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Phases of Matter
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Microscopic View of a Solid
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Superconductivity
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The discovery of superconductivity
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A terse entry for 8 April 1911 in Heike Kamerlingh Onnes’s
notebook 56 records the first observation of @ go25 - :
WERKKAMER E. Heike Kamer"ngh Onnes superconductivity, “Mercury[’s resistance] practically zero \ o5 g
[at 3 K].”
0,00
400 10 %0 % 40

o 1908 Liquification of helium

o 1910 Interest in the low temperature of solids growing
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Temperature in Platinum Degrees.
Note: Theories Pre-dates Quantum Mechanics

s ' o 1911 “Mercury Practically Zero!”,
T 1 y
3, | Kelvin j The discovery of superconductivity in Hg
é 20,000 T /

[} .u(‘}

\ 4 Mes . . .

Jogoo-- 5M When you find a metal cool it and graph it!
----'j;-*"lﬁﬂheissen
P Dewar
- 283° - 200° —/00+° 0° + /00°

K. Gavroglu. Ann. Phys. (Berlin) 524, No. 3—4, A61-A64 (2012)
Comm. Leiden. April 28, 1911; Comm. Leiden. May 27, 1911; Comm. Leiden. November 25, 1911.

Dirk van Delft and Peter Kes. Physics Today 63 (9), 38—43 (2010)

Tulane University, September 18, 2023
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Other superconducting Properties

1911 Heike Kamerlingh Onnes discovers superconductivity in Hg.

1913 Nobel Prize in Physics 1913 “for his investigations on the
properties of matter at low temperatures which led, inter alia, to the

production of liquid helium” %
1914 Observation of Persistent Currents |

e

T

1933 Walther Meil3ner and Robert Ochsenfeld finds a
superconductor completely expels magnetic fields (Perfect
Diamagnetism)

1935 Phenological Model by F. London and H. London

Type-I Superconductivity
B B

A

T>Tc T<Tc

I

Type-Il Superconductivity Tc

F. London and H. London. Proc. R. Soc. Lond. A14971-88 (1935)

Rjabinin, J. N. and Schubnikow, L.W. Physikalische Zeitschrift der Sowjetunion, 7(1), 122-125 (1935)

A. Shepelev and D. Larbalestier. The discovery of type Il superconductors Cern Courier 25 October (20/1‘;)5

1935 Discovery of Partial expulsion at higher fields in alloys
J.N. Rjabinin and L. Shubnikov
Meissner Effect Flux Pinning
Citent Flux quantum
- VA
« ,‘ Tl A :’
Superconductor
Magnetic flux Magnetic flux
Los Alamos Tulane University, September 18, 2023
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Application of Superconductors

-

Superconducting cable (left) the heart of the magnets for the LHC ét CERN
(right), where experiments found the Higgs boson.

MRI

Cable Assembly —— 2
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>~
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Nitrogen -
Dielec{ric
HTS Return—
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e o
. . \J
Superconducting Maglev trains HTS Conductor

Transmission Lines

= Currently used in: Holbrook, Long Island;
‘Q Los Alamos Tulane University, September 18, 2023 Essen, Germany; Albany, New York
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Finding new Superconducting Materials

OO oo <Room
Temperature

250
200
150 o

.............................................................................. 4...]-.4.1.(11}.1.91..CF4 John Hulm Bernd Matthias
100

.............................................................................. .<.. ‘ y .
% Liquid N, Rules’ For High-Tc:

 Metals. Must have d-electrons
(not just s, p, not f)

Critical Temperature T, [K]

40
* High symmetry is good, cubic is best.
30 » Look for the right filling -- peak in the density
Liquid H, of states at the Fermi level
20 [ g « Stay away from oxides
" « Stay away from magnetism
_____ & N Liquid He » Stay away from Theorists!

