

1 **Cost and Life Cycle Analysis for Deep CO₂ Emissions Reduction of**
2 **Steelmaking: Blast Furnace-Basic Oxygen Furnace and Electric Arc**
3 **Furnace Technologies**

4 Guiyan Zang,^a Pingping Sun,^{a*} Amgad Elgowainy,^a Pallavi Bobba,^a Colin McMillan,^b Ookie Ma,^c
5 Kara Podkaminer,^c Neha Rustagi,^d Marc Melaina,^e Mariya Koleva^e

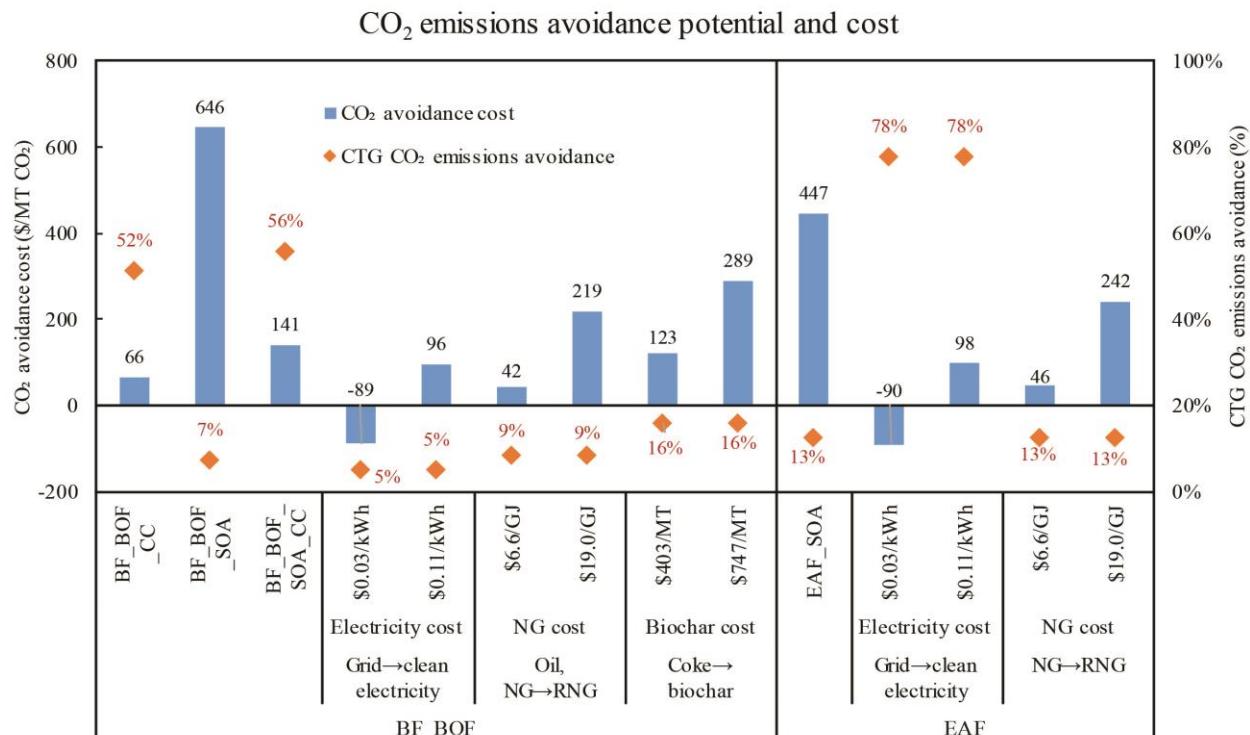
6 ^a Systems Assessment Center, Energy Systems Division, Argonne National Laboratory, 9700
7 South Cass Avenue, Lemont, Illinois 60439, United States

8 ^b National Renewable Energy Laboratory, 901 D Street SW Suite 930, Washington, DC 20024,
9 United States

10 ^c U.S. Department of Energy, Strategic Analysis, Office of Energy Efficiency and Renewable
11 Energy, 1000 Independence Ave SW, Washington, DC 20585, United States

12 ^d U.S. Department of Energy, Hydrogen and Fuel Cell Technologies Office, 1000 Independence
13 Avenue, SW Washington, DC 20585, United States

14 ^e U.S. Department of Energy, Hydrogen and Fuel Cell Technologies Office, 15013 Denver West
15 Parkway, Golden, Colorado 80401, United States


16 * Corresponding author at:

17 Tel: +630-252-8436; E-mail: psun@anl.gov

18 **ABSTRACT**

19 Iron and steel manufacturing is the largest contributor to CO₂ emissions among heavy
20 industries worldwide. This is mostly due to the use of coal in blast furnace-basic oxygen furnace
21 (BF-BOF) process for virgin (primary) steel production. The electricity generation mix used in the
22 electric arc furnace (EAF) process to recycle scrap steel also contributes to the CO₂ emission
23 associated with secondary steel production. To decarbonize iron and steel sector, we investigated
24 decarbonization options for BF-BOF and EAF processes, including energy efficiency, carbon
25 capture and storage, and the use of clean energy sources, in various BF-BOF and EAF process
26 configurations. For each decarbonization approach, we evaluated the CO₂ reduction potential via

27 life cycle analysis (LCA) and estimated the associated cost through techno-economic analysis
 28 (TEA). A typical U.S. BF-BOF for virgin steel production has a cradle-to-gate (CTG) CO₂
 29 emissions of 1,990 kg/MT steel with a leveled cost of steel (LCOS) of \$439/MT steel, while a
 30 typical U.S. EAF process for secondary steel production in the United States has a CTG CO₂
 31 emissions of 270 kg/MT steel with a LCOS of \$365/MT steel. Combining renewable energy
 32 sources and carbon capture, BF-BOF CTG CO₂ emissions can be reduced to 16 kg/MT steel, and
 33 EAF configurations can achieve similar deep reductions to reach 25 kg/MT steel. The
 34 corresponding LCOS with these decarbonization levels is estimated to increase to \$542/MT steel
 35 and \$348/MT steel, respectively. The estimated CO₂ avoidance costs vary from -\$90/MT CO₂ to
 36 \$646/MT CO₂, depending on the various decarbonization technologies and energy prices.

37

38

39 **KEYWORDS**

40 Steelmaking, decarbonization, techno-economic analysis, life cycle analysis, CO₂ emissions,
41 energy switching

42 **1. INTRODUCTION**

43 Iron and steel manufacturing is the largest contributor to CO₂ emissions and second largest
44 energy consumer among heavy industries worldwide (IEA, 2020a). The iron and steel industry
45 accounts for 83% of the coal demand in the U.S. manufacturing sector (EIA 2018 and 2020), where
46 coal is used as a primary fuel as well as a feedstock for coke production. In a coke oven, coal is
47 heated to produce coke, which has a higher carbon content and lower impurities, and is an
48 important raw material for pig iron production (Babich and Senk, 2019; Mayer et al., 2019). This
49 large coal consumption, as well as high demand for other energy sources, results in high
50 greenhouse gas (GHG) emissions in iron and steel manufacturing (Ryan et al., 2020). In 2019, the
51 direct GHG emissions from U.S. iron and steel manufacturing were 72 million metric tons (MMT)
52 CO₂ equivalent, or 6% of the total U.S. GHG emissions from manufacturing sectors (GHGRP,
53 2019). To achieve the goal of net-zero CO₂ emissions by 2050 (IEA, 2020b), the iron and steel
54 manufacturing sector needs a deep reduction of CO₂ emissions (Arens et al., 2017). That reduction
55 can be achieved through increased energy efficiency, carbon capture and storage (CC), and the use
56 of cleaner energy (Milford et al., 2013). However, these approaches may increase crude steel
57 production cost given the investment cost of energy-efficient technologies, the increased energy
58 consumption of CC, and the higher price of clean energy. Thus, this work discusses the CO₂
59 emissions reduction potential of different approaches with cost tradeoffs to determine the optimal
60 decarbonization solution.

61 In the U.S. steel industry, the two major manufacturing technologies are the blast furnace–
62 basic oxygen furnace (BF-BOF) and the electric arc furnace (EAF) (Jamison et al., 2015). In 2019,
63 a total of 87.8 MMT of steel was produced in the U.S.: 30% from BF-BOF and 70% from EAF
64 (World steel Association, 2020). BF-BOF consumes mostly iron ore, though scrap (recycled steel)
65 can constitute up to 30% of the raw material; EAF uses primarily scrap without iron ore (Cavaliere,
66 2019). U.S. BF-BOF facilities are over 30 years old (Hasanbeigi and Springer, 2019), on average,
67 with an energy consumption of around 23 GJ/metric ton (MT) steel, of which 85% is coal (Jamison
68 et al., 2015). Because U.S. EAF facilities use scrap as the primary feedstock, their energy
69 consumption is much lower: 6.1 GJ/MT steel (including energy consumption for finishing
70 processes at 3.8 GJ/MT) of which 59% is electricity (Hasanbeigi and Springer, 2019). The different
71 technologies and energy consumption profiles of the BF-BOF and EAF processes require different
72 CO₂ reduction options.

73 BF-BOF plants, sometimes called integrated mills, consist of multiple processes such as
74 coke making, iron ore agglomeration (Cui et al., 2021), blast furnace, basic oxygen furnace,
75 refining, and casting processes. Energy efficiency improvements, such as multifunctional energy
76 systems (Jin et al., 2009), solid waste utilization (Griffin and Hammond, 2019), and heat-energy
77 recovery (Chen et al., 2018), are potential ways to reduce energy consumption and CO₂ emissions.
78 The U.S. Department of Energy's (DOE's) *Bandwidth Study* estimated the energy consumption of
79 a typical BF-BOF process in the U.S. as the baseline (Jamison et al., 2015). This study concluded
80 that the energy efficiency improvements can reduce energy consumption by 10% achieved through
81 state-of-the-art (SOA) BF-BOF technology, such as coke dry quenching, enhanced combustion
82 control, waste gas heat recovery, steam recovery, ladle management, and bottom stirring (Jamison
83 et al., 2015). Carbon capture and storage is another CO₂ emissions reduction approach in steel

84 production (Rigamonti and Brivio, 2022). Biermann et al. studied an integrated steel mill to
85 estimate the CO₂ capture cost. Their results showed that the lowest capture cost, \$33/MT CO₂, can
86 be achieved by partial CO₂ capture from blast furnace gas, with 36% carbon avoidance. To achieve
87 76% carbon avoidance, the capture cost increases to \$51/MT CO₂ (Biermann et al., 2019). The
88 International Energy Agency (IEA) compared three CO₂ capture cases that showed the CO₂
89 avoidance cost to be \$56–\$81 per metric ton when the CO₂ avoidance ratio is 47%–60% (IEA,
90 2013). Another widely studied approach for industrial steel CO₂ emissions reduction is switching
91 from fossil energy to renewable sources of energy (Kumar et al., 2017). Mandova et al. showed
92 that by using biomass, a BF-BOF mill can achieve a maximum CO₂ emissions reduction rate of
93 42% (Mandova et al., 2018).

94 The second type of steel mill, EAF mills, are known as “mini mills” as they have only one
95 primary conversion process. The DOE bandwidth study estimated the energy consumption of EAF
96 technology at 2.3 GJ/MT for crude steel production—90% less than the current typical BF-BOF
97 process (Jamison et al., 2015). Birat et al. reviewed the global energy consumption of EAF and
98 showed that the best EAF route in practice had an energy intensity of 2.2 GJ/MT crude steel, of
99 which 1.6 GJ/MT is related to electricity consumption and 0.6 GJ/MT is related to fossil fuel
100 consumption for preheating (Birat, 2010). The typical CO₂ emissions reduction approach in EAF
101 mills is to increase energy efficiency and use renewable energy sources (both electricity and fuels)
102 rather than fossil energy sources (Echterhof, 2021). The direct CO₂ emissions from EAF mills are
103 more than 90% lower than those of BF-BOF mills, and CO₂ capture cost increases greatly when
104 CO₂ emissions are low owing to economic of scales (Herron et al., 2014). Thus, CC technology is
105 not used to reduce CO₂ emissions in EAF mills.

106 The CO₂ emissions reduction in BF-BOF and EAF configurations has been previously
107 studied in terms of increased energy efficiency, with and without CC, and with and without the
108 use of renewable energy sources, respectively. However, none of the decarbonization methods can
109 achieve deep decarbonization individually; a combination of several methods is needed to reach
110 the net-zero emissions target.

111 The previous steel decarbonization studies were based on various plant parameters and
112 analysis boundaries, thus did not employ a uniform framework to evaluate and compare different
113 decarbonization options. Consequently, information from these studies could not be simply
114 compared to investigate decarbonization options for steel manufacturing. A systematic,
115 comprehensive, and quantitative analysis for steel decarbonization options with consistent system
116 boundary and baseline is thus needed. This study provides a comprehensive life cycle analysis
117 (LCA) and techno-economic analysis (TEA) of six U.S. BF-BOF and four U.S. EAF
118 decarbonization methods to achieve deep CO₂ reduction.

119 The six BF-BOF configurations analyzed include two types of system designs: current-
120 practice U.S. blast furnace technologies (BF-BOF) and state-of-the-art (SOA) blast furnace
121 technologies (BF-BOF-SOA). For each of these technologies, we analyzed three system designs:
122 the two base cases (BF-BOF and BF-BOF-SOA), cases with CC (BF-BOF-CC and BF-BOF-SOA-
123 CC), and cases in which CC is combined with a change in all energy sources from fossil to
124 renewable (BF-BOF-all and BF-BOF-SOA-all). The four EAF configurations also include a
125 current technology case and state-of-the-art technology case, and for each we analyzed the base
126 cases (EAF and EAF-SOA) and the decarbonization cases with all energy sources changed from
127 fossil to renewable (EAF-all and EAF-SOA-all). The technology readiness level of these
128 configurations and their available year is listed in Table S1 of the supporting information (SI). The

129 LCA was conducted using GREET® (Greenhouse gases, Regulated Emissions and Energy use in
130 Technologies) 2020. GREET is a life-cycle model developed by Argonne National Laboratory to
131 evaluate energy and emissions impacts of fuels and products (Wang et al., 2020). TEA was
132 conducted using discounted cash flow analysis—the same methodology used in DOE's
133 *Ironmaking Process Alternatives Screening Study Volume I: Summary Report* (Greene, 2000).

