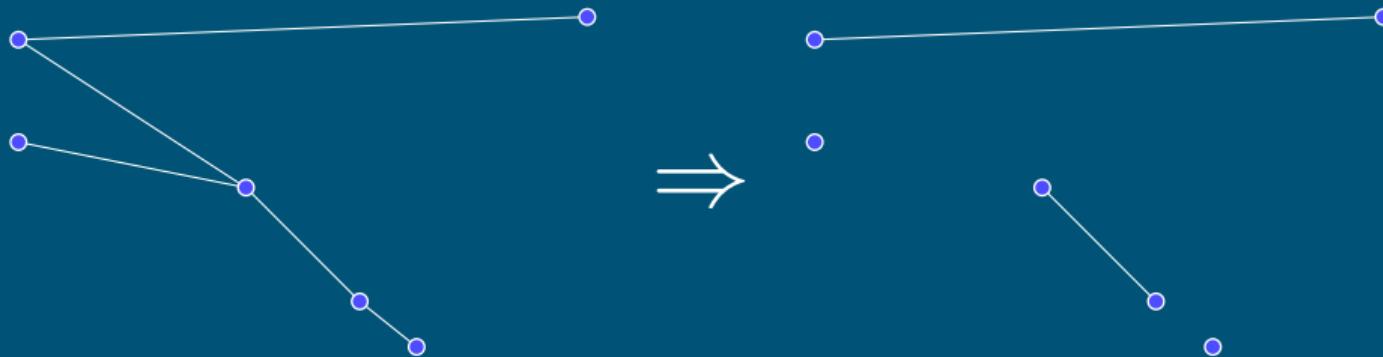


Subsampling

If Bob's graph has max degree d , we can subsample with probability $\Theta(1/d)$.

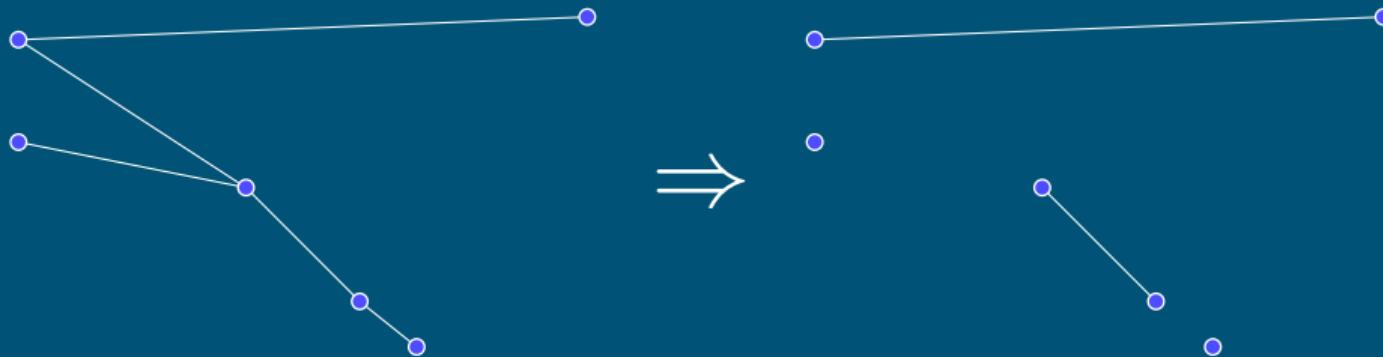


If Bob's graph has max degree d , we can subsample with probability $\Theta(1/d)$.



- The expectation of our estimator is now $2T/md$, so we need d^2 as many repeats.

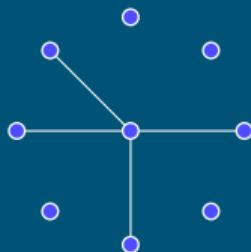
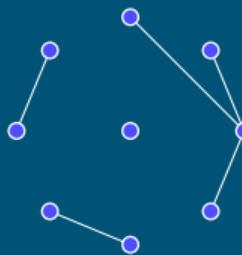
If Bob's graph has max degree d , we can subsample with probability $\Theta(1/d)$.



- The expectation of our estimator is now $2T/md$, so we need d^2 as many repeats.
- Not very helpful if d is unbounded.

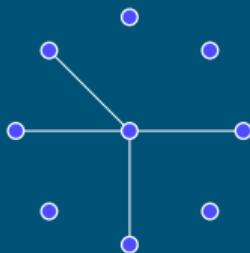
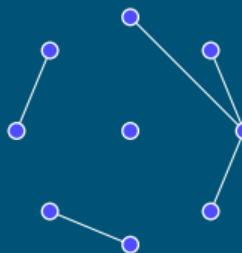
How Much do High-Degree Vertices Matter?

Consider the original “hard case” but with Bob possibly having higher degree vertices.



How Much do High-Degree Vertices Matter?

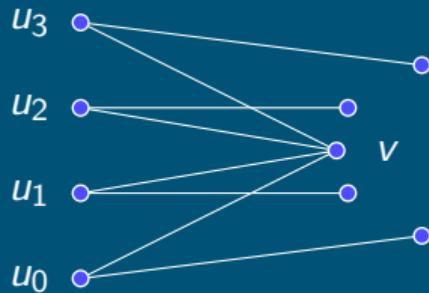
Consider the original “hard case” but with Bob possibly having higher degree vertices.