0 Hg | |
1900 1940 1980 1985

https://en.wikipedia.org/wiki/High-temperature_superconductivity

~ Y
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Attempts to Understand the Origin of Superconductivity

Failed Theories of Superconductivity

Albert Einstein Niels Bohr Ralph Kronig ' z 3 .
(1879-1955) (1885-1962) (1905-1995) John Bardeen Werner Heisenberg Fritz London

(1908-1991) (1901-1976) (1900-1954)

——
"
= y

¥

" Herbert Frohlich Richard Feynman
Lev D. Landau Felix Bloch i&ori Briliciin M BoR (1905-1991) (1918-1988)
(1908:1968) (190571983} (1889 -1969) (1882-1970)
416
. . . . . a5k
Hints to the problem: Zero Resistance, Perfect Diamagnetism, Isotope Effect -
: 414
413
412 1 1 1
J. Schmalian. Modern Physics Letters B, 24(27), 2679-2691 (2012) [arXiv:1008.0447] 199 200 201 202 203 204
C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, Physical Review 78, 487 (1950) Hg’ atomic mass

E. Maxwell, Physical Review 78, 477 (1950); ibid. 79, 173 (1950).
NS
‘:Q Los Alamos Tulane University, September 18, 2023
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Theoretical Explanation of Superconductivity

BCS Theory of Superconductivity

Theory of Superconductivity*
]luu-n.l.ncmlnnll.smml
inois, Urbass, [Bissis

. ) John Léon Robert
* Theory builds on: Sommerfeld model of electrons in Bardeen Cooper Schrieffer

solids. Fermi Surface. Landau Fermi Liquid Theory. Nobel Prize in Physics 1972 é

* In spite of the repulsive Coulomb interaction, electrons of
opposite momenta bind in pairs, because electrons
R v polarize the crystal lattice
m”“m:h;‘m%%:ﬁ © ©0006606606 60

—- —@

cocoo e ©90g

omenological theoey of the clectromagnetic prop-  energy «(K) defined by wave vector k and spin «; in
eties in which the diamagnetic aspects were assumed  the ground state all levels with energies below the
4

ermi energy, 8,
Tl vk was wopcrtd n prt by e Ofce of Ontmance  unoccupied. Laf out ofthe Bloch model are
m;”-&“":_w e Wocks P, between electrons brought about by Coulomb forces
7

Farned e
e i et ol e ta for & PAD. degree = (or phonons).

Jambon, Obs b v. Proc_ oy, Soc. (Londos) AL, 24 (1989);
]

Lattice of superconducting material

O B O i i 0 P Al
Pt i 0 L TRy et a0 omn. honon
_;,;—mm_m‘ o e e p © 0606066066060 0
1mis
he BCS paper, published in Physical
Review on 1 December 1957. & % S 0o f
- ‘ / (+]
e ® ° ° o
g © 1 “ o ‘o
- / @ o
Steven Weinberg From BCS to the LHC Cern Courier 21 January (2008) BEC of Molecules Crossover Superfluid BCS state

J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Phys. Rev. 108, 1175 (1957)
https://www.insidescience.org/news/superconducting-dance-electron-pairs

~ Y
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The Pair Wave Function

Atomic Wave functions

‘/’(Te_rp)m # " )ﬂ
. P,

Cooper pair Wave functions

In a superconductor electrons pair and all pairs
occupy the same quantum state. Symmetries of the
superconducting ( )
order parameter
. L UDRY = 1)) .

Lp(k, L, _k,]) \/i Singlet * $ s-wave

Hydrogen Ator?ws under Magnification R,(mm)

p-wave (p,)  (p,+ip,) d-wave (d 2.2)

original BCS high-T.s
L ]
Even I Even
l{J(k, i;— k, ])|T)|T) Triplet + ) * Parity Odd Parity Parity

The relative phase of the
wavefunction of two

superconductors can be measured! 8

Josephson Effect

H. Kim et al.Science advances, 4(4), eaao4513. (2018) Nobel Prize in Physics 1973 {225
A.S. Stodolna, et al. Phys. Rev. Lett. 110, 213001 (2013)

= Brian
S Los Alamos Tulane University, September 18, 2023 Josephson
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Superconducting Gap Function

A superconductor has a gap A;(k), which is simple related to
the superconducting order parameter

2 201/
Ai(k) = _ZVik,jk’ i) tanh T T. = 1-13(01)3_1/?[(0)‘/
e 2\[ G + 85 () ’ DOS at
Fermi level

* One band case (one Fermi surface): pairing instability requires effective attractive
interaction, i.e. phonons

* Multiple bands (multiple Fermi Sheets): pairing can result from attraction or
repulsion among the bands

* Theory was almost universally accepted. Properties that were measured the
theory could explain, and it could predict many experiments using only a small
set of parameters.

