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Abstract. The innovative science of the future must be multi-domain
and interconnected to usher in the next generation of “self-driving” labo-
ratories enabling consequential discoveries and transformative inventions.
Such a disparate and interconnected ecosystem of scientific instruments
will need to evolve using a system-of-systems (SoS) approach. The key
to enabling application integration with such an SoS will be the use of
Software Development Kits (SDKs). Currently, SDKs facilitate scien-
tific research breakthroughs via algorithmic automation, databases and
storage, optimization and structure, pervasive environmental monitoring,
among others. However, existing SDKs lack instrument-interoperability
and reusability capabilities, do not effectively work in an open federated
architectural environment, and are largely isolated within silos of the
respective scientific disciplines. Inspired by the scalable SoS framework,
this work proposes the development of INTERSECT-SDK to provide
a coherent environment for multi-domain scientific applications to ben-
efit from the open federated architecture in an interconnected ecosys-
tem of instruments. This approach will decompose functionality into
loosely coupled software services for interoperability among several solu-
tions that do not scale beyond a single domain and/or application. Fur-
thermore, the proposed environment will allow operational and manage-
rial inter-dependence while providing opportunities for the researchers
to reuse software components from other domains and build universal
solution libraries. We demonstrate this research for microscopy use-case,
where we show how INTERSECT-SDK is developing the tools necessary
to enable advanced scanning methods and accelerate scientific discovery.

Keywords: Autonomous Experiments, SDK, DevSecOps, Interconnected
Science, Edge Computing, Research Infrastructure, Scientific Software,
Scientific Workflows, Federated Instruments, Digital Twins
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1 Introduction

The future of science is a highly connected ecosystem of instruments, sensors, de-
vices, and computing resources at the edge combined with cloud computing and
centralized high-performance-computing systems that execute machine learning
infused workflows to enable self-driven, automated scientific experiments. DNA
sequencing is a great example of how enabling automation in a workflow has had
a significant effect in science. The initial sequencing of the human genome com-
pleted in 2001 was estimated to have cost over $100M and took over 10 years.
With improvements to sequencing techniques and applying automation, the cost
of sequencing a whole genome is now less than $10K and takes a few days or
less. The impact this has had on scientific discovery and the medical community
is profound.

The potential importance of interconnected science infrastructures has caused
increased interest from many areas, and systems can go by many names such
as: federated systems, cognitive digital twins, or (our preferred) interconnected
science ecosystems. In this push toward interconnected science systems, much
of the attention is focused on the runtime and deployment aspects. However,
progress must be built on transitioning from ad hoc demonstrations to a reliable,
reusable, verifiable, and scientifically reproducible infrastructure that addresses
the hardware, software, and wetware components.

In this paper, we will present our designs and early progress for an integrated
software development kit (SDK) geared specifically for the interconnected sci-
ence ecosystem. The larger initiative at Oak Ridge National Laboratory (ORNL)
for interconnected ecosystems goes by the name INTERSECT, and correspond-
ingly we call our work the INTERSECT-SDK. The development process for
INTERSECT-style applications and use-cases requires many iterations between
hardware, software, and human process engineering, but the core data connec-
tions and processing all live within the software space, as does this work.

Scientists are limited in many ways by the current disjointed state of exper-
imental resources. Scientific instruments produce massive amounts of data and
managing this data is not trivial. Many systems are not directly connected with
each other which further complicates data movement. This results in scientists
collecting data from multiple runs using pre-determined experimental conditions,
and spending weeks (if not months) analyzing collected data. If those experi-
ments do not yield desirable results, the entire process may need to be restarted
causing a long time-to-result. An interconnected ecosystem will enable more ef-
ficient scientific experimentation by integrating access to computing resources,
allowing resource sharing, adopting new artificial intelligence (AI) control ca-
pabilities, and improving overall system utilization. This will enable self-driven,
automated experiments which can significantly reduce the overall time-to-result.