134 In this study, we derived the mass and energy conversion of all evaluated BF-BOF and
135 EAF configurations information from various literature sources, such as DOE reports (Jamison et
136 al., 2015), industrial reports (The Athena Sustainable Materials Institute, 2002), and others. The
137 mass and energy conversion data were incorporated in the GREET model to evaluate the CTG
138 CO₂ emissions, covering all stages from iron ore recovery to steel production. The mass and energy
139 flow data were also used as input for equipment scaling, and capital and operating costs evaluation,
140 which are used in the discounted cash flow analysis to calculate the LCOS.

141 **2. METHODOLOGY**

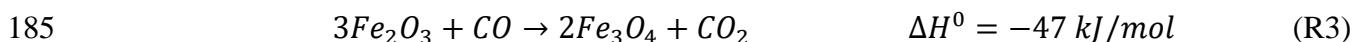
142 Increased energy efficiency, carbon capture and storage, and use of renewable energy are
143 three methods that can be used to reduce CO₂ emissions from iron and steel manufacturing
144 processes. This methodology section reviews the BF-BOF and EAF steel production technologies
145 using these three methods and includes a discussion of LCA boundaries and assumptions as well
146 as detailed information for TEA analysis. The basic assumptions and conditions for the analysis
147 are listed below.

148 a) The energy and mass conversion data represents U.S. steel industry average value (i.e.,
149 does not represent a specific plant).

150 b) The steel plants are assumed to operate under steady state (i.e., the transient state energy
151 and mass conversion during startup and shut down is not considered);

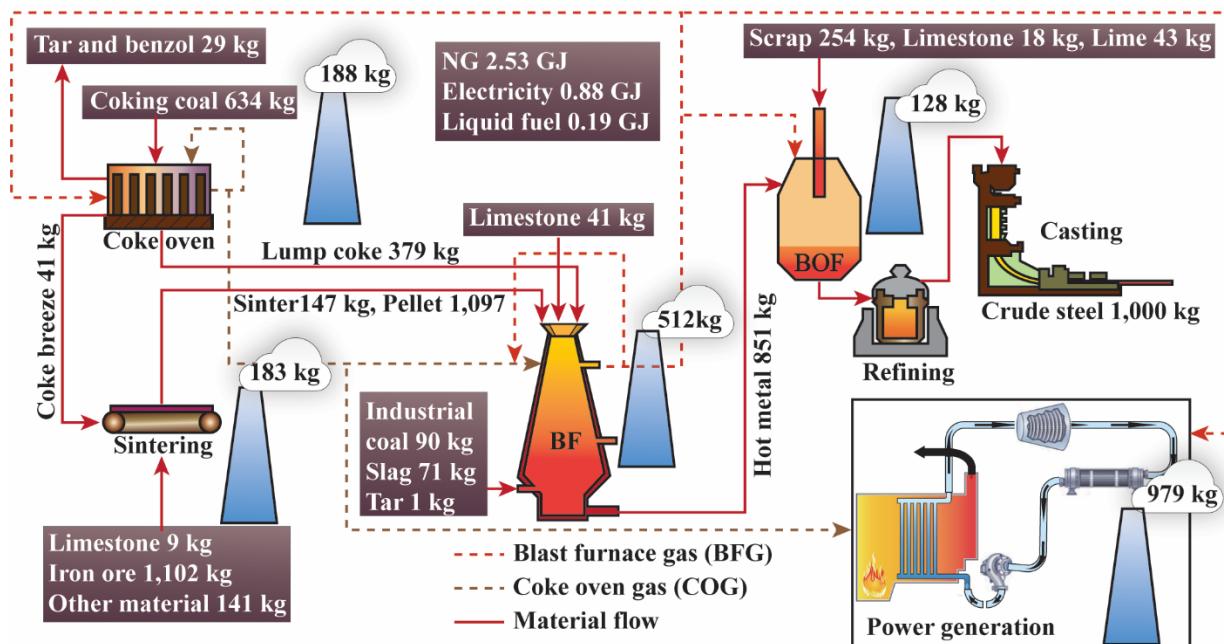
152 c) The life cycle analysis focuses on the feedstock and fuel consumptions, and does not
153 account for the embodied emission during plant construction, which is likely negligible when
154 allocated to per MT of steel, given the large production throughput over the long plant life time;

155 d) The techno-economic analysis uses the average U.S. historical fuel cost, thus the impact
156 of regional and time-dependent price variations are not covered in this study.


157 **2.1 Steel production technology**

158 **2.1.1 BF-BOF technology and CO₂ reduction methods**

159 Figure 1 shows the mass flow rate and CTG CO₂ emissions of a current-practice baseline
160 U.S. BF-BOF steel mill. The energy consumption data is from a previous work by Jamison et al.
161 (2015), for a typical BF-BOF process in the United States. The material flow rates of iron ore,
162 scrap, limestone, and lime are based on previous studies for a baseline steel production plant in the
163 United States (The Athena Sustainable Materials Institute, 2002). The CO₂ emissions are evaluated
164 based on energy consumption, material consumption, and the carbon balance using GREET model.
165 The BF-BOF process includes two materials preparation processes: ore agglomeration (pelletizing
166 and sintering) and coke making (He and Wang, 2017). In the ore agglomeration process, iron ore
167 is crushed and ground to remove impurities and pelletized to form uniformly sized round iron ore
168 pellets. In the sintering process, the ore pellets are mixed with iron fines, coke breeze (fine coke),
169 and limestone to form hardened lumps of sinter as feedstock for the blast furnace. The coke breeze
170 supplies energy for the sintering processes. In the coke oven, coking coal is heated to high
171 temperatures in an airless environment to drive off volatile chemicals, increase carbon content,
172 and produce lump coke as the energy supply for the blast furnace (Xu et al., 2020). The tar and


173 benzol produced from the coke oven are sold to the market as by-products (IEA, 2013). Although
174 not all coke is produced on-site in U.S. BF-BOF plants, the process is included in this analysis to
175 make the analysis boundaries consistent with the energy data source (American Coke and Coal
176 Chemicals Institute, 2020).

177 After the materials preparation, ironmaking reactions take place in the blast furnace
178 (Suopajarvi et al., 2018). Pellets and sinter (from ore agglomeration), lump coke (from the coke
179 oven), and limestone are added to the top of the blast furnace. In the lower section of the blast
180 furnace, coke is gasified to produce CO through reactions R1 and R2 using hot blast air (24 w%
181 O₂) as the gasification agent (IEA, 2013). The CO reacts with iron oxides as the reducing agent to
182 form hot metal (pig iron) through reactions R3 to R5.

188 The hot metal produced in the blast furnace is routed to the BOF to be purified and
189 converted to liquid steel. Up to 30% scrap can be also fed to BOF (Suopajarvi et al., 2018). Finally,
190 the liquid steel is refined and cooled in the refining and casting stages to produce crude steel
191 (Kapoor et al., 2021). In the BF-BOF configuration, coke oven gas (COG) and blast furnace gas
192 (BFG) are formed in the coke oven and blast furnace, respectively, and are used as fuel in the
193 power generation unit to supply heat and power to the entire system (Peacey and Davenport, 2016).

194 Figure 1 shows the material flow rates of iron ore, scrap, limestone, and lime from a typical
 195 steel production plant in the United States, as evaluated by the Athena Sustainable Materials
 196 Institute (The Athena Sustainable Materials Institute, 2002). Table 1 shows the energy
 197 consumption of the six BF-BOF configurations covered in this study. The BF-BOF case represents
 198 the typical current technology (current-practice baseline) in U.S. iron and steel manufacturing,
 199 which uses 22.7 GJ energy (after by-product displacement) to produce 1 metric ton of crude steel.
 200 The energy consumption of the BF-BOF (also shown in Figure 1) is calculated from a U.S. onsite
 201 energy consumption database, based on the U.S. Energy Information Agency's (EIA's)
 202 Manufacturing Energy Consumption Survey (MECS) data, which includes offsite electricity as
 203 well as steam generation and transmission losses (Jamison et al., 2015).

204 **Figure 1.** Mass flowrate (red arrows) and CTG CO₂ emissions (clouds) of the
 205 current practice baseline of the BF-BOF process in the U.S.

207 Table 2 shows direct CO₂ emissions from the baseline BF-BOF with additional NG
 208 consumption for carbon capture. In the baseline case, the flue gas from coke oven, BF-hot stoves

209 and steam boiler has a CO₂ concentration above 10 vol%. These flows are used as high
 210 concentration CO₂ sources for carbon capture (Herron et al., 2014). The carbon capture method is
 211 mono-ethanol-amine (MEA) with 90% carbon capture ratio from these sources. Thus, the total
 212 CO₂ captured from the BF-BOF baseline case is 1,376 kg/MT steel, which, when compared with
 213 the total carbon emissions (1,995 kg/MT) in the base case, implies a carbon capture ratio of 69%.

214 According to case B of IEA's *Iron and Steel CCS Study (Techno-Economics Integrated*
 215 *Steel Mill*) (IEA, 2013), the heat required for the MEA carbon capture process is supplied by
 216 natural gas (NG) combustion. The NG consumption is 3.0 GJ for each metric ton of CO₂ captured
 217 (IEA, 2013). The total electricity consumption for carbon capture and compression (to 153 bar) is
 218 0.4 GJ for each metric ton of CO₂ captured. The electricity consumption for carbon capture and
 219 compression is estimated at 43 MJ/MT CO₂ and 354 MJ/MT CO₂, respectively (IEA, 2013; Zang
 220 et al., 2021).

221 **Table 1.** Energy consumption of six BF-BOF configurations for crude steel production

Groups	BF-BOF			BF-BOF-SOA		
	BF-BOF (current practice baseline)	BF-BOF-CC	BF-BOF-all	BF-BOF-SOA	BF-BOF- SOA-CC	BF-BOF- SOA-all
Residual oil	0.152	0.152	0.000	1.316	1.316	0.000
Gasoline	0.003	0.003	0.003	0.003	0.003	0.003
Diesel	0.038	0.038	0.038	0.038	0.038	0.038
NG	2.530	7.150	0.000	0.378	4.727	0.000
RNG	0.000	0.000	7.267	0.000	0.000	6.008
Coking coal	18.15	18.15	16.33	17.01	17.01	15.31
Industrial coal	2.039	2.039	0.000	2.574	2.574	0.000
Biochar	0.000	0.000	3.194	0.000	0.000	3.656
Grid electricity	0.875	1.416	0.000	0.446	0.955	0.000
Clean electricity	0.000	0.000	1.405	0.000	0.000	0.927
By-product	-1.130	-1.130	-0.852	-1.350	-1.350	-1.089
Total	22.66	27.82	27.39	20.42	25.27	24.85
Relative to baseline (%)	100%	123%	121%	90%	112%	110%

222

223

224 **Table 2.** Direct carbon emissions and CO₂ captured from BF-BOF baseline case

	Coke oven	Sintering	BF hot stoves	BF other	BOF	Steam boiler	NG for CO ₂ capture	Total
Direct CO ₂ emissions (kg/MT steel)	157	166	404	32	32	968	236	1,995
CO ₂ concentration (v%)	15%	5%	27%	6%	6%	25%	3%	--
CO ₂ captured (kg/MT steel)	141	0	364	0	0	871	0	1,376
CO ₂ capture ratio (%)	7%	0%	18%	0%	0%	44%	0%	69%

225

226 Coal, NG, residual oil, and electricity are the major energy inputs for the current BF-BOF
 227 plant. Switching energy sources from fossil energy to renewable energy or low carbon energy,
 228 such as bioenergy, can reduce steel production carbon intensity and reduce (fossil) CO₂ emissions
 229 (Luh et al., 2020). For example, biochar has the potential to replace all the industrial coal for
 230 combustion use in the BF-BOF technology and can replace 10% of the coke used in the blast
 231 furnace (Mandova et al., 2018; Mousa et al., 2016). Given that residual oil and NG are used
 232 primarily as fuel for combustion without participating in the major reactions, both of them can
 233 potentially be replaced by renewable natural gas (RNG) (Cavaliere, 2019). In addition, grid
 234 electricity can be switched to clean (low or zero carbon emissions) electricity from lower-carbon
 235 energy sources such as nuclear, biomass, and wind/solar energy to reduce CO₂ emissions (Arens
 236 et al., 2021). The BF-BOF-all case in Table 1 shows the resultant energy consumption with all the
 237 energy switching options. The total energy consumption of BF-BOF-all case is 0.4 GJ/MT crude
 238 steel lower than that of the BF-BOF-CC case, because 10% of the coke used in the blast furnace
 239 is replaced by biochar.

240 Currently, the U.S. BF-BOF facilities are, on average, over 30 years old. Thus, a group of
 241 state-of-the-art BF-BOF technologies (BF-BOF-SOA) are listed in Table 1 to reflect recent BF-
 242 BOF technology improvements (Jamison et al., 2015). The BF-BOF-SOA case uses the most

243 efficient technologies or equipment for ore agglomeration, coke making, blast furnace, and basic
244 oxygen furnace. All processes of BF-BOF-SOA case have lower energy consumptions than the
245 BF-BOF case(Jamison et al., 2015). As shown in Table 1, the total energy consumption of the BF-
246 BOF-SOA case is 20.4 GJ/MT crude steel (by accounting for credit of by-product displacement).
247 BF-BOF-SOA case shows 10% reduction of energy consumption from current BF-BOF (22.7
248 GJ/MT). More detailed energy consumption information for the six BF-BOF configurations is
249 shown in Table S2 of the Supporting Information (SI).