Calculated Gap function in NbS,

» ltis rigorous and builds on top of a successful theory of the normal state.

H. Suhl, B. T. Matthias, and L. R. Walker Phys. Rev. Lett. 3, 552 (1959)
Christoph Heil, et al. Phys. Rev. Lett. 119, 087003 (2017)

‘:Q Los Alamos Tulane University, September 18, 2023 13 ﬂ?/
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Slow down in the 70s and early 80s... _

OO oo Room |
Temperature
250 “« .
BCS tells us everything but

200 finds us nothing
150 o

.............................................................................. 4...]-.4.1.C.11.1.1.§.1..CF4 Bernd Matthias
100

g AU No V.L. Ginzburg and D.A. Kirzhnts, On the problem of igh temp ducrvty s
50 1. Introduction

The critical temperature T, of known superconductors does not exceed 20—21°K. Using tra-
d'tional ways for choosing new alloys one can hope to raise this temperature by 5--10°. This.

Critical Temperature T, [K]

40 ; f T .
Ginzburg
AUl S v).induced usto consider it once again - Nobel Prize in
30 Nb.Ge Physics 2003
3
20 (@) Liquid H, 21. Is THERE A MAXIMUM T,?
. As of January 1982, there has been a maximum 7, of ~23°K for the
V;Si last 8 years.'®* This represents a normal fluctuation in the steady trend of
10 the 3°K increase of T, per decade'®’ that has occurred since 1911. However,
BCS Theo L. the investment of manpower and money in the last decade has been large - I il
lry<qudee and the results disappointing. Nevertheless, it is clearly dangerous to assert'®¢ PB ‘
0 Hg | | | that T is saturating at a maximum. Two different sensible arguments were = B
1900 1940 1980 1985 advanced in the past'>'®’ to set a limit for T, and each was later shown to Allen Mitrc;vi &
V.L. Ginzburg and D.A. Kirzhnits Physics Reports 4 (7), 343-356 (1972) be wrong *!% Meanwhile the maximum 7. jumped 3°K.

P.B. Allen and B. Mitrovi¢ Solid State Physics 37, 1-92 (1983)
S8
‘:9 Los Alamos Tulane University, September 18, 2023
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A Sudden Breakthrough...

P l & \
J. Georg
Bednorz

Nobel Prize in Physics 1987 |
One of the fastest awards on record!

Room

300 | e Temperature

250

200

HgBaCaCuO @30 GPa
April ‘93
150 Feb. / Mar. ‘87 TIBaCaCuO ) <>HngBaCaCuO o
'''''''''''''''''''''''''''''''''''''''''' Jan: 88" BiSICaCuO &7 v g 1A CFy

_ ) o HgBaCaCuO
' 100 ‘ .
Do e YBaCUO Feb. ‘87 oeeeeeeerereevront Liquid N,
£ 50
©
2

40 .
§ Dec. ‘86 LaStCuO gy
= Nov. ‘86 LaBaCuO ®
2 30
E Nb;Ge BKBO
© 20 Nb3SIl

VNO V,Si
10| Pb_9
,,,,, S N L LiqudHe
Hg |

20

La,  Bay Cu Oy "J

100 200 300
Temperature (K)

0 ' l
1900 1940 1980

J.G. Bednorz and K.A. Muller Z. Phys. B 64, 189-193 (1986)
C. C. Tsuei and J. R. Kirtley. Rev. Mod. Phys. 72, 969 (2000)

%@ Los Alamos
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| | |
1985 1990 1995 2000

(g
K. Alexander
Muller

‘Violates all of Matthias’

Rules:

* Near a (Mott) insulator

« Layered Perovskite
Structure

* Is an oxide

* Near an AFM magnet

Critically: These materials do not

fall within the BCS framework.