The key contributions of this paper are three-fold: (a) the design and initial
implementation of a user-centric SDK for interconnected science development;
(b) an evaluation of how best practices for research software engineering are
adapted to such development, and; (c) a concrete demonstration of using pro-
posed SDK in a real-world application.
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In the remainder of the paper, we start by grounding the discussion using
this experience with interconnecting Scanning Transmission Electron Microscopy
(STEM) instruments and edge computing to enable concurrent computational
analysis (§ 2). We then discuss our development approach (§ 3) and the design
(§ 4) of our SDK. The INTERSECT-SDK design, approach, and overall infras-
tructure build on many examples and lessons learned from some prior work we
further detail in (§ 5) before we conclude with our analysis in (§ 6).

2 DMotivating Use-case: Scanning Transmission Electron
Microscope

Scanning Transmission Electron Microscopy (STEM) has long been an important
technique for experimental science domains from material science to biology [26].
With the growth in computing power and data acquisition rates, microscopy has
begun to study the data from Convergent Beam Electron Diffraction patterns
(CBED) to greatly enhance the material properties that can be measured [25].
The combination of 2D CBED patterns, measured at the 2D spatial location of
STEM produce what is known ad 4D-STEM data. The analysis of the data that
comes out of the microscopes has long depended on computational analysis of the
signals, but the goals for newer experimental design call for much more aggressive
couplings between advanced simulation and artificial intelligence (AI) algorithms
and the experimental plan. Recently, part of this team has used AI methods
to develop algorithms for automatic experimental 4dD-STEM acquisition [30].
A team at ORNL’s Center for Nanophase Materials Sciences (CNMS), working
with the larger INTERSECT community, has been working to develop a coupled
platform between the microscopes and Al-guided experimental control systems
to make scientific discovery faster and more repeatable.

Put simply, the goal of this project was to allow a user to put in a high-level
goal for using the microscope to study a material sample, and the Al-guided pro-
cess would automatically learn and guide adjustment of parameters to achieve
those goals, accelerating analysis with GPU based “edge” systems. For example,
a sample with a number of defects in it would be loaded in, and the exper-
iment would be directed to find and characterize the material. The scientists
would need to help define Al algorithms to identify the correct locations within
a coarse-grained scan of the surface, target fine-grained examination of both
‘normal’ areas and the defects, and then prioritize the remaining list of potential
targets against a heuristic metric of ‘characterized enough’. This leverages pre-
vious work in both the electronic control of microscopes [33] and the use of Al
characterization methods [30]. Incorporating this project into the interconnected
INTERSECT ecosystem and distributing various components to accelerators al-
lows the experiment operate in real-time and introduces new opportunities and
deep complexities (Figure 1).

Beyond the science results, this 4dD-STEM project also highlights some of the
key difficulties in developing, sharing, and maintaining the infrastructures needed
for science. As mentioned in the introduction, there are a laundry list of concerns
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when trying to interconnect experimental and simulation or AI components.
Understanding the data flow between them so that you capture not only the
correct data interface types but also the frequencies and sizes is crucial during the
development process. However, this can’t generally be done by taking a facility
off-line for months at a time so that the hardware and software links can be co-
developed. Instead, the software development program needs to progress based
on ‘good enough’ digital twins of the instrument that can respond to controls in
typical ways and time frames, and that can generate data of appropriate sizes
and complexity.

INTERSECT

Instrument Adapter

API Publish Publish API
Instument (€| —-——-—-— | [—" Brokers — | fe—> compute
| intersect client | intersectclient
,,,,, J | Subscribe Subscribe | " T )
Messages-api Messages-dashboard
» I vents !
o |

User/
Browser

: Broker Libraries. 'E intersect messages |

intersect messages ‘

Fig. 1. SDK depiction of 4D-STEM use case in INTERSECT. The instrument control
and analysis is distributed throughout the interconnected ecosystem allowing users to
execute analysis remotely and take advantage of distributed accelerators.