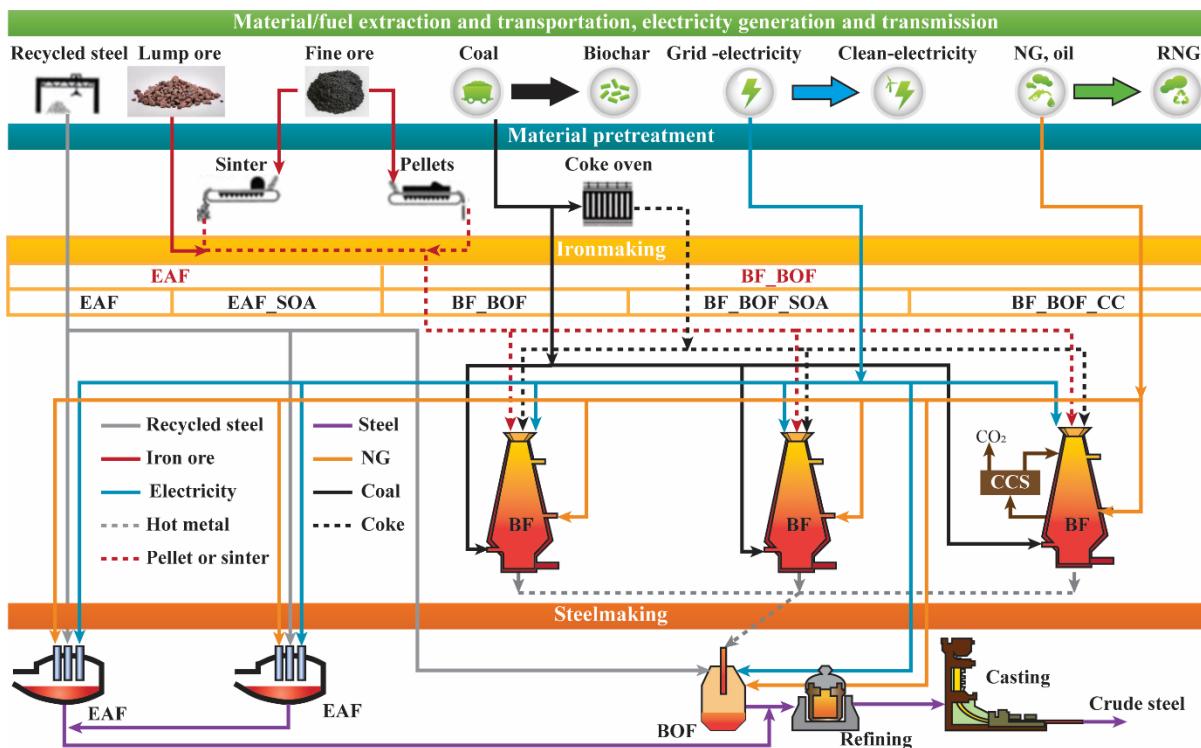
250 **2.1.2 EAF technology and CO₂ reduction methods**

251 “Mini-mill” steelmaking with EAF as the major reaction unit accounts for approximately
252 26% of world crude steel production and 70% of U.S. steel production (Hasanbeigi and Springer,
253 2019). Unlike BF-BOF that uses iron ore as the primary feedstock, EAF produces steel from scrap
254 (recycled steel), direct reduced iron (DRI), pig iron, and additives, without iron ore input. In the
255 United States, scrap is used as feedstock in almost all U.S. EAF plants (USGS, 2020a). Only four
256 metallic iron plants in the U.S. produce a limited amount of reduced iron (DRI) (one DRI plant in
257 Louisiana, and three hot-briquetted iron (HBI) plants in Indiana, Ohio, and Texas).

258 For a baseline case of U.S. EAF steel production, the energy consumption, materials
259 flowrate, and CO₂ emissions are derived from the study of Jamison et al., The Athena Sustainable
260 Materials Institute, and the GREET model. In the EAF process, scrap is melted with a certain
261 amount of added carbon (e.g., graphite) in order to lower the metallic iron melting point, and
262 therefore reduces electricity consumption (Cavaliere, 2019). The process of iron-carbon melting
263 is very complex and includes heat transfer from the melted liquid metal to the scrap and from the
264 surface to internal layers of scrap pieces (Gajic et al., 2016). The energy demands of EAF (shown
265 in Table 3 as current-practice baseline) are 1.8 GJ/MT of electricity and 0.5 GJ/MT of NG in the

266 current typical U.S. EAF case (Jamison et al., 2015). The EAF-all case in Table 3 shows the energy
267 consumption when NG is replaced by RNG and grid electricity by clean electricity.

268 The two EAF-SOA options in Table 3 reflect recent technology improvements in EAF
269 (Jamison et al., 2015). The EAF-SOA case uses the most efficient EAF technology available today.
270 As shown in Table 3, the total energy consumption of the EAF-SOA case is 1.9 GJ/MT crude steel,
271 which is 17% lower than the energy consumption of the current EAF technology. The EAF-SOA-
272 all case shows the RNG and clean electricity application potential in the EAF-SOA case.


273 **Table 3.** Energy consumption of four EAF configurations for steelmaking

Groups	EAF		EAF-SOA	
Energy consumption (GJ/MT steel)	EAF (current-practice baseline)	EAF-all	EAF-SOA	EAF-SOA-all
NG	0.546	0	0.189	0
RNG	0	0.546	0	0.189
Grid electricity	1.779	0	1.744	0
Clean electricity	0	1.779	0	1.744
Total	2.325	2.325	1.933	1.933
Relative to baseline (%)	100%	100%	83%	83%

274 **2.2 LCA analysis and fuel switching CO₂ emissions**

275 Using the same process configurations described above, we evaluated CO₂ emissions from
276 steel production using the GREET model (2020). The CO₂ emissions analysis from steel
277 production can be conducted in three scopes: scope I—direct emissions; scope II—CO₂ emissions
278 for the electricity supply; and scope III—all the upstream emissions of process inputs, such as
279 fuel/material extraction, transportation, and emissions displacement of by-products (Birat, 2010).
280 Figure 2 shows the cradle-to-gate (CTG) LCA analysis boundaries used in this study, which
281 include all the above scopes. We have considered four major analysis steps of materials/fuel
282 extraction and transportation and electricity generation and transmission, materials pretreatment,

283 ironmaking, and steelmaking steps. The LCA analysis is based on the functional unit of kg CO₂
 284 per MT of crude steel produced (kg/MT steel) (Cruz et al., 2021).

286 **Figure 2.** LCA analysis boundary for BF-BOF and EAF cases

287 Figure 2 illustrates the main configurations of five cases for steel production from BF-BOF
 288 and EAF processes. The CO₂ emissions associated with energy switching are accounted for in the
 289 materials/fuel extraction, transportation, electricity generation and transmission steps (detailed
 290 information is shown in Table 4). All the data is from GREET 2020, where the liquid fuel includes
 291 low-sulfur diesel, gasoline, and residual oil, with extraction and transportation CO₂ emissions of
 292 12.3, 16.1, and 9.3 kg CO₂/GJ liquid fuel, respectively. The NG fuel carries 5.9 kg CO₂/GJ
 293 emissions from upstream extraction and transportation processes. It can be replaced by renewable
 294 natural gas, of which the CO₂ emission varies with different sources and production technologies.
 295 For the present study, we show results for RNG from combined waste, which has -57.2 kg CO₂/GJ
 296 emissions from the production process, based on GREET 2020. Industrial coal carries 1.5 kg

297 CO₂/GJ emission for upstream extraction and transportation processes; it can be replaced by
 298 biochar to reduce CO₂ emission. One GJ of biochar can be produced from forest residue with a
 299 yield of 25%, using 0.14 GJ heat and 0.04 GJ power (Crombie et al., 2015, Cong et al., 2018). The
 300 upstream CO₂ emissions of the biochar are -86.3 kg CO₂/GJ after accounting for the biogenic
 301 carbon (Wang et al., 2020).

302 **Table 4.** CO₂ emissions for extraction and transportation of various materials and fuels and for
 303 generation of electricity from GREET 2020

	Liquid fuel			Gas fuel		Solid fuel	
	Extraction transportation	Diesel	Gasoline	Residual oil	NG	RNG	Coal
GREET 2020 pathway	Petroleum LS diesel	Petroleum gasoline blendstock	Petroleum residual oil	NG as stationary fuels	RNG combined waste to NG	Coal to power plant	Pyrolysis IDL
CO ₂ emissions (kg/GJ)	12.3	16.1	9.3	5.9	-57.2	1.5	-86.3
Electricity Source						Materials	
Extraction transportation	U.S. grid	Bio-electric	Nuclear-electric	Hydro-electric	Wind	Limestone	Lime
GREET 2020 pathway	Electric U.S. mix	Electric biomass fired power	Electric nuclear	Electric hydroelectric	Electric wind power	Ag-inputs CaCO ₃	Ag-inputs lime in U.S.
CO ₂ emissions (kg/GJ)	118	6.5	2.0	0.0	0.0	8.4	1,085

304 The direct CO₂ emissions from material pretreatment, ironmaking, and steelmaking include
 305 fuel combustion emissions and process emissions (detailed information shown in Table 5). The
 306 fuel combustion emissions factors are from GREET 2020, and the process emissions of sintering
 307 (27.6 kg CO₂/GJ) and blast furnace (21.9 kg CO₂/GJ) are from the simulation by the previous study
 308 (The Athena Sustainable Materials Institute, 2002). The LHV, density, and carbon ratio of fuels
 309 are shown in Table 6.

310

311 **Table 5.** CO₂ emission factors of various fuels

	Liquid fuel			Gaseous fuel			Solid fuel	
	Diesel	Gasoline	Residual oil	NG	BFG	COG	Coal	Char
Fuel combustion								
CO ₂ emissions (kg/GJ)	73.9	68.8	80.6	56.3	278.6	44.1	94.8	85.3
Process emissions	Sintering			Blast furnace				
CO ₂ emissions (kg/MT steel)	27.6			21.9				

312

313 **Table 6.** Fuel properties used for life cycle and technical-economic analysis

Material parameter	LHV (GJ/MT-fuel)	Density (kg/L)	Carbon content (wt%)
Coal fuel	22.65	--	58.57%
Coking coal	28.61	--	74.70%
Residual oil	39.47	0.99	86.80%
Gasoline	43.45	0.74	86.30%
Diesel	42.61	0.85	87.10%
Coke	31.34	0.00	86.67%
NG	47.14	0.00	72.40%

314

315 **2.3 TEA analysis and fuel switching cost**

316 TEA analysis evaluates the LCOS using a discounted cash flow analysis and process-level
 317 information from *Ironmaking Process Alternatives Screening Study Volume I: Summary Report*
 318 (Greene, 2000). The discounted cash flow analysis is broadly used for leveled cost evaluation of
 319 steel production. The LCOS is the steel price that makes the net present value of the steel plant
 320 zero when the plant life is assumed to be 25 years with a discount rate of 10%. The construction
 321 period of a new steel plant is two years, with 75% invested during the first 12 months and 25%
 322 spent in the second 12 months. The start-up time is 12 months, and revenues are assumed to be
 323 75% those of a normal operating year (Greene, 2000).

324 Capital expenditures are the sum of the total installed cost (TIC) and contingency (5% of
 325 the TIC) (IEA, 2013). TIC is evaluated using equation 1 (Manzolini et al., 2020), where $C_{ref,i}$ is
 326 the reference equipment cost. The BF-BOF equipment cost listed in Table 7 is from (IEA, 2013)

327 and the EAF equipment cost listed in Table 7 is from (Greene, 2000). $S_{ref,i}$ is the reference
 328 equipment size, S_i is the real size of the equipment used in this study, and f is the scaling exponent.
 329 Detailed information for the TIC is shown in Table 7.

330
$$TIC = \sum_{i=0}^n C_{ref,i} \times (S_i/S_{ref,i})^f \quad (1)$$

331 **Table 7.** Equipment installed cost for BF-BOF and EAF technologies

	Reference scale	Units (MT/year)	Reference installed cost (US\$ million)	Scaling exponent
BF-BOF				
Coke oven	2,277,702	Coal	400	0.80
Sintering	4,445,559	Sinter	220	0.80
Blast furnace, hot stoves, and hot metal desulphurization	3,894,263	Hot metal	622	0.80
Basic oxygen furnace and steel refining	4,323,327	Crude steel	459	0.80
Continuous slab caster	4,000,000	Crude steel	195	0.80
Lime production	591,361	Crude steel	16	0.80
Air separation unit	4,323,327	Crude steel	130	0.80
Power plant	4,323,327	Crude steel	362	0.80
Steam generation plant	4,323,327	Crude steel	139	0.80
Raw material handling	4,323,327	Crude steel	247	0.80
Pre-operating expenses	4,323,327	Crude steel	21	0.80
Land preparation, site development, and waste disposal	4,323,327	Crude steel	144	0.80
Buildings and site infrastructure	4,323,327	Crude steel	196	0.80
Project engineering	4,323,327	Crude steel	201	0.80
CO ₂ capture and compression	4,323,327	Crude steel	590	0.80
EAF				
Electric arc furnace and refining	4,920,000	Crude steel	591	0.80
Land preparation, site development, and waste disposal	4,920,000	Crude steel	119	0.80

332 The annual operations and maintenance (O&M) cost includes the fixed O&M cost, variable
 333 O&M cost, and “other O&M” cost (e.g. slag processing, on-site haulage, disposal, and landfill).
 334 The detailed calculation processes for fixed and other O&M cost are shown in Table 8, and the
 335 material price used to calculate the variable O&M cost is shown in Table 9. In Table 8, the
 336 miscellaneous cost includes services related to logistics, engineering, analysis, infrastructure, and

337 information. The LCOS of each system was evaluated to demonstrate the impacts of the selected
 338 technology and carbon capture option on the steel price. For TEA analysis, the base cases use
 339 market prices in 2019 of the incumbent energy sources: electricity price of \$0.07/kWh (Zang et
 340 al., 2021), NG price of \$3.7/GJ (EIA, 2019a), coking coal price of \$161/MT (EIA, 2019b), and
 341 industrial coal price of \$68/MT (EIA, 2019b). To show the impacts of renewable energy prices on
 342 the LCOS, a clean electricity price of \$0.03-\$0.15/kWh (Wiser and Bolinger, 2019), an RNG price
 343 of \$6.6-\$19.0/GJ (American Gas Foundation, 2019), and biochar price of \$403-\$747/MT (Bushell,
 344 2018) have been used.