Tulane University, September 18, 2023




March 18, 1987: Woodstock of Physics

4000
High Temperature y ; _ 3500
Superconductivity : i 3000
Symposium g o 2500
Wednesday Evening / :1%’ 2000
18 March 1987 \ ' o 1500
New York Hilton Hotel e : '
) 1000
500 I I I
. Biiiani
O N OWOVOO O - AN MITW ONOWOO O
O O O W O OO DO
2222222222222
B[ BCO Bednorzand Karl Ml er ELBCOC.W. Chu
mSCORJ.Cava ®mYBCO C.W. Chu

EBYCO RJ. Cava

The discoveries were so recent that no papers on them had been submitted by the deadline.
However, a last-minute session was added to discuss the new research.

+ Session started at 7:30pm with lines forming at 5:30pm and
finished at 3:30am

* Nearly 2,000 scientists tried to squeeze into the ballroom, with
more watching outside the room on television monitors.

+ The session consisted of a marathon of talks, given by about 50
speakers

https://www.aps.org/publications/apsnews/updates/woodstock.cfm

~ Complete Historic Session
‘:Q Los Alamos Tulane University, September 18, 2023 Available on YouTube!
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Possible Ingredients of High-Tc in the Cuprates _

» Spin-Fluctuations » CDW / Phonon Softening
o d-wave pairing near a spin-density-wave instability D. J. Scalapino, E. o CDW and SDW mediated pairing interactions. N.E. Bickers, D.J.
Loh, Jr., and J. E. Hirsch. Phys. Rev. B 34, 8190(R) (1986) Scalapino and R.T. Scalettar. Int. J. Mod. Phys. B 1, 687-695 (1987)
o  Spin-fluctuation-induced superconductivity in the copper oxides: A o  Vibronic mechanism of high-Tc superconductivity. M. Tachiki, M.
strong coupling calculation. P. Monthoux and D. Pines. Phys. Rev. Lett. Machida, and T. Egami. Phys. Rev. B 67, 174506 (2003)
69, 961 (1992) o  Competing stripe and magnetic phases in the cuprates from first-
> Plasmons / Excitons principles. Y. Zhang, C. Lane, J.W. Furness, B. Barbiellini, J.P. Perdew,
o A Cu d-d excitation model for the pairing in the high-T ¢ cuprates. W. _ R.S. Markiewicz, A Bansil, and J. Sun. PNAS, 117, 68 (2020)
Weber Zeitschrift fir Physik B Cond. Matt. 70, 323329 (1988) » Stripes and Intertwined orders
o  Landscape of coexisting excitonic states in the insulating single-layer o  Are Stripes a Universal Feature of High-Tc Superconductors? Barbara
cuprates and nickelates. C. Lane and J.-X. Zhu. Physical Review B 101, Goss Levi Physics Today 51 (6), 19-22 (1998)
155135 (2020) o  Colloquium: Theory of intertwined orders in high temperature
o  Acoustic plasmons and conducting carriers in hole-doped cuprate superconductors. Eduardo Fradkin, Steven A. Kivelson, and John M.
superconductors. A. Singh, H. Y. Huang, C. Lane, J. H. Li, J. Okamoto, Tranquada. Rev. Mod. Phys. 87, 457 (2015)
S. Komiya, R.S. Markiewicz, A. Bansil, T. K. Lee, A. Fujimori, C. T. o  The Physics of Pair-Density Waves: Cuprate Superconductors and
Chen, and D. J. Huang. Phys. Rev. B 105, 235105 (2022) Beyond. D.F. Agterberg,
» Resonating Valence Bond State J.C.S. Davis, S.D.
o  The Resonating Valence Bond State in La,CuO, and Superconductivity. Edkins, E. Fradkin, D.J. 39 £
P. W. Anderson Science 235, 1196-1198 (1987) Van Harlingen, S.A =
o A renormalised Hamiltonian approach to a resonant valence bond Kivelson, P.A. Lee, L. . o
wavefunction. F C Zhang, C Gros, T M Rice and H Shiba. Supercond. Radzihovsky, JM. o -
Sci. Technol. 1, 36 (1988) Tranquada, and Y. - 200 Qg - Fesecoos®
o A Unified Theory Based on SO(5) Symmetry of Superconductivity and Wang. 3 Teo, onee
Antiferromagnetism. S.-C. Zhang. Science 275, 1089 (1997) g i =
p'f _.p@ e ’ Charge : 1
100 (— ) order
|1 Still many open o BT
Glue _O-O‘ Vs . - NS . \\CDW Fermi
Questions! oo Y el s A
0 S | AR |
. pt —Py pmmT pal Tpczoz Pross,__
‘:9 !—gg ﬁ!gmgg Tulane University, September 18, 2023 Flole doping. p
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First-principles Ground State and Excitation Properties