Here, the INTERSECT 4D-STEM team helped the development process by
providing expert knowledge about the Nion Swift control software and data pro-
cessing pipeline for the STEM instruments [19, 24]. The synthetic data generation
capabilities allow a developer to send control message to the digital twin using
the exact same interfaces and response time scales as when running on a real
microscope. So development can be tested, go through continuous integration,
engage in test-driven development, and other similar strong research software
engineering practices without the need for concurrent facility reservations. At
the end of sprints, a much more limited reservation time could be utilized to
assess any drift between the virtual and physical hardware behaviors.

In addition to cementing the central role of digital twins in the process of
reliable development for interconnected infrastructures, the process of working
on the 4D-STEM use case also highlighted the critical need for tested, stable,
and reusable data management buses. It is easy enough to do a one-off demon-
stration, but stretching from that to a new capability is a software engineering
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challenge. SDK needs to be able to connect highly heterogeneous devices and
needs to be able to operate seamlessly. Next we describe in detail the software
engineering practices needed to make autonomous 4D-STEM experiments acces-
sible to domain scientists.

3 Approach

As systems become more interconnected, interoperability among scientific appli-
cations and control software packages becomes increasingly complex and difficult
to achieve. Because these solutions are sometimes developed by domain scien-
tists rather than software engineers, they can lack a foundation developed on
strong software engineering principles making it difficult to integrate solutions
with other packages or scale them beyond a certain limit. Such software envi-
ronments can also fail to efficiently use the rich hardware platform where they
are deployed, and security is often an afterthought rather than a requirement
during the initial development. Many scientific software applications are also
monolithic and developed under the assumption it will run in a single system
context. Combined, these factors can make developing scientific applications for
interconnected environments a challenging task that can impact on the quality
of scientific outcomes. There is a growing need for better software development
toolkits (SDKs) and environments that are specifically designed to enable in-
terconnected science ecosystems. A multi domain aware, easy-to-use, reusable,
scalable, and secure framework built on strong, industry standard software en-
gineering principles is key to fully realizing this goal.

3.1 Designing for Interconnected Science Ecosystems

Our goal is developing an SDK that seamlessly integrates instruments, computa-
tional resources, applications, tools, data, and other components into a common,
connected ecosystem to simplify and accelerate scientific applications. But, we
first need to have a sound understanding of example scientific use-cases and how
we intend to distribute applications before we can effectively design the SDK
and integrate it with those use-cases. We are using an iterative approach to de-
sign and develop the SDK which allows us to easily and quickly pivot priorities,
adapt to new use-cases, develop new features, and improve existing applications.

Distributed Workflow: The STEM workflow discussed in § 2 is our initial use-
case that is driving the SDK design. The original workflow is a large script that
includes the instrument control logic, data analysis, and the overall experiment
decision logic and assumes direct access to NionSwift [34] to interface with the
instrument. However, moving this fully integrated application into a distributed
ecosystem where it can benefit from GPU acceleration for the Al models is a
non-trivial task. The application was built assuming direct access to the control
software application-programming-interface (API), so it cannot simply be moved
to the edge compute system.
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Fig. 2. Distributed version of the STEM use-case serving as the initial driver for SDK
design. The original application is a single script executing in the NionSwift control
application and here has been split into three main components: Microscopy adapter,
compute adapter, and the scientific orchestrator.

We worked closely with the science team to understand their workflow and
identified pieces that could be broken down into manageable components that
could be automated and deployed. The overall approach is shown in Figure
2 and includes three main micro-services that together comprise the workflow
functionality: the Microscopy adapter, the Compute adapter, and the Scientific
Orchestrator. The Microscopy adapter micro-service is responsible for handling
any interaction with the instrument itself (such as moving a probe or acquiring
data), the Compute adapter micro-service will analyze data using AI models, and
the orchestrator will manage data movement and determine when the overall
experiment is complete. All of these micro-services use a common messaging
subsystem and libraries that we are developing in the SDK which is further
discussed in § 4.