345 **Table 8.** Fixed and other O&M costs for BF-BOF and EAF technologies

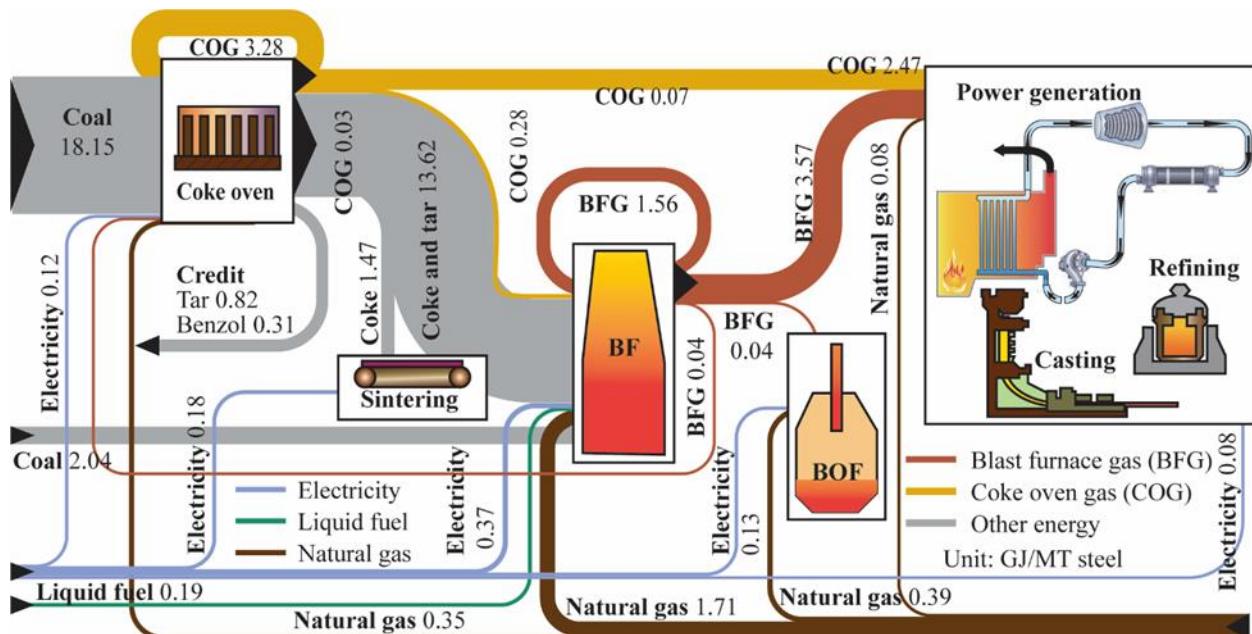
	Maintenance (% installed cost)	Personnel (\$/MT steel)	Miscellaneous (\$/MT steel)			
BF-BOF						
Coke oven	5.0%	8.52	5.10			
Sinter production	5.0%	8.81	1.67			
Blast furnace/hot stoves and hot metal desulphurization plant	4.0%	8.26	3.20			
Basic oxygen steelmaking plant and refining	5.0%	10.68	3.90			
Continuous slab caster	8.0%	9.31	1.89			
Lime production	8.0%	0.74	0.60			
Air separation unit	2.5%	0.91				
Power plant	2.5%	1.09				
Steam generation plant	2.5%	0.39				
CO ₂ capture and compression	2.5%	0.57				
Other personnel cost	(\$/MT steel)					
Central engineering	8.02					
Management and admin staff	12.94					
EAF						
(\$/MT steel)						
EAF personnel cost	6.32					
EAF other O&M cost	34.97					
Refining O&M cost	6.35					

346 Using these prices of fossil energy and renewable energy, the LCOS of current steel and
 347 future low-carbon steel can be estimated. The CO₂ emission amount is quantified from the CTG
 348 LCA analysis by combining CO₂ emissions from different processes. Then the CO₂ avoidance cost

349 $(C_{CO_2,A})$ is calculated by using the change in LCOS (ΔC_{steel}) divided by the change in CO₂
 350 emissions (ΔE_{CO_2}), as shown in equation 2. By comparing the CO₂ avoidance cost from increased
 351 of energy efficiency, CC, and energy switching, this study can quantify the impact of different
 352 CO₂ emissions reductions.

353
$$C_{CO_2,A} (\$/MT CO_2) = -\Delta C_{steel} (\$/MT steel) / \Delta E_{CO_2} (MT CO_2 / MT steel) \quad (2)$$

354 **Table 9.** Materials prices used to calculate the variable O&M cost of BF-BOF and EAF
 355 technologies

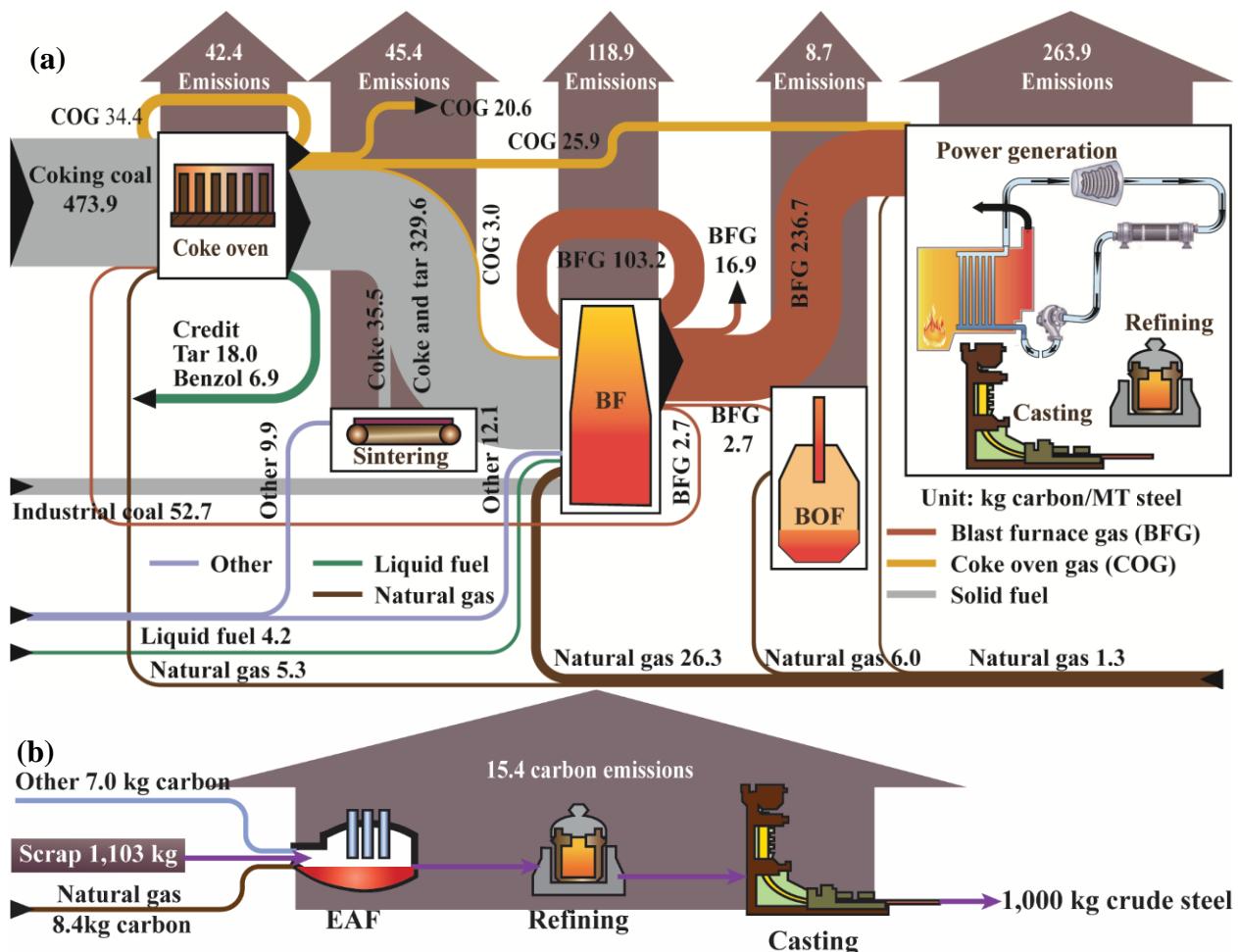

Material	Price	Unit	Reference
Coking coal	160.77	\$/MT	(EIA, 2019b)
Industrial coal	67.65	\$/MT	(EIA, 2019b)
Residual oil	0.97	\$/gal	(EIA, 2020)
Electricity	0.07	\$/kWh	(Zang et al., 2021)
Natural gas	3.71	\$/GJ	(EIA, 2019a)
Gasoline	2.67	\$/gal	(EIA, 2020)
Diesel	3.04	\$/gal	(EIA, 2020)
Iron ores	66.14	\$/MT	(USGS, 2020a)
Purchased scrap	249.22	\$/MT	(USGS, 2020b)
Dolomite	27.67	\$/MT	(IEA, 2013)
Burnt dolomite	109.48	\$/MT	(IEA, 2013)
Crude tar	0.97	\$/gal	(EIA, 2020)
Benzol	0.97	\$/gal	(EIA, 2020)
Coke	107.09	\$/MT	(EIA, 2019b)
Graphite used in EAF	86.34	\$/MT	(Greene, 2000)
EAF electrodes	1,530.77	\$/MT	(Greene, 2000)
Lime charged	114.47	\$/MT	(Greene, 2000)
O ₂ gas to EAF	0.06	\$/Nm ³	(Greene, 2000)
RNG-min	6.60	\$/GJ	(American Gas Foundation, 2019)
RNG-max	19.00	\$/GJ	(American Gas Foundation, 2019)
Clean electricity-min	0.03	\$/kWh	(Wiser and Bolinger, 2019)
Clean electricity-max	0.15	\$/kWh	(Wiser and Bolinger, 2019)
Biochar-min	403.00	\$/MT	(Bushell, 2018)
Biochar-max	747.00	\$/MT	(Bushell, 2018)

356

357 **3. RESULTS AND DISCUSSION**

358 **3.1 Cradle-to-gate energy consumption and CO₂ emission reduction potential**

359 With a detailed analysis of BF-BOF subprocess energy consumption, the overall process
 360 energy flow of a typical U.S. BF-BOF process can be summarized as shown in Figure 3. The width
 361 of each flow line represents the heat content, i.e., the lower heating value (LHV) of each flow
 362 based on the mass flowrate. Figure 3 shows the major energy consumption of all equipment of a
 363 typical U.S. BF-BOF plant. For the typical U.S. BF-BOF plant, coal is the primary energy input:
 364 18.2 GJ of coking coal and 2.0 GJ of industrial coal for the production of 1 metric ton of crude
 365 steel. The other energy inputs of the BF-BOF process are 0.9 GJ/MT of electricity, 0.2 GJ/MT of
 366 liquid fuel (a mixture of residual oil, gasoline, and diesel), and 2.5 GJ/MT of NG. It is worth noting
 367 that 0.8 GJ/MT of tar and 0.3 GJ/MT of benzol are produced from the BF-BOF system as by-
 368 products, and both have CO₂ emission displacement credit. After the by-product displacement, the
 369 total energy consumption of the BF-BOF process is 22.7 GJ/MT, as shown in Table 1.


371 **Figure 3.** Energy Sankey diagram of a typical U.S. steel mill using BF-BOF technology. All values
 372 are in the unit of GJ per metric ton of crude steel production. The width of flow line indicates the
 373 quantity of energy based on lower heating value, the red flow represents blast furnace gas, the

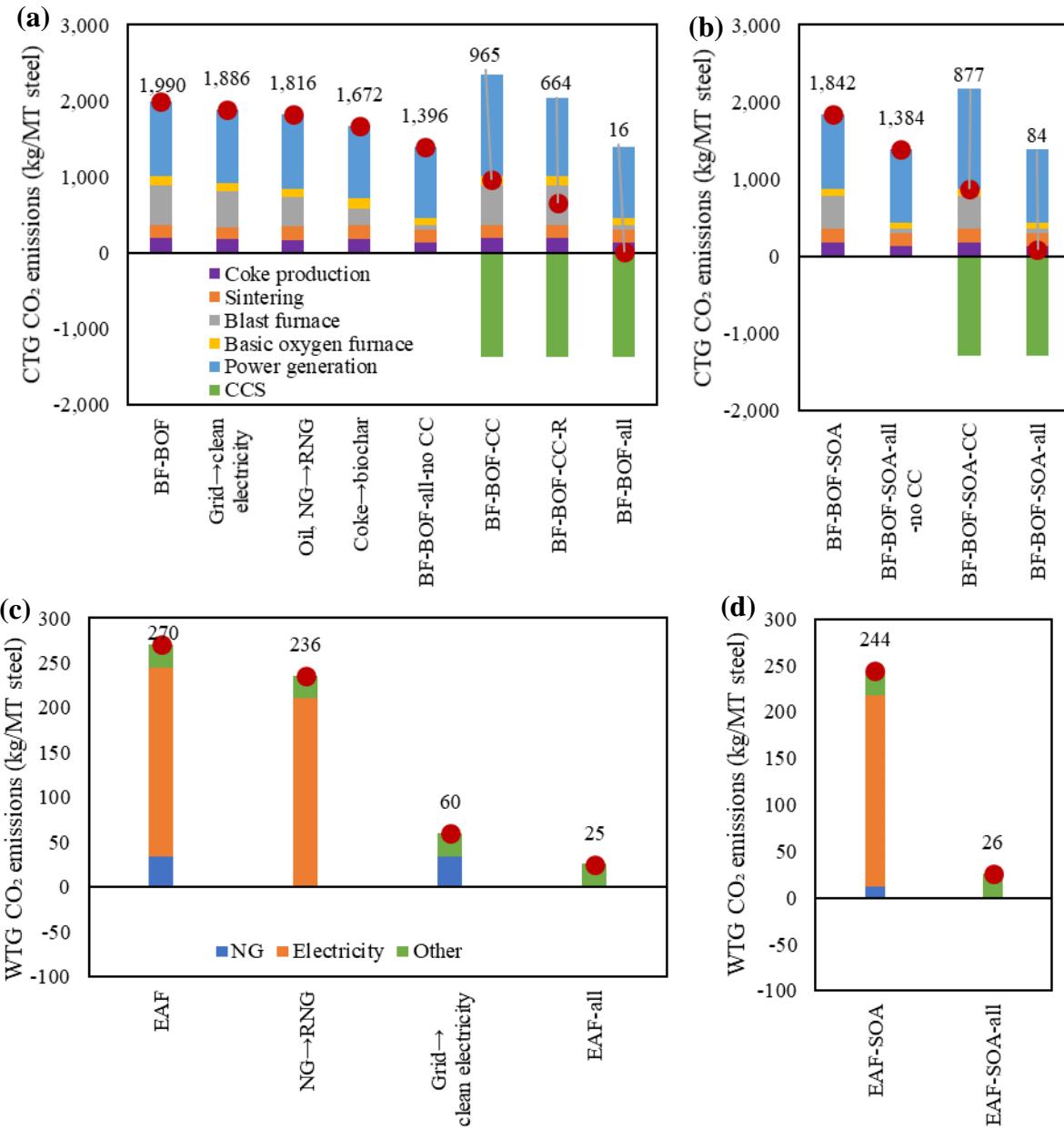
374 yellow flow shows the coke oven gas and the blue, green, brown, and gray flows represent energy
375 flows of electricity, liquid fuel, natural gas, and other energy, respectively.