80 _ (a) 1D Bond-centered, Pc=4 (b) D Sie-cnterd, P=4 " . ‘ A
2é.a;zCuO‘;: AFM Phase and Band Gap . 7&‘\ Eh 1—'—‘—'—‘—'—'—‘*’} &—¢ * 1156 = f ¢ —
V" ' ' y Q 704 S mobEg - Hapopat-fade g 780800+ s ¥0OE ¢
. """ | % LSDA and PBE: Metal = N ARl Y e S ui el S S S
L \ ' < SCAN: AFM Insulator (no U) E_ Now o +oiw e, Bt
'§ % Band Gap é ﬁg'-v/l\FM \\\ £, ?‘“Z‘Z“’@'i“z'}% §°z°§°§°§ 3°§
E o Theory: 0.98 eV @40~ZC“AFM “ u SASASASARARASES. to~ot—t—to—od
- . C'-AFM N, 5 o0 Aef A g Nef A )
T o Expt. (Optics): ~1.0 eV 2304 4 Fu S L NA = NA INE
> R . . 2 X A-AFM AN g 3 s e
g % Generalize TOhn'Sham gives ‘g 207 o 1D Bond stripe (8) 5 = S oo
= t no excitoni < @ 2D Bond stripe (2) | 3 fo opodo ot
@ fundamental gap (no excitonic % 197 o 1D site stripe (8) [ {, 2026202000
5 effects) 5 B 2D Site stripe (2) o, e 707t 2000350208
> c 0 - b 3 s @ o o @ o
= i I T T ™ 3. scuozego“oz
g 0.0 0.1 0.2 0.3 0.4 A I "ﬁ?o 5 6°o= =°=°o~
S Average magnetic moment of planar Cu (us/Cu) beg e $:2:3.8.%¢
« Ground state has many competing phases; role in superconducting glue,
Energy (6V) models of pseudogap, nematicity, temperature effects, etc.

LaxCuOg4: Magnetic Form Factor
1

. Charge-Transfer
o1 Cq % AFM state yields moments on " a
P . ole Dispersive
08 JOO @L Cu and Oz sites. wavefunction s |Excitons in
7 H . =
o6 cu ++ The predicted moment on Cu: Mott RIXST.
= i J
s QoD 0.495 uB .[Exp.. 0.48+0.15 uB] 3 dday ,*’
o S 13 | % Cu-O hybridization effects 5 -
1 1 1 1 2 0204 0608 1
02 0. intrinsically included. & Eoction oton 52 11
\ % In-plane magnetization has wavefunction
0 = quadropole form.
0 0.5 1 1.5 0.5
sin(0)/\ (1/A) ky 0.0
y 0.
Y. Zhang, C. Lane, et al. PNAS, 117, 68 (2020) r in-plane momentum X i}
C. Lane, et al. Physical Review B 98, 125140 (2018) R . '°‘_6'5 00 05
J.W. Furness,et al. Communications Physics 1, 11 (2018) « Agreement between theoretical loss kx
C. Lane and J.-X. Zhu Physical Review B 101, 155135 (2020) function for LSCO and RIXS spectra + Excitons in LCO are composed of Mott-

A. Singh, H. Y. Huang, C. Lane, et al. Physical Review B 105, 235105 (2022)

= Hubbard, d—-d, and charge-transfer types.
‘:9 !—Agﬁﬁ!gmgFﬁ Tulane University, September 18, 2023