Rather than tackling this workflow in its entirety, we are using a staged
approach to develop each of the individual micro-services of the workflow. We
first focused on developing the microscopy adapter and interfacing it with Nion
Swift [34]. Once we identified patterns for interfacing with the microscope, these
sections were moved to a separate adapter and the original code was modified to
send and receive messages to a remote adapter. The next step was separating the
higher-level experiment logic from the AI based analysis. The analysis service
trains machine learning models and predicts the next coordinates to probe and
the overall experiment orchestrator makes final decisions determining if the ex-
periment goal was reached. Separating the higher-level logic and analysis allowed
these micro-services to also be distributed at the edge. In this case, the “edge”
system may not be typical of what is normally considered the edge; it is a large
NVIDIA DGX-2 [13] distributed to instrument sites (compared to other central-
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ized HPC resources) and used for accelerating the AT applications. The analysis
micro-service needed to run persistently on the edge DGX accelerator, but the or-
chestrator could theoretically run anywhere. Once these micro-services are fully
independent, they can be connected using the SDK and distributed throughout
the ecosystem. The orchestrator can then manage the overall experiment where
data is acquired by the microscopy adapter, passed to and analyzed by the edge
compute adapter, and the next predicted probe locations are passed back to the
microscopy adapter to start the next iteration.

SDK Design Goals: Initially, the micro-services that are split out from the
original workflow are still very specific to the driver use-case, but stopping here
leads to ad-hoc implementations that are not re-useable. As we continue to break
down the STEM workflow, we are gradually improving and generalizing these
components to support other science applications in the future, and we expect
the components we develop now will need to change to support other scenarios.
Good examples of this are the instrument adapter and the orchestrator. Our
initial instrument adapter only implements the required functions to support
this specific Al-infused STEM workflow, but we can continuously re-use those
existing capabilities add new patterns based on other STEM workflows that use
the same instruments. Similarly, the initial orchestrator is a simplified version of
the original script which passes messages to the other micro-services in place of
the original API calls. As we integrate other workflows, we will develop this into
an intelligent orchestration engine which takes domain-specific configurations
as input that include the experiment parameters such as scanning dimensions,
timing, and property to optimize. This iterative approach will help us develop
an SDK that enables complex systems that are easier to distribute, replicate,
extend, reuse, and integrate. We can better understand what capabilities need
to be fully implemented within the SDK and this allows for components to be
gradually generalized and will result in re-useable and inter-operable components
for future use-cases.

Our SDK will expose application programming interfaces (APIs) for services,
scientific libraries, and components that can work with varied instruments across
multiple sites (Figure 4). It will support reusable, open-standards-based compo-
nents to enable the interconnected science ecosystem within the Department of
Energy’s (DOE) science facilities so workflows are not developed independently
for each new use-case. Our standards-based, secure, and reusable framework
will enable the laboratory of the future where instruments and resources are
interconnected through an open, hardware/software architecture that science
experiments to execute across systems and process data in a coherent fashion.

3.2 Digital Twins

Our approach includes supporting digital twin environments based on science
proposals supported by the INTERSECT initiative. Digital twins are virtual en-
vironments that imitate a certain scientific instrument or setting as closely as
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feasible and provide the user with the same software environment as the actual
system. Some of the replicated components of the twin layer’s workflow will be
general, while others will be instrument- and physics-specific to the selected sci-
ence use-case. The digital twin environments will provide the API and SDK for
users to develop scientific workflows in the virtual environments and will include
the expected micro-services and access methods. Digital twins will shift how
physical world experiments and processes are realized by allowing users to first
develop using a virtual environment rather than the actual instrument which
improves safety and repeatability and accelerates discoveries. Digital twins in-
clude: (a) Instrument models and synthetic data sources: The basis of the digital
twin are models of scientific instruments from specific use-cases. These virtual
instruments will model a real system and provide the same control and monitor-
ing interface expected of a real system. (b) Computational and data resources:
The digital twin systems will provide computational resources so the virtual fed-
erated environment can execute actual workflows. These can be implemented
using existing virtualization capabilities such as virtual machines and contain-
ers. (¢) Network resources: Networking is the last main component of the digital
twin environment. This provides the simulated connectivity between disparate
resources to mimic the actual environment.