376 The overall process carbon flow of the current-practice baseline U.S. BF-BOF process can
377 be summarized as shown in Figure 4(a). The width of the flows shown in Figure 4(a) represents
378 the carbon content of each flow based on the mass flowrate shown in Figure 1. The numbers shown
379 in Figure 4 indicate kg carbon per metric ton of crude steel produced. For the current-practice
380 baseline U.S. BF-BOF plant, coal is the primary carbon source: 474 kg of carbon from coking coal
381 and 53 kg of carbon from industrial coal for the production of 1 metric ton of crude steel. The other
382 carbon input to the BF-BOF is 39 kg C/MT steel from natural gas, 4 kg C/MT steel from liquid
383 fuel (a mixture of residual oil, gasoline, and diesel), and 22 kg C/MT steel from other material
384 input, such as limestone. It is worth noting that 18 kg/MT of carbon in tar and 7 kg/MT of carbon
385 in benzol have CO₂ emission displacement credit, and tar and benzol are produced from the BF-
386 BOF system as by-products. After the by-product displacement, the total carbon input to the BF-
387 BOF process is 567 kg C/MT steel.

388 For the entire BF-BOF system, heat and steam are supplied by combusting coke oven gas
389 (COG) and blast furnace gas (BFG). The carbon content of the COG is 12 kg C/GJ COG based on
390 carbon balance. It is assumed that the carbon input to the coke oven is coking coal, while the
391 carbon outputs of the coke oven are coke, tar, benzol, and COG. The carbon content of the BFG
392 is 76 kg C/GJ BFG based on carbon balance. The carbon input sources to the blast furnace are
393 natural gas, coal, coke, tar, and limestone, and the carbon output of the blast furnace is BFG. Figure
394 4(a) also shows the direct carbon emissions from each process. The power generation process has
395 the largest carbon emissions, 264 kg C/MT, which discharges 967 kg of direct CO₂ emissions for
396 1 metric ton of crude steel produce.

397 Figure 4(b) summarizes the mass and carbon flow of the current-practice baseline U.S.
398 EAF plant. Natural gas and graphite/electrode (shown as “other sources”) are the primary carbon
399 source for steel production from EAF. The carbon content of the natural gas is 8.4 kg C/MT steel,
400 while the carbon content in the graphite/electrode is 7.0 kg C/MT steel. The EAF process
401 discharges 56.5 kg of direct CO₂ emissions calculated from the carbon balance.

404 **Figure 4.** The CTG carbon Sankey diagram of (a) BF-BOF current-practice baseline (b) EAF
 405 current-practice baseline in the U.S. All the values indicate kg carbon per metric ton of crude steel
 406 production. The width of the flow line indicates the quantity of carbon. The red flow represents
 407 blast furnace gas, the yellow flow shows the coke oven gas, and the blue, green, brown, and gray
 408 flows represent carbon flows of other materials, liquid fuel, natural gas, and solid fuel,
 409 respectively.


410 Figures 5(a) and 5(b) show the CTG CO₂ emissions from different BF-BOF technologies.
411 For the current-practice baseline U.S. BF-BOF plant, the CTG CO₂ emissions are 1,990 kg/MT
412 steel. The power generation process has the largest CO₂ emissions: 979 kg/MT steel (49% of the
413 total) resulting from combustion of COG, BFG, and fuel for power generation and steam
414 production, and the upstream fuel production emissions. The 49% also accounts for the burdens
415 for the refining and casting processes. The 49% power generation CO₂ emissions share is similar
416 to that found in the study by Birat, which showed that 47% of total CO₂ emissions are from power
417 generation (Birat, 2010). The blast furnace has the second-largest CO₂ emissions: 512 kg/MT steel
418 (26% of the total), because 1.2 GJ BFG/MT steel and 0.2 GJ COG /MT steel are combusted to
419 supply heat for the blast furnace.

420 After identifying the material and energy inputs and quantifying CO₂ emissions, the
421 potential CO₂ reduction can be estimated by switching the fossil carbon source to a renewable
422 carbon source. Figure 5(a) shows the CTG CO₂ emissions when the energy source is changed from
423 grid electricity to clean electricity (wind power) (indicated by grid → clean electricity) and from
424 oil and NG to RNG (oil, NG → RNG). It also shows the emissions when using biochar to replace
425 10% of the coke consumption (maximum amount allowed without modifying BF process) and
426 100% of the industrial coal consumption in the blast furnace (coke → biochar). The change in
427 electricity source has the potential to reduce CO₂ emissions by 104 kg/MT steel, and the use of
428 RNG and biochar has the potential to reduce CO₂ emissions by 174 and 318 kg/MT steel,
429 respectively. The BF-BOF-all-no CC case combines all the energy switching options without using
430 carbon capture and storage. The CO₂ emissions from the BF-BOF-all-no CC case is 1,396 kg/MT
431 steel—30% lower than the current-practice baseline of BF-BOF.

432 The BF-BOF-CC case uses NG and grid electricity to supply the energy for carbon capture,
433 while the BF-BOF-CC-R case uses RNG and clean electricity as the energy supply for carbon
434 capture. For both cases, 1,376 kg of CO₂ can be captured from BF-BOF plants, with energy
435 consumption of 3.0 GJ NG/RNG per MT CO₂ and 0.4 GJ grid/clean electricity per MT CO₂. When
436 the energy inputs for carbon capture are NG and grid electricity, the CTG CO₂ emissions for BF-
437 BOF-CC are reduced by 1,025 kg/MT steel (51% of the total). In contrast, when the energy inputs
438 are from renewable sources of RNG and clean electricity, CTG CO₂ emissions for BF-BOF-CC
439 are reduced by 1,326 kg/MT steel (67% of total). The case of BF-BOF-all, which combines carbon
440 capture and all energy switching options, has the lowest CO₂ emissions in the BF-BOF group; it
441 has an emission of 16 kg/MT steel, a 99% reduction from the current-practice base case shown in
442 Figure 5(a).

443 The CTG CO₂ emissions for the BF-BOF-SOA group (with the most efficient blast furnace
444 and basic oxygen furnace) are shown in Figure 5(b), with the energy consumption in Table 1. The
445 CTG CO₂ emissions of the BF-BOF-SOA case are 1,842 kg/MT steel, which is 7% lower than that
446 of baseline BF-BOF case as a result of its lower energy consumption. The BF-BOF-SOA-CC case
447 captures 1,295 kg CO₂ for each MT crude steel produced. The amount of CO₂ captured in the BF-
448 BOF-SOA case is 6% lower than that of the BF-BOF case because the lower fuel consumption of
449 BF-BOF-SOA results in the lower amount CO₂ emission. With carbon capture, the CTG CO₂
450 emissions of the BF-BOF-SOA-CC are 877 kg/MT steel, which is 52% lower than BF-BOF-SOA
451 case and 9% lower than the BF-BOF-CC case. With all energy switching and carbon capture
452 options, the CTG CO₂ emissions of BF-BOF-SOA-all are 84 kg/MT steel (96% lower than the
453 current-practice baseline of BF-BOF), as shown in Figure 5(b).

454 These results indicate that increasing energy efficiency has a limited CO₂ emissions
 455 reduction potential of 7.4%, while CCS has a more significant CO₂ emissions reduction potential
 456 of 21.7%. The decarbonization potential of fuel switching ranges from 5.2% to 15.1%.

457

458

459 **Figure 5.** LCA results of BF-BOF and EAF. (a) CTG CO₂ emissions of current BF-BOF group,
 460 (b) CTG CO₂ emissions of the BF-BOF-SOA group, (c) CTG CO₂ emissions of current EAF
 461 group, and (d) CTG CO₂ emissions of the EAF-SOA group. The “power generation” is the internal
 462 power generation in the BF-BOF processes.

463 About 70% of the steel plants in the United States use EAF technology to process scrap
464 and a small amount of DRI feedstock. The CTG CO₂ emissions for EAF and EAF-SOA are shown
465 in Figure 5(c)-(d), with energy consumption shown in Table 1. Unlike the BF-BOF process, which
466 consists of six major subunits or reaction processes, the EAF pathway has only one main reaction
467 unit: the electric arc furnace. Thus, the CTG CO₂ emissions from the EAF cases come only from
468 the consumption of NG, electricity generation, and process emissions due to the graphite use.
469 Graphite is used as the electrode as well as a carbon source to reduce the electricity consumption
470 in the electric arc furnace. The CTG CO₂ emissions of EAF are 270 kg/MT steel—86% lower than
471 the CTG CO₂ emissions in the BF-BOF case. The NG → RNG and grid → clean electricity
472 columns in Figure 5(c) show the CTG CO₂ emissions when NG is replaced by RNG and grid
473 electricity by clean electricity (wind power). The use of RNG and clean electricity has the potential
474 to reduce CO₂ emissions by 34 kg/MT steel and 210 kg/MT steel, respectively. When the
475 combination of RNG and clean electricity is used, the CTG CO₂ emissions of EAF can be reduced
476 to 25 kg/MT steel that is 91% lower than the CO₂ emissions from current-practice baseline of EAF.
477 Figure 5(d) shows the CTG CO₂ emissions for state-of-the-art EAF (EAF-SOA) technology (with
478 energy consumption data shown in Table 1). The CTG CO₂ emission of EAF-SOA is 244 kg/MT
479 steel, which is 10% lower than the current-practice baseline EAF steel production plant in the U.S.
480 After all energy switching options (to RNG and clean electricity), the CTG CO₂ emissions of EAF-
481 SOA-all are 26 kg/MT steel. If RNG and clean electricity are used in combination, the CTG CO₂
482 emissions of EAF can be reduced by 89%.

483 **3.2 LCOS of steel and cost of CO₂ avoidance**

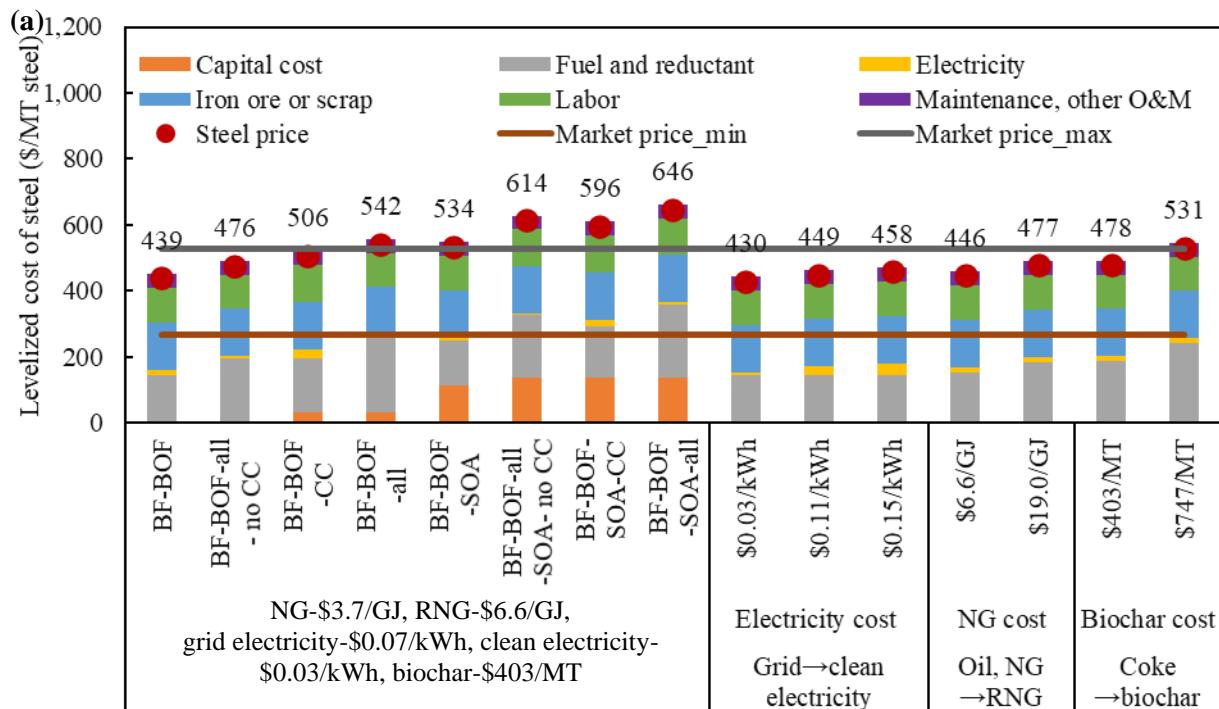
484 The TEA analysis in this study uses 2019 U.S. dollars based on materials market prices in
485 2019, shown in Table 9. Given that the typical U.S. BF-BOF steel mill has been running for more