A conventional Surprise

OO b < Room
Temperature
250
200
HgBaCaCuO @30 GPa
150 TIBaCaCuO HgTlBaCaCuO ) _ _
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, BiSICaCu0- %O<quuldCF4 + Quasi-two-dimensional layered system,
Z 100 HgBaCaCuO violate all of Matthias’ Rules
= YBaCuO < Liquid N, » Discovered by accident (searching for
0000t ]
2 o Ferromagnets)
=  Conventional, phonon mediated
S
2. 10 superconductor
é LaStCuO *  Violates Tc < 23 K
G LaBaCuO * Multicomponent order parameter, multiple
£ Nb,Ge Yo i active Fermi sheets
- 20 Nosn ©&— P - Liqid,  + Workhorse material for MRIs and the LHC
NbNO V3Sl : — Low Temperature Heat Capacities of ngnesium Diboride (MgB,) and Magnesium
10 Pb O By R Tet‘;‘ib:"‘de (l?ag: ! WhTe!
OQNb ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, <LiqUid He capacities of magnesium dihoridezzzq:j;:njgr:,l::s: :’tj:bor'de
Hg | | | | 0.06 cal. deg -t mole T opaciny of fhese eompaunch wt the Tomont vemmpersgaren s

X . The hea ese
relationship characteristic of some substances having a layer structure.

0 | | |
1900 1940 1980 1985 1990 1995 2000 2005

Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani & Jun Akimitsu Nature 410, 63—-64 (2001)
P.C. Canfield and G.W. Crabtree. Physics Today 56 (3), 34—-40 (2003)

‘:Q Los Alamos Tulane University, September 18, 2023 A \
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Should have been discovered in 1957!




Critical Temperature T, [K]
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Iron Age of Superconductivity

Structuraltransition

Nematic

HgBaCaCuO @30 GPa
TIBaCaCuO <> OHngBaCaCuO
""""""""""""""""""""""""""""""""""""" BISTCaCuQ) N Electrons
O HgBaCaCuO FeSe (monolayer)
O
» Serendipitous Discovery
MeB,  violate all of Matthias’
@}
LaSrCuO o / Rules (2D, near mag)
LaBaCuO p * Multiband system
Nb;Ge BKBO LaOFFeAs
R S Ae » e » Liquid H,
jf§5§>' V,Si
Pb )
A LS Jr Liquid He
Hg | | | | | |

0 | | |
1900 1940 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025




)

Birth of a New Age...

300 | Experimental Room
verification of Nickelate Temperature
superconductivity
250 g
200
HgBaCaCuO @30 GPa
SrTioa (001)
150 TIBaCaCuO HgTlBaCaCuO Ubstrate
BiSrCaCuO
Z 100 HgBaCaCuO FeSe (monolayer)
E‘ YBaCuO
= SrFEeA<
© Superconductivity in a Electron-doped
j§ 50 Layered Perovskite Sr2IrOs Resembles
S Without Copper Hole-doped Cuprates
a b A (O —05ML
g 40 —0.6ML
O LaSrCuO 3¢ —0.7ML
~ / 83
i LaBaCuO 3
L2 30 . s
b= Nb;Ge BKBO DFFe/
O Nb}sll ?100 -50BiasO(mV)50 100
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Electronic and magnetic properties of the Infinite-Layer Nickelat_

Superconductivity Magnetic Correlations
and Character of doped Carriers and Excitations
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Magnetic instabilities and excitations in LaNiO,
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Present State of Superconducting Materials
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Concluding Remarks

Summary/Outlook
BCS pairing theory of superconductivity is a prototypical example of a condensed

matter physics problem. It has inspired the Weinberg Salam model for Electroweak
interactions.
So far there is no quantitative theory of superconductivity in strongly correlated

materials. The limits on Tc are still unknown
Almost all known superconducting materials were found without theoretical guidance.

The next-generation of first-principles approaches is beginning to captures a more
holistic picture of correlated materials, giving way to a more quantitative theory of
materials.

Superconductivity lllustrates the Process of Scientific Discovery

Non-linear, convoluted, different from the linearity to courses and books

Knowledge builds overtime on top of previous discoveries — “There are decades where
nothing happens; and there are weeks where decades happen”.

Interplay of technical advances and scientific discovery

Open Challenges:

What is the origin of these phases of matter?

Why and and how does the transition temperature depend on specific material properties?
Can we predict/find new materials with even higher transition temperatures?

How can we move from serendipitous discovery to theoretical design of materials?

From BCS to the LHC. Steven Weinberg Int.J.Mod.Phys.A 23 1627-1635 (2008)
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