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2 Streaming Algorithms

Algorithms for very large datasets that arrive one piece at a time.

Very large datasets being ones (much) too large to fit in memory.
One piece at a time meaning that we are given the dataset as a sequence of updates.
Examples

Calculating traffic statistics on a router.
Estimating properties of a large social networking graph given as a sequence of
friendships.

Primary quantity of interest is space complexity.
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3 Quantum Streaming Algorithms

An algorithm that maintains a quantum state as it processes the stream.

[Le Gall ‘06] Can require exponentially less space than classical algorithms (but for
a contrived problem).
[Montanaro ‘16] Quantum advantage for moment estimation with many (ω(1))
passes over the input.

In this talk: a quantum advantage for a natural one-pass streaming problem.
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A classical lower bound that does not generalize to the quantum setting.
A quantum algorithm that beats it.
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5 Triangle Counting

One problem satisfying the first criterion: counting triangles in graph streams.

[K., Price ‘17] Tight classical bounds (in some parameter regimes) from the
Boolean Hidden Matching problem.
[Gavinsky, Kempe, Kerenidis, Raz, Wolf ‘07] BHM exponentially separates
quantum and classical one-way communication complexity.
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6 Triangle Counting

Given a graph as a stream of edges, estimate the number of triangles (three-cliques).

T = 0T = 1T = 2

[Braverman, Ostrovsky, Vilenchik ‘13] Non-trivial results require parametrization
even if T = Ω(m).
For this talk assume m edges, T = Θ(m) edge-disjoint triangles.
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7 Hard Case

Reducing from BHM gives an Θ(m)-star with triangles (possibly) completed by a
matching.

+ = ?

Intuitively: if we keep k star edges, we have a ∼ T ×
(

k
m

)2
= k2

m chance of getting
both edges of at least one of T = Θ(m) triangles, so we need

√
m samples.

Reduction extends this to general (classical) algorithms.
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8 Quantum Idea

Consider the two-player version of the problem: Alice has the star, Bob the matching.

u

v0

v1
v2

v3

v4

v5 v6

v7

⇒ 1√
8

7∑
i=0
|vi〉

Alice prepares a superposition over the “spokes” of her star and sends it to Bob.

v
w ⇒ |v〉+ |w〉√

2
,
|v〉 − |w〉√

2

Bob measures with (|v〉+ |w〉)/
√
2 and (|v〉 − |w〉)/

√
2 for each vw in matching.
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9 Quantum Idea

Measuring 1√
dv

∑
v∈N(u)|v〉 in the basis

{
|v〉+|w〉√

2 , |v〉−|w〉√
2 : vw ∈ M

}
.

Let X =


1 if measurement returns |v〉+|w〉√

2
−1 if measurement returns |v〉−|w〉√

2
0 otherwise.

Then E [X ] = 2T/m. Why?
If uvw is a triangle, |v〉+|w〉√

2 appears with probability 2/m.
Otherwise, both basis vectors from vw equally likely.,
Var(X ) = O(1), so O

(
m2/T 2) = O(1) repeats suffice to estimate T .

Gives a O(log m) qubit protocol.
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11 Generalizing the Graph: Alice

Now let Alice have a general graph that Bob might somehow complete to triangles.

⇒ 1√
2m

∑
u∈V

∑
v∈N(u)

|uv〉

We now construct a superposition over the neighborhood of every vertex.
For each of Bob’s edges vw we now measure with the basis vectors
|uv〉+|uw〉√

2 , |uv〉−|uw〉√
2 for every u ∈ V .
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12 Generalizing the Graph: Bob

But what if Bob doesn’t have a matching?

u
v

w ⇒ |u〉+ |v〉√
2

6⊥ |v〉+ |w〉√
2

Now the basis vectors generated are no longer orthogonal.



12 Generalizing the Graph: Bob

But what if Bob doesn’t have a matching?

u
v

w

⇒ |u〉+ |v〉√
2

6⊥ |v〉+ |w〉√
2

Now the basis vectors generated are no longer orthogonal.



12 Generalizing the Graph: Bob

But what if Bob doesn’t have a matching?

u
v

w ⇒ |u〉+ |v〉√
2

6⊥ |v〉+ |w〉√
2

Now the basis vectors generated are no longer orthogonal.



13 Subsampling

If Bob’s graph has max degree d , we can subsample with probability Θ(1/d).

⇒

The expectation of our estimator is now 2T/md , so we need d2 as many repeats.
Not very helpful if d is unbounded.
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If all of the potential triangles are in one star Alice holds, at most a few of them are
incident to Bob’s high degree vertices.



14 How Much do High-Degree Vertices Matter?

Consider the original “hard case” but with Bob possibly having higher degree vertices.

If all of the potential triangles are in one star Alice holds, at most a few of them are
incident to Bob’s high degree vertices.



15 Interpolating

For more triangles to involve Bob’s high degree vertices (here v), they must be split
among more of Alice’s vertices (here ui).

v

u0

u1

u2

u3

v

But this makes counting them classically easier!
Interpolating gives us an m2/5 (instead of

√
m) space algorithm.
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16 Making a Streaming Algorithm

Treat every edge as both an “Alice” edge and a “Bob” edge.

Prepare the “Alice” superposition 1√
2m
∑

u∈V
∑

v∈N(u)|uv〉 by starting with a
superposition over 2m “dummy” variables and swapping when an edge arrives.
Perform the “Bob” measurement one edge at a time by measuring with three
projectors, onto span({|uv〉+ |uw〉}u∈V ), span({|uv〉 − |uw〉}u∈V ) and the
remaining space, whenever an edge vw arrives.
Now for each triangle the third edge to arrive will act as a “Bob edge” and the
first two as “Alice edges”.
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17 Conclusion

Theorem (Informal)
There is a quantum streaming algorithm that uses

O
(

m8/5

T 6/5 ∆4/5
E log n · 1

ε2 log 1
δ

)

space to (ε, δ)-count triangles in the stream, where m is the number of edges, T the
number of triangles, and ∆E the greatest number of triangles sharing any given edge.

Compared with Õ
(
m
(

∆E
T + 1√

T

))
for classical, up to m2/5 v.

√
m separation.

Best lower bound for quantum is Ω
(

m∆E
T

)
. Is exponential separation possible?
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