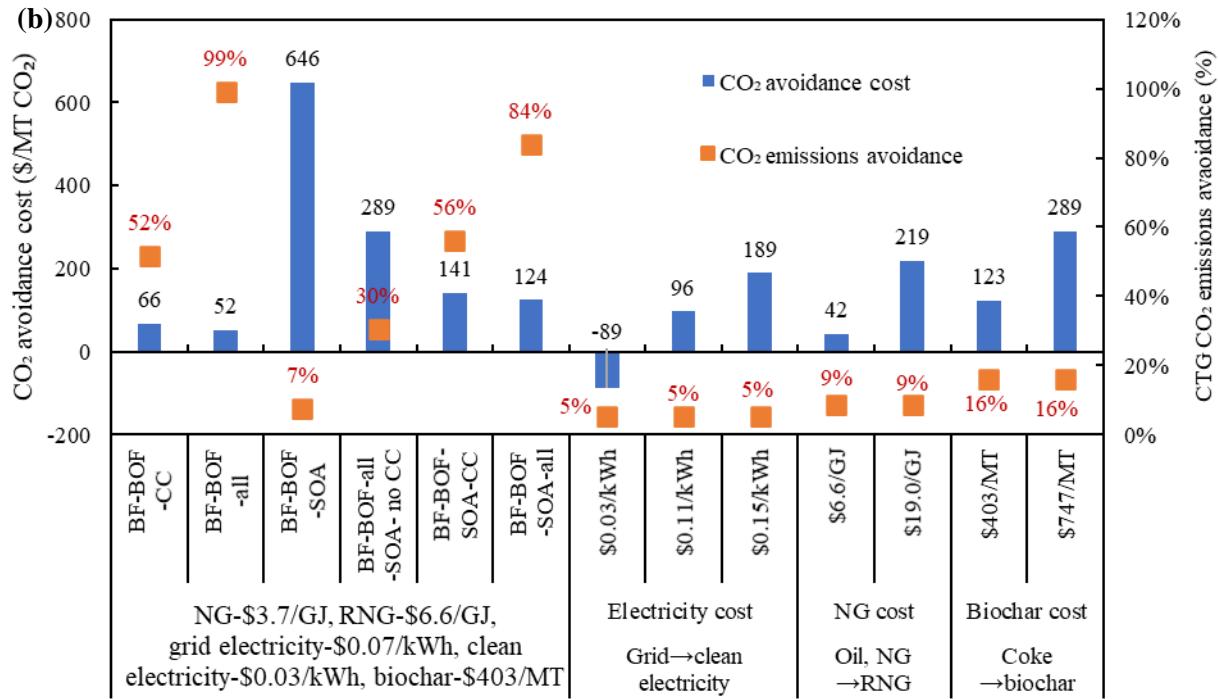
486 than 30 years, the calculation of the LCOS from current BF-BOF baseline case does not include
487 capital expenditures. For the BF-BOF case, the fixed O&M cost is \$338 million per year and
488 includes the cost of maintenance, direct labor, and indirect labor. The variable O&M cost is \$1,051
489 million per year and includes the cost of fuel and reductant, iron ore, purchased scrap, fluxes,
490 consumables, and other utilities. The “other O&M” cost is \$24 million per year and includes all
491 other expenses and by-products credit (Table 10). The LCOS (making the net present value zero)
492 of BF-BOF case is \$439/MT crude steel, as shown in Figure 6(a). For the BF-BOF cost, the three
493 leading cost sources are fuel and reductant cost, iron ore and scrap cost, and labor cost representing
494 33%, 33%, and 24% of the LCOS, respectively. The LCOS of \$439/MT steel is close to the
495 amounts found by previous research that showed a cost of \$413/MT steel in 2020 using the basic
496 oxygen furnace route (Steelonthenet.com, 2020a). The BF-BOF-CC case in Figure 6(a) shows the
497 LCOS when carbon capture technology is integrated into current-practice baseline BF-BOF plant.
498 The major capital expenditure for carbon capture is \$560 million per plant for the CO₂ capture unit
499 and compression equipment with a CO₂ capture ratio of 65%. In Figure 6(a), the LCOS of the BF-
500 BOF-CC case is \$506/MT, of which 6% is capital expenditure, 32% fuel cost, 29% iron ore and
501 scrap cost, and 22% labor cost, with the remaining 11% being electricity, other O&M, and by-
502 product credit. As a result of the addition of the carbon capture unit, the fuel and electricity cost of
503 the BF-BOF-CC case is \$29/MT higher than the BF-BOF case, while the labor cost of the BF-
504 BOF-CC case is \$7/MT higher than the BF-BOF case. The LCOS of the BF-BOF-all is \$542/MT
505 when the minimum renewable fuel price is used for the TEA analysis, as shown in Figure 6(a).

506 The LCOS for the BF-BOF-SOA and BF-BOF-SOA-CC cases is \$534/MT and \$596/MT,
507 respectively, or 22% and 36% higher than the current BF-BOF technology. The capital expenditure
508 in the BF-BOF-SOA case and BF-BOF-SOA-CC case is \$3.7 billion and \$4.6 billion per plant,

509 respectively, as shown in Table 11 and Table 12. The high capital expenditure for the construction
510 of a greenfield steel plant adds \$112/MT and \$138/MT to the steel production cost for the cases
511 with and without CCS, respectively, and results in higher LCOS compared to the current BF-BOF
512 technology.

513 **Table 10.** O&M cost components of the BF-BOF case


Item cost	Cost breakdown (US\$ million/y)	Percentage of O&M (%)	Annual OPEX (US\$ million/y)
Fixed O&M cost			337.8
Maintenance	110.0	7.8%	
Direct labor	159.3	11.3%	
Indirect labor	68.4	4.8%	
Variable O&M cost			1,050.8
Fuel and reductant	517.4	36.6%	
Iron ore	247.4	17.5%	
Purchased scrap	215.4	15.3%	
Fluxes	34.3	2.4%	
Consumables & other utilities	36.3	2.6%	
Other O&M cost			23.9
Miscellaneous works expense	43.1	3.1%	
Other OPEX	11.4	0.8%	
Slag processing	6.2	0.4%	
On-site haulage	0.2	0.0%	
Disposal and landfill	3.9	0.3%	
By-product credit	-40.9	-2.9%	
Total O&M	1,412	100.0%	1,412


514

515

Table 11. Capital expenditure for the greenfield BF-BOF-SOA case

BF-BOF-SOA Plant section	Cost breakdown (US\$ Million)
Coke oven	489
Sintering	252
Blast furnace, hot stoves, and hot metal desulphurization	588
Basic oxygen furnace and steel refining	451
Continuous slab caster	185
Lime production	13
Air separation unit	124
Power plant	266
Raw material handling	122
Spare parts and first fill	110
Pre-operating expenses	20
Land preparation, site development and waste disposal	137
Buildings and site infrastructure	186
Project engineering	191
Utility	417
Total installed cost	3,551
Contingency (5% of total installed cost)	178
Total investment cost (US\$ Million)	3,728

519
520

521 **Figure 6.** TEA results of BF-BOF (a) LCOS and (b) CO₂ avoidance cost relative to the base line
522 case of BF-BOF. BF-BOF-all-no CC, BF-BOF-all, BF-BOF-all-SOA-no CC and BF-BOF-SOA-
523 all use RNG, clean electricity, coal and biochar as energy sources to produce crude steel. BF-BOF,
524 BF-BOF-CC, BF-BOF SOA and BF-BOF-SOA-CC use NG, grid electricity, and coal as energy
525 sources to produce crude steel. The other bars show the impacts of renewable energy's price
526 modified from the current-practice baseline of BF-BOF.

527 Figure 6(a) also shows the impacts of electricity, natural gas, and biochar cost on the LCOS.
528 For the BF-BOF baseline, the costs of electricity, natural gas, coking coal, and industrial coal are
529 \$0.07/kWh, \$3.7/GJ, \$161/MT, and \$68/MT, respectively. When clean electricity is used to
530 replace grid electricity, the clean electricity cost changes to somewhere between \$0.03/kWh and
531 \$0.15/kWh (Wiser and Bolinger, 2019). Figure 6(a) shows a sensitivity analysis with three LCOS
532 using \$0.03/kWh, \$0.11/kWh, and \$0.15/kWh as clean electricity costs. When the electricity cost
533 increases from \$0.03/kW to \$0.15/kW, it constitutes 2% to 8% of the LCOS, and the LCOS
534 changes from \$430/MT to \$458/MT. Given that the RNG cost is \$6.6 to \$19.0/GJ, or 78% to 147%
535 higher than the market cost of NG (\$3.7/GJ), the LCOS of steel made using RNG is \$446-
536 \$477/MT, 2%-9% higher than the LCOS of steel made using the current BF-BOF technology.

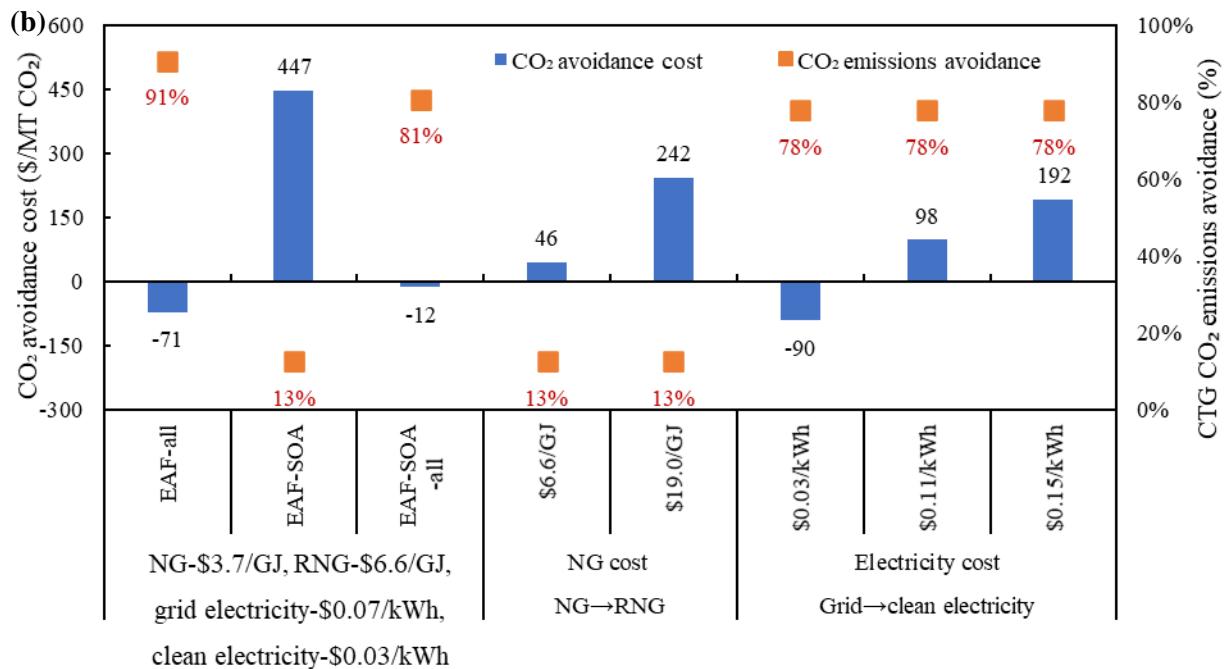
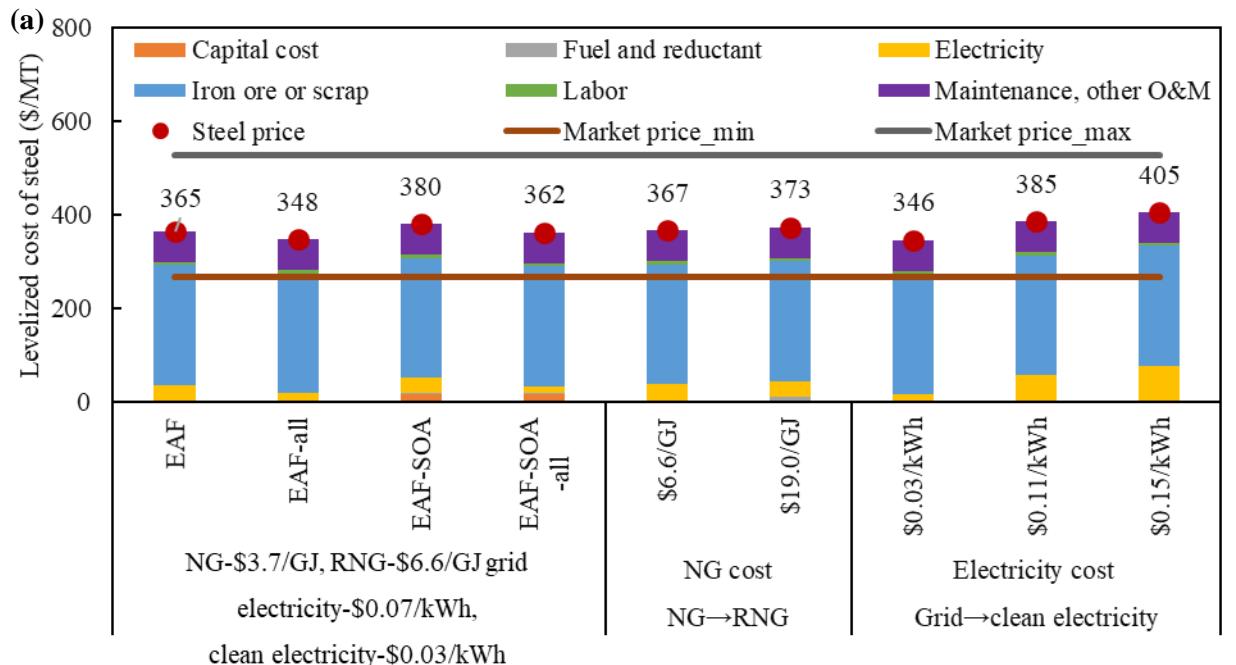
537 Meanwhile, the high cost of biochar (\$403-\$747/MT) results in an LCOS increase to \$478-
538 \$531/MT, which is 9%-21% higher than the current BF-BOF technology. Figure 6(a) summarizes
539 the range of crude steel market prices in the U.S. from 2019 to 2020, with a minimum crude steel
540 market price of \$268/MT and a maximum crude steel market price of \$529/MT (USGS, 2020b).

541 **Table 12.** Capital expenditure for the BF-BOF-SOA-CC case.

BF-BOF -SOA-CC	Cost breakdown (US\$ Million)
Coke oven	489
Sintering	252
Blast furnace, hot stoves, and hot metal desulphurization	588
Basic oxygen furnace and steel refining	451
Continuous slab caster	185
Lime production	13
Air separation unit	124
Power plant	344
Steam generation plant	132
Raw material handling	235
Pre-operating expenses	20
Land preparation, site development, and waste disposal	137
Buildings and site infrastructure	186
Project engineering	191
CO ₂ capture and compression	561
Utility	417
Total installed cost	4,324
Contingency (5% of total installed cost)	272
Total investment cost (US\$ Million)	4,596

542

543 Under the current baseline case assumptions, these results indicate that all the fuel
544 switching options lead to higher steel cost, due to the current higher cost of low carbon and
545 renewable energy sources (e.g., RNG, biochar) relative to fossil energy sources. The energy
546 efficiency increase results in a moderate steelmaking LCOS, based on the current technology level.
547 CCS shows the lowest LCOS due to concentrated CO₂ emission from BF-BOF that enables low-
548 cost CO₂ capture. It is worth mentioning that the CCS option did not consider CO₂ transportation
549 and storage cost since the present study represents a generic case for steel production with no



550 specific CO₂ storage site or distance for transportation. In general, for a specific steel plant, the
551 decarbonization options need to be evaluated by considering accessibility to low carbon energy
552 sources, availability to CO₂ pipeline for transportation, proximity to CO₂ storage site, etc. Figure
553 6(b) compares the CO₂ avoidance cost of different technology and energy switching options,
554 accounting for all CO₂ avoidance from cradle to gate boundaries. The LCOS (\$439/MT steel) and
555 CTG CO₂ emissions (1,990 kg/MT steel) of the current-practice baseline BF-BOF technology are
556 used as the reference. For each technology and energy switching option, the change of LCOS
557 ΔC_{steel} and the change of CO₂ emissions ΔE_{CO_2} are calculated relative to the baseline case. The
558 CO₂ avoidance cost is evaluated using ΔC_{steel} divided by ΔE_{CO_2} , shown in Equation 2. For
559 example, the CO₂ reduction cost of BF-BOF-CC is \$66/MT CO₂, i.e., the cost of incorporating
560 carbon capture into the current BF-BOF plant. This result is in the range of the IEA report (IEA,
561 2013), while lower than the CO₂ capture cost of \$80-\$110/MT from the study by Herron et al.,
562 2014. This is because the present study assumes that waste heat from steel production
563 configurations reduces the NG consumption in the boiler. In contrast, the study by Herron et al.,
564 2014 designed a standalone boiler to supply heat for the carbon capture process without using
565 waste heat.