If all of the potential triangles are in one star Alice holds, at most a few of them are incident to Bob's high degree vertices.

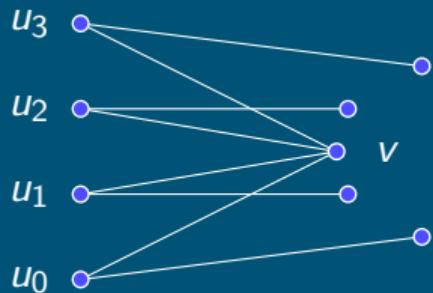
Interpolating

For more triangles to involve Bob's high degree vertices (here v), they must be split among more of Alice's vertices (here u_i).



Interpolating

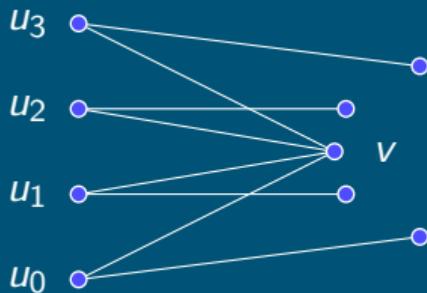
For more triangles to involve Bob's high degree vertices (here v), they must be split among more of Alice's vertices (here u_i).



- But this makes counting them *classically* easier!

Interpolating

For more triangles to involve Bob's high degree vertices (here v), they must be split among more of Alice's vertices (here u_i).



- But this makes counting them *classically* easier!
- Interpolating gives us an $m^{2/5}$ (instead of \sqrt{m}) space algorithm.

Making a Streaming Algorithm

- Treat every edge as both an “Alice” edge and a “Bob” edge.

- Treat every edge as both an “Alice” edge and a “Bob” edge.
- Prepare the “Alice” superposition $\frac{1}{\sqrt{2m}} \sum_{u \in V} \sum_{v \in N(u)} |uv\rangle$ by starting with a superposition over $2m$ “dummy” variables and swapping when an edge arrives.

- Treat every edge as both an “Alice” edge and a “Bob” edge.
- Prepare the “Alice” superposition $\frac{1}{\sqrt{2m}} \sum_{u \in V} \sum_{v \in N(u)} |uv\rangle$ by starting with a superposition over $2m$ “dummy” variables and swapping when an edge arrives.
- Perform the “Bob” measurement one edge at a time by measuring with three projectors, onto $\text{span}(\{|uv\rangle + |uw\rangle\}_{u \in V})$, $\text{span}(\{|uv\rangle - |uw\rangle\}_{u \in V})$ and the remaining space, whenever an edge vw arrives.

- Treat every edge as both an “Alice” edge and a “Bob” edge.
- Prepare the “Alice” superposition $\frac{1}{\sqrt{2m}} \sum_{u \in V} \sum_{v \in N(u)} |uv\rangle$ by starting with a superposition over $2m$ “dummy” variables and swapping when an edge arrives.
- Perform the “Bob” measurement one edge at a time by measuring with three projectors, onto $\text{span}(\{|uv\rangle + |uw\rangle\}_{u \in V})$, $\text{span}(\{|uv\rangle - |uw\rangle\}_{u \in V})$ and the remaining space, whenever an edge vw arrives.
- Now for each triangle the third edge to arrive will act as a “Bob edge” and the first two as “Alice edges”.

Theorem (Informal)

There is a quantum streaming algorithm that uses

$$O\left(\frac{m^{8/5}}{T^{6/5}} \Delta_E^{4/5} \log n \cdot \frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$$

space to (ε, δ) -count triangles in the stream, where m is the number of edges, T the number of triangles, and Δ_E the greatest number of triangles sharing any given edge.

Theorem (Informal)

There is a quantum streaming algorithm that uses

$$O\left(\frac{m^{8/5}}{T^{6/5}} \Delta_E^{4/5} \log n \cdot \frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$$

space to (ε, δ) -count triangles in the stream, where m is the number of edges, T the number of triangles, and Δ_E the greatest number of triangles sharing any given edge.

- Compared with $\tilde{O}\left(m\left(\frac{\Delta_E}{T} + \frac{1}{\sqrt{T}}\right)\right)$ for classical, up to $m^{2/5}$ v. \sqrt{m} separation.

Theorem (Informal)

There is a quantum streaming algorithm that uses

$$O\left(\frac{m^{8/5}}{T^{6/5}} \Delta_E^{4/5} \log n \cdot \frac{1}{\varepsilon^2} \log \frac{1}{\delta}\right)$$

space to (ε, δ) -count triangles in the stream, where m is the number of edges, T the number of triangles, and Δ_E the greatest number of triangles sharing any given edge.

- Compared with $\tilde{O}\left(m\left(\frac{\Delta_E}{T} + \frac{1}{\sqrt{T}}\right)\right)$ for classical, up to $m^{2/5}$ v. \sqrt{m} separation.
- Best lower bound for quantum is $\Omega\left(\frac{m\Delta_E}{T}\right)$. Is exponential separation possible?