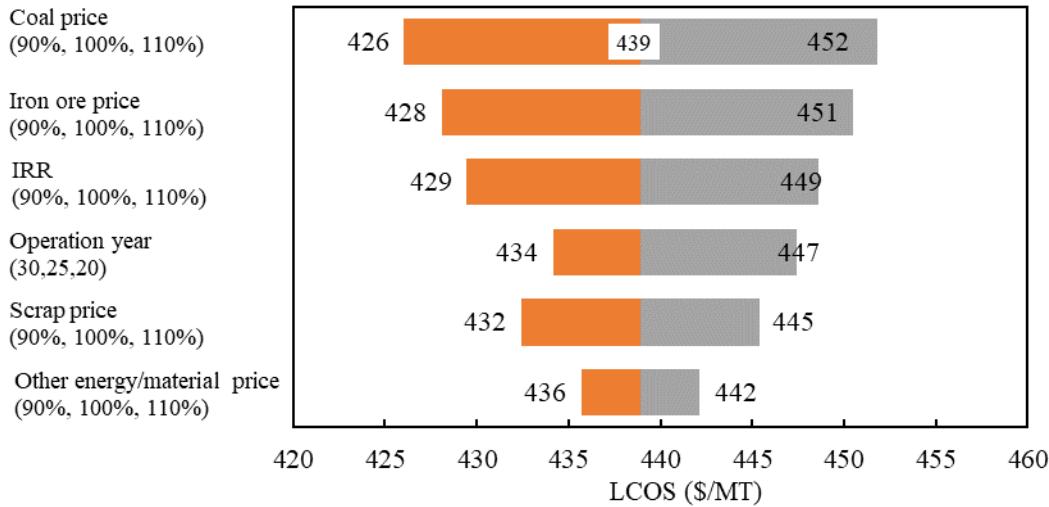
566 The LCOS of BF-BOF-SOA is \$96/MT steel higher than the current BF-BOF cost, but the
567 CO₂ emissions reduction is only 148 kg/MT steel. The BF-BOF-SOA has the highest CO₂
568 avoidance cost, \$646/MT CO₂, due to the high capital expense required. The BF-BOF-SOA-CC
569 case combines carbon capture with the most efficient BF-BOF-SOA technology. Although the
570 LCOS of BF-BOF-SOA-CC is \$157/MT steel higher than the current BF-BOF technology, it has
571 a larger CO₂ emissions reduction potential of 1,113 kg/MT steel, leading to a CO₂ avoidance cost
572 of \$141/MT CO₂. Figure 6(b) also shows the CO₂ avoidance cost for energy switching options.

573 The cost of renewable energy sources is the key parameter that impacts the CO₂ avoidance cost.
574 In Figure 6(b), the CO₂ reduction costs of using clean electricity, RNG, and biochar are in the
575 range of -\$89/MT to \$189/MT, \$42/MT to \$219/MT, and \$123/MT to \$289/MT, respectively. A
576 cost of -\$89/MT means that when the clean electricity price is \$0.03/kWh, the application of clean
577 electricity in the BF-BOF case can reduce both CO₂ emissions and LCOS.

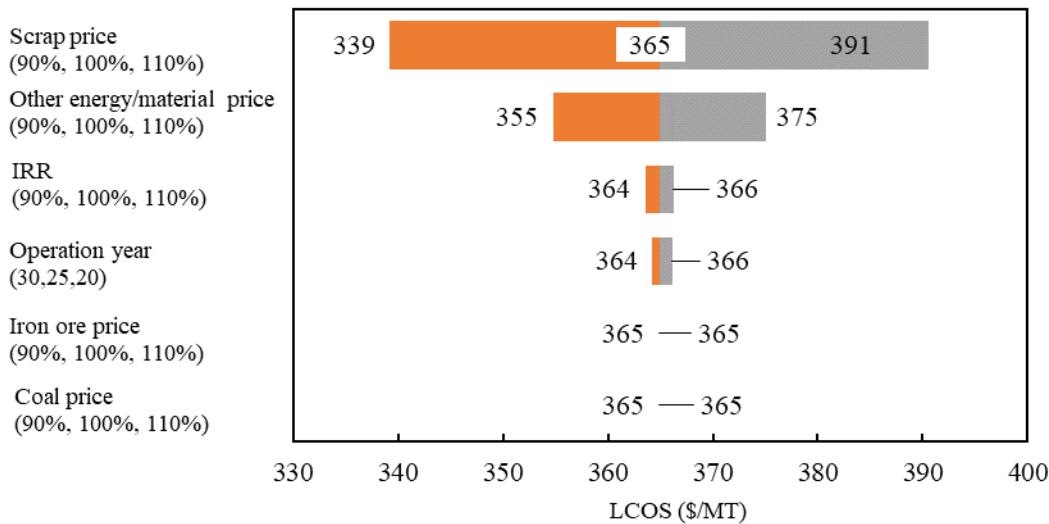
578 These results show that CO₂ avoidance cost for CCS is much lower than increasing energy
579 efficiency. The CO₂ avoidance cost of fuel switching is largely dependent on renewable energy
580 prices, which could be reduced potentially with technology energy efficiency improvement.

581 Figure 7(a) shows the LCOS of various EAF cases. The current-practice EAF case has an
582 LCOS of \$365/MT crude steel, which is 17% lower than the current BF-BOF technology. In Figure
583 7(a), scrap, electricity, maintenance, and other O&M costs account for 70%, 9%, and 18% of the
584 LCOS, respectively. The calculated LCOS of EAF at \$365/MT is close to estimates by previous
585 studies that calculated the EAF steelmaking route cost as \$385/MT (Steelonthenet.com, 2020b).
586 Because the state-of-the-art technology of EAF-SOA includes a capital investment of \$17/MT
587 steel, the LCOS of EAF-SOA is 4% higher than current EAF technology. Figure 7(a) shows the
588 impact of the energy switching on LCOSs of steel produced from EAF technology. When RNG
589 and clean electricity are used for steel production, the LCOS changes from \$367/MT to \$373/MT
590 and from \$346/MT to \$405/MT (in Figure 6), respectively. The LCOS of EAF-all is \$17/MT lower
591 than that of the current EAF technology, assuming that the clean electricity price in the EAF-all
592 case is \$0.03/kWh, which is \$0.04/kWh less than that used in the current EAF plant. All the LCOSs
593 of the EAF technologies are in the range of crude steel market price variation, indicating that
594 increased energy efficiency and use of clean energy sources can achieve deep CO₂ emissions
595 reduction with attractive crude steel production cost.

599 **Figure 7.** TEA results of EAF (a) LCOS and (b) CO₂ avoidance cost. EAF-all and EAF-SOA-all
600 use RNG and clean electricity as energy sources to produce crude steel. EAF and EAF-SOA use
601 NG and grid electricity to produce crude steel. While all the other bars show the impacts of
602 renewable energy's price modified from the current-practice baseline of EAF.


604 Figure 7(b) compares the cost of CO₂ avoidance energy consumption and energy switching
605 options. The LCOS (\$365/MT steel) and CTG CO₂ emissions (270 kg/MT steel) from the current
606 EAF technology are used as the reference to calculate the change (in LCOS ΔC_{steel} and in CO₂
607 emissions ΔE_{CO_2}) based on different technology and energy switching options. The CO₂ avoidance
608 cost of EAF-SOA is \$447/MT, because the amount of CO₂ avoided is only 34 kg/MT steel. For
609 the current EAF technology, the CO₂ avoidance cost when using RNG and clean electricity adds
610 \$46/MT to \$242/MT and \$-90/MT to \$192/MT, respectively, which is similar to the CO₂
611 avoidance cost for the current BF-BOF technology shown in Figure 6(b).

612 The steel made in BOF technology with a low levels of “tramp” elements is destined for
613 flat products, while the steel produced from the EAF is served for billet and bloom^{*} products (Zhu
614 et al., 2019). The U.S. DOE report of *Bandwidth Study on Energy Use and Potential Energy Saving*
615 *Opportunities in U.S. Advanced High Strength Steels Manufacturing* estimated the total advanced
616 high-strength steel (AHSS) production in the U.S. to be 1.2 million metric tons, with 80% of it
617 produced using BOF configurations (DOE Advanced Manufacturing Office, 2017). In order to
618 meet the material property requirements of different applications, BOF technology can not be
619 completely replaced by EAF technology given the former technology yields products with higher
620 quality than the latter. The volatility of scrap cost, iron ore cost, and energy prices contribute to
621 the differences in LCOSs between BOF and EAF. The sensitivity analysis of the TEA results are
622 shown in Figure 8 and Figure 9.


623

* Flat products are finished rolled steel products like steel strip and plate. A billet is a semi-finished steel product with a square cross section up to 155 mm x 155 mm. A bloom is a semi-finished product with a square cross section larger than 155 mm x 155 mm.

624

625 **Figure 8.** Sensitivity analysis results of BF-BOF configuration.

626

627 **Figure 9.** Sensitivity analysis results of EAF configuration.628 **4. CONCLUSIONS**

629 Iron and steel manufacturing is the largest CO₂ emission source and the second-largest
 630 energy consumer among heavy industries worldwide. To decarbonize steel manufacturing, a
 631 detailed assessment is required to understand a) the current energy consumption and greenhouse
 632 gas emission profiles associated with steelmaking, b) the decarbonization options and the potential
 633 CO₂ reduction potential; and c) the economic impacts of various decarbonization pathways.

634 This study provided a systematic analysis with a consistent system boundary and
635 harmonized assumptions to evaluate various decarbonization options. Six BOF-BOF and four EAF
636 configurations for steel decarbonization were analyzed, including plant energy efficiency
637 improvement, energy source switching, and CCS, covering all steps from iron ore recovery to final
638 steel production. The CTG CO₂ emissions analysis indicates that the CO₂ emissions of BF-BOF
639 and EAF configurations can be reduced by more than 90% compared with the baseline cases by
640 combining carbon capture and energy switching from fossil fuels to renewable energy sources.

641 The LCOS (levelized cost of steel) was estimated via techno-economic analysis using a
642 discounted cash flow analysis model. The LCOS of the U.S. BF-BOF baseline case is \$439/MT
643 steel, and that of the U.S. EAF baseline case is \$365/MT steel. The application of the carbon
644 capture increases the LCOS of BF-BOF to \$506/MT and the combination of carbon capture and
645 renewable energy sources increases the LCOS of BF-BOF to \$542/MT. The LCOS of BF-BOF-
646 SOA case increases to \$534/MT as a result of the high capital investment of the greenfield BF-
647 BOF-SOA facility.

648 The CO₂ avoidance costs vary from -\$90/MT CO₂ to \$646/MT CO₂ depending on various
649 technologies and energy prices. The CO₂ avoidance cost associated with RNG use is \$42/MT CO₂
650 to \$242/MT CO₂, and that of the application of clean electricity is -\$90/MT CO₂ to \$192/MT CO₂,
651 impacted by the price of renewable energy sources. The CO₂ avoidance cost of carbon capture is
652 \$66/MT, and that of BF-BOF-SOA and EAF-SOA is \$646/MT CO₂ and \$447/MT CO₂,
653 respectively, depending on the capital investment.

654 The present study investigates the decarbonization options that can be applied to the current
655 BF-BOF and EAF processes, which are the dominant iron and steel manufacture processes in the
656 United States. Our study benchmarks the U.S. steel sector emission baseline, lays out potential

657 decarbonization options for these existing facilities and quantifies the decarbonization amount and
658 cost. We are aware of other low carbon or emerging technologies for steel production, such as
659 DRI-EAF using natural gas or hydrogen to reduce the CO₂ emissions in virgin steel making. We
660 evaluated these emerging DRI technologies and discussed the potential of further decarbonization
661 in a separate paper (Zang et al, 2023). These two studies together provide insights to steel industry
662 technology developers and stakeholders/investors to manufacture low carbon steel, and inform
663 policy makers and the public. Our research will shed light on iron/steel manufacture
664 decarbonization directions by identifying decarbonization opportunities with quantification of
665 emission reduction potential; and provide quantitative decarbonization cost information that help
666 reduce investment risks and accelerate low carbon manufacture technology deployment.

667 **5. SUPPORTING INFORMATION**

668 Additional details on process-level energy consumption of BF-BOF cases and technology
669 readiness level are shown in the Supporting Information.

670 **6. ACKNOWLEDGMENTS**

671 This research was supported by the Strategic Analysis Office and the Hydrogen and Fuel
672 Cell Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and
673 Renewable Energy under Contract No. DE-AC02-06CH11357.

674 This work was authored in part by the National Renewable Energy Laboratory, operated
675 by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under
676 Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office
677 of Energy Efficiency and Renewable Energy Office of Strategic Programs. The views expressed
678 in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S.

679 Government retains and the publisher, by accepting the article for publication, acknowledges that
680 the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
681 reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

682 **7. ABBREVIATIONS USED**

CTG	Cradle to gate
MMT	Million metric tons
AHSS	Advanced high strength steel
BF	Blast furnace
BOF	Basic oxygen furnace
EAF	Electric arc furnace
MT	Metric ton
DOE	U.S. Department of Energy
SOA	State of the art
CC	Carbon capture
IEA	International Energy Agency
LCA	Life cycle analysis
TEA	Technology-economic analysis
GREET	Greenhouse gases, Regulated Emissions and Energy use in Transportation
COG	Coke oven gas
BFG	Blast furnace gas
MECS	Manufacturing Energy Consumption Survey
MEA	Mono-ethanol-amine
NG	Natural gas
RNG	Renewable natural gas
DRI	Direct reduced iron
HBI	Hot-briquetted iron
TIC	Total installed cost
O&M	Operations and maintenance
LHV	Lower heating value
NETL	National Energy Technology Laboratory

683

684

685 **8. REFERENCES**

686 American Coke and Coal Chemicals Institute, 2020. U.S. Coke Plants.

687 American Gas Foundation, 2019. Renewable Sources of Natural Gas: Supply and Emissions
688 Reduction Assessment. Washington, DC.

689 Arens, M., Åhman, M., Vogl, V., 2021. "Which countries are prepared to green their coal-based
690 steel industry with electricity? - Reviewing climate and energy policy as well as the
691 implementation of renewable electricity." *Renew. Sustain. Energy Rev.* 143, 110938.
692 <https://doi.org/https://doi.org/10.1016/j.rser.2021.110938>

693 Arens, M., Worrell, E., Eichhammer, W., Hasangeigi, A., Zhang, Q., 2017. "Pathways to a low-
694 carbon iron and steel industry in the medium-term – the case of Germany." *J. Clean. Prod.*
695 163, 84–98. <https://doi.org/https://doi.org/10.1016/j.jclepro.2015.12.097>

696 Babich, A., Senk, D., 2019. 13 - Coke in the iron and steel industry, in: Suárez-Ruiz, I., Diez,
697 M.A., Rubiera, F.B.T.-N.T. in C.C. (Eds.). Woodhead Publishing, pp. 367–404.
698 <https://doi.org/https://doi.org/10.1016/B978-0-08-102201-6.00013-3>

699 Biermann, M., Ali, H., Sundqvist, M., Larsson, M., Normann, F., Johnsson, F., 2019. "Excess
700 heat-driven carbon capture at an integrated steel mill – Considerations for capture cost
701 optimization." *Int. J. Greenh. Gas Control* 91, 102833.
702 <https://doi.org/https://doi.org/10.1016/j.ijggc.2019.102833>

703 Birat, J., 2010. Global Technology Roadmap for CCS in Industry-Steel Sectoral Report. France.
704 <https://doi.org/https://www.globalccsinstitute.com/archive/hub/publications/15671/global->
705 [technology-roadmap-ccs-industry-steel-sectoral-report.pdf](https://doi.org/https://doi.org/https://doi.org/10.1016/j.ijggc.2019.102833)

706 Bushell, A., 2018. A Pricing Model and Environmental Impact Analysis for Manure-Based
707 Biochar as a Soil Amendment. Master's project, Duke University. Retrieved from
708 <https://hdl.handle.net/10161/16584>.

709 Cavaliere, P., 2019. Clean Ironmaking and Steelmaking Processes: Efficient Technologies for
710 Greenhouse Emissions Abatement. Springer, Lecce, Italy.

711 Chen, Q., Gu, Y., Tang, Z., Wei, W., Sun, Y., 2018. "Assessment of low-carbon iron and steel
712 production with CO₂ recycling and utilization technologies: A case study in China." *Appl.*
713 *Energy* 220, 192–207. <https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.043>

714 Cong, H., Mašek, O., Zhao, L., Yao, Z., Meng, H., Hu, E., Ma, T., 2018. "Slow Pyrolysis
715 Performance and Energy Balance of Corn Stover in Continuous Pyrolysis-Based Poly-
716 Generation Systems." *Energy & Fuels* 32, 3743–3750.
717 <https://doi.org/10.1021/acs.energyfuels.7b03175>

718 Crombie, K., Mašek, O., 2015. "Pyrolysis biochar systems, balance between bioenergy and
719 carbon sequestration." *GCB Bioenergy* 7, 349–361.

720 <https://doi.org/https://doi.org/10.1111/gcbb.12137>

721 Cruz, T.T. da, Perrella Balestieri, J.A., de Toledo Silva, J.M., Vilanova, M.R.N., Oliveira, O.J.,
722 Ávila, I., 2021. "Life cycle assessment of carbon capture and storage/utilization: From
723 current state to future research directions and opportunities." *Int. J. Greenh. Gas Control*
724 108, 103309. <https://doi.org/https://doi.org/10.1016/j.ijggc.2021.103309>

725 Cui, L., Liu, M., Yuan, X., Wang, Q., Ma, Q., Wang, P., Hong, J., Liu, H., 2021. "Environmental
726 and economic impact assessment of three sintering flue gas treatment technologies in the
727 iron and steel industry." *J. Clean. Prod.* 311, 127703.
728 <https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127703>

729 DOE Advanced Manufacturing Office, 2017. Bandwidth Study on Energy Use and Potential
730 Energy Saving Opportunities in U.S. Advanced High Strength Steels Manufacturing.
731 Washington, DC.

732 Echterhof, T., 2021. "Review on the Use of Alternative Carbon Sources in EAF Steelmaking."
733 *Met* 11(2):222. <https://doi.org/10.3390/met11020222>

734 EIA, 2020. Annual Energy Outlook 2020 with Projections to 2050. Washington, DC.
735 <https://doi.org/https://www.connaissanceesenergies.org/sites/default/files/pdf-actualites/AEO2020%20Full%20Report.pdf>

737 EIA, 2019a. Natural Gas Prices [WWW Document].
738 https://doi.org/https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm

739 EIA, 2019b. Coal Explained-Coal prices and outlook [WWW Document]. 2019.
740 <https://www.eia.gov/energyexplained/coal/prices-and-outlook.php>

741 Energy Information Administration (EIA), 2018. Manufacturing Energy Consumption Survey
742 (MECS)- Steel Industry Analysis Brief [WWW Document].
743 <https://www.eia.gov/consumption/manufacturing/briefs/steel/>

744 Gajic, D., Savic-Gajic, I., Savic, I., Georgieva, O., Di Gennaro, S., 2016. "Modelling of electrical
745 energy consumption in an electric arc furnace using artificial neural networks." *Energy* 108,
746 132–139. <https://doi.org/https://doi.org/10.1016/j.energy.2015.07.068>

747 Greene, L., 2000. Ironmaking Process Alternatives Screening Study Volume I: Summary Report.
748 Oak Ridge, TN.

749 Greenhouse Gas Reporting Program (GHGRP), 2019. Greenhouse Gas Reporting Program
750 Industrial Profile: Chemicals Sector. Washington, DC.
751 <https://doi.org/https://ghgdata.epa.gov/ghgp/main.do#>

752 Griffin, P.W., Hammond, G.P., 2019. "Analysis of the potential for energy demand and carbon
753 emissions reduction in the iron and steel sector." *Energy Procedia* 158, 3915–3922.
754 <https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.852>

755 Hasanbeigi, A., Springer, C., 2019. How Clean is the U.S. Steel Industry? An International
756 Benchmarking of Energy and CO₂ Intensities. San Francisco, CA.

757 He, K., Wang, L., 2017. "A review of energy use and energy-efficient technologies for the iron
758 and steel industry." *Renew. Sustain. Energy Rev.* 70, 1022–1039.
759 <https://doi.org/https://doi.org/10.1016/j.rser.2016.12.007>

760 Herron, S., Zoelle, A., Summers, W.M., 2014. Cost of Capturing CO₂ from Industrial Sources.
761 NETL.

762 IEA, 2013. Iron and Steel CCS Study (Techno-economics Integrated Steel Mill). Stoke Orchard,
763 Cheltenham. <https://doi.org/http://documents.ieaghg.org/index.php/s/P3rYI5vSh80SPM7>

764 International Energy Agency (IEA), 2020a. Iron and Steel Technology Roadmap-Towards more
765 sustainable steelmaking. Paris. <https://doi.org/https://www.iea.org/reports/iron-and-steel-technology-roadmap>

767 International Energy Agency (IEA), 2020b. World Energy Outlook 2020. Paris.
768 <https://doi.org/https://www.iea.org/reports/world-energy-outlook-2020>

769 Jamison, K., Kramer, C., Brueske, S., Fisher, A., 2015. Bandwidth Study on Energy Use and
770 Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing. United States.

771 Jin, H., Sun, S., Han, W., Gao, L., 2009. "Proposal of a Novel Multifunctional Energy System
772 for Cogeneration of Coke, Hydrogen, and Power." *J. Eng. Gas Turbines Power* 131.
773 <https://doi.org/10.1115/1.3078791>

774 Kapoor, I., Davis, C., Li, Z., 2021. "Effects of residual elements during the casting process of
775 steel production: a critical review." *Ironmaking & Steelmaking* 48:6, 712-727.
776 <https://doi.org/10.1080/03019233.2021.1898869>

777 Kumar, U., Maroufi, S., Rajarao, R., Mayyas, M., Mansuri, I., Joshi, R.K., Sahajwalla, V., 2017.
778 "Cleaner production of iron by using waste macadamia biomass as a carbon resource." *J.*
779 *Clean. Prod.* 158, 218–224. <https://doi.org/https://doi.org/10.1016/j.jclepro.2017.04.115>

780 Luh, S., Budinis, S., Giarola, S., Schmidt, T.J., Hawkes, A., 2020. "Long-term development of
781 the industrial sector – Case study about electrification, fuel switching, and CCS in the
782 USA." *Comput. Chem. Eng.* 133, 106602.
783 <https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.106602>

784 Mandova, H., Leduc, S., Wang, C., Wetterlund, E., Patrizio, P., Gale, W., Kraxner, F., 2018.
785 "Possibilities for CO₂ emission reduction using biomass in European integrated steel
786 plants." *Biomass and Bioenergy* 115, 231–243.
787 <https://doi.org/https://doi.org/10.1016/j.biombioe.2018.04.021>

788 Manzolini, G., Giuffrida, A., Cobden, P.D., van Dijk, H.A.J., Ruggeri, F., Consonni, F., 2020.
789 "Techno-economic assessment of SEWGS technology when applied to integrated steel-
790 plant for CO₂ emission mitigation." *Int. J. Greenh. Gas Control* 94, 102935.

791 https://doi.org/https://doi.org/10.1016/j.ijggc.2019.102935

792 Mayer, J., Bachner, G., Steininger, K.W., 2019. "Macroeconomic implications of switching to
793 process-emission-free iron and steel production in Europe." *J. Clean. Prod.* 210, 1517–
794 1533. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.118

795 Milford, R.L., Pauliuk, S., Allwood, J.M., Müller, D.B., 2013. "The Roles of Energy and
796 Material Efficiency in Meeting Steel Industry CO₂ Targets." *Environ. Sci. Technol.* 47,
797 3455–3462. https://doi.org/10.1021/es3031424

798 Mousa, E., Wang, C., Riesbeck, J., Larsson, M., 2016. "Biomass applications in iron and steel
799 industry: An overview of challenges and opportunities." *Renew. Sustain. Energy Rev.* 65,
800 1247–1266. https://doi.org/https://doi.org/10.1016/j.rser.2016.07.061

801 Peacey, J.G., Davenport, W.G., 2016. The iron blast furnace: theory and practice. Elsevier.

802 Rigamonti, L., Brivio, E., 2022. "Life cycle assessment of methanol production by a carbon
803 capture and utilization technology applied to steel mill gases." *Int. J. Greenh. Gas Control*
804 115, 103616. https://doi.org/https://doi.org/10.1016/j.ijggc.2022.103616

805 Ryan, N.A., Miller, S.A., Skerlos, S.J., Cooper, D.R., 2020. "Reducing CO₂ Emissions from
806 U.S. Steel Consumption by 70% by 2050." *Environ. Sci. Technol.* 54, 14598–14608.
807 https://doi.org/10.1021/acs.est.0c04321

808 Steelonthenet.com, 2020a. Basic Oxygen Furnace Route Steelmaking Costs 2020 [WWW
809 Document]. 2020. URL https://www.stelonthenet.com/cost-bof-2020.html

810 Steelonthenet.com, 2020b. Electric Arc Furnace Steelmaking Costs 2020 [WWW Document].
811 URL https://www.stelonthenet.com/cost-eaf-2020.html

812 Suopajarvi, H., Umeki, K., Mousa, E., Hedayati, A., Romar, H., Kemppainen, A., Wang, C.,
813 Phounglamcheik, A., Tuomikoski, S., Norberg, N., Andefors, A., Ohman, M., Lassi, U.,
814 Fabritius, T., 2018. "Use of biomass in integrated steelmaking – Status quo, future needs
815 and comparison to other low-CO₂ steel production technologies." *Appl. Energy* 213, 384–
816 407. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.01.060

817 The Athena Sustainable Materials Institute, 2002. Cradle-to-gate Life Cycle Inventory: Canadian
818 and US steel production by mill type. Ottawa, Canada.

819 USGS, 2020a. Iron Ore Data Sheet-Mineral Commodity Summaries 2020 [WWW Document].
820 2020. URL https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-iron-ore.pdf

821 USGS, 2020b. Iron and Steel Scrap Statistics and Information [WWW Document]. USGS.
822 https://doi.org/https://www.usgs.gov/centers/nmic/iron-and-steel-scrap-statistics-and-
823 information?qt-science_support_page_related_con=0#qt-science_support_page_related_con

824 Wang, M., Elgowainy, A., Lee, U., Bafana, A., Benavides, P.T., Bumham, A., Cai, H., Dai, Q.,
825 2020. Summary of Expansions and Updates in GREET® 2020. Lemont, IL, US.

826 Wiser, R.H., Bolinger, M., 2019. 2018 Wind Technologies Market Report.

827 World steel Association, 2020. Steel Statistical Yearbook 2020 Concise Version-A Cross-section
828 of Steel Industry Statistics 2010-2019. Belgium.

829 Xu, Q., Zou, Z., Chen, Y., Wang, K., Du, Z., Feng, J., Ding, C., Bai, Z., Zang, Y., Xiong, Y.,
830 2020. "Performance of a novel-type of heat flue in a coke oven based on high-temperature
831 and low-oxygen diffusion combustion technology." *Fuel* 267, 117160.
832 <https://doi.org/https://doi.org/10.1016/j.fuel.2020.117160>

833 Zang, G., Sun, P., Yoo, E., Elgowainy, A., Bafana, A., Lee, U., Wang, M., Supekar, S., 2021.
834 "Synthetic Methanol/Fischer–Tropsch Fuel Production Capacity, Cost, and Carbon Intensity
835 Utilizing CO₂ from Industrial and Power Plants in the United States." *Environ. Sci.*
836 *Technol.* <https://doi.org/10.1021/acs.est.0c08674>

837 Zang, G., Sun, P., Elgowainy, A., Bobba, P., McMillan, C., Ma, O., ... & Koleva, M., 2023. "Cost
838 and Life Cycle Analysis for Deep CO₂ Emissions Reduction for Steel Making: Direct
839 Reduced Iron Technologies". *steel research international*, 2200297.
840 <https://doi.org/10.1002/srin.202200297>

841 Zhu, Y., Syndergaard, K., Cooper, D.R., 2019. "Mapping the Annual Flow of Steel in the United
842 States." *Environ. Sci. Technol.* 53, 11260–11268. <https://doi.org/10.1021/acs.est.9b01016>

843