3.3 DevSecOps, Process and Software Excellence

DevOps: INTERSECT-SDK
seeks to shorten development cy-
cles and enable quick response and
resolution to scientific software is-
sues, boost productivity, test new
methods and algorithms, and keep
domain scientists engaged by re-
ducing complexities of development
and deployment. To address these
challenges, we use a full develop-
ment, security3 and operations (De- Fig. 3. DevSecsOps Workflow
vSecOps) environment for end-to-

end testing and demonstration. It

supports the full OODA (Observe,

Orient, Decide, Act) loop throughout development and testing [36].

As part of our DevSecOps (Figure-3), we plan to take the following ap-
proaches: (a) Developers implement low level (unit) tests as part of the code
(b) Stand up CI automation and trigger builds for every pull request to run
automated low-level testing (i.e., unit tests) as well as do static code analysis to
provide fast feedback for rejected changes. (¢) Ensure all high-level testing (i.e.,
integration, system, regression, performance, etc.) is executed. (d) Implement
CI practices. All developers branch from the trunk, make changes in feature
branches, and submit merge requests (MRs) back to the trunk. We will use
Infrastructure-as-Code (IaC) practices to capture necessary infrastructure and
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configuration management in version-controlled code to promote operational re-
producibility and reliability.

Security: Another critical component of our SDK is the end-to-end security
layer. Security in the past was isolated and added in the later stages of soft-
ware development as an “after-thought” which leads to “retro-fitting” applica-
tions. Addressing vulnerabilities becomes an ad-hoc operation leading to poor
accountability of critical components in production software. Thus, integrating
security requirements as part of the overall workflow and system architecture is
essential to build a robust foundation for the framework itself. The SDK puts
security at the forefront and we are and designing end-to-end security into the
core of the frameworks. This includes mechanisms such as encrypting messages
for all data, application, and core services of the frameworks with end-to-end
security [12]. Additionally, there needs to be a consistent method of managing
authentication and user identities between multiple science domains.

Process: Developing any type of software, including scientific software, requires
employing strong software engineering principles which lead to quality results.
Adopting best practices helps scientific teams improve the sustainability, quality,
and adaptability of their software, and ensures that the software that underpins
ORNL scientific research is engineered to be reproducible and replaceable. The
industry has recently shifted heavily towards using agile practices in order to
rapidly develop products and meet user needs and requirements. Versus other
traditional management processes, an agile approach allows software teams to
quickly pivot towards new priorities as users, requirements, or available tools
change. The SDK’s teams development processes heavily borrow from the agile
methods but is tailored to best fit our research and development and scientific
software environment. Each iteration includes stages for core software engineer-
ing disciplines where teams plan for the sprint, define requirements, design tests,
implement code, test and review changes, and finally release updated software.
Other key features our process incorporates are user stories and issues, back-
logs, and test-driven development. We also adopt other best practices into the
software development life-cycle as needed.

Software Excellence: Software metrics are not like metrics in other professions
in that they require context for proper interpretation. Scientific software metrics
can become even more complex due to the fact the software is typically for very
specific workflows which may not exist anywhere else in the world. However, both
qualitative and quantitative metrics are key health indicators within the context
of a project. Since our goal is enabling excellence in scientific software, we are
developing a set of metrics to measure the quality and impact of the software we
produce and provide a way to improve these over time. This also helps establish
a road map, vision, and strategy for Scientific Software (SS) excellence across
the lab by leading awareness and resources about software engineering processes
and quality metrics [18].



10 Malviya Thakur et al.
4 INTERSECT-SDK

The INTERSECT-SDK includes several core parts, (shown in Figure-4) includ-
ing: libraries, services and APIs, digital twins, and integrated DevSecOps run-
time environments and testing stacks. It is underpinned by strong software prac-
tices inspired by industry standard processes.
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Fig. 4. INTERSECT SDK

4.1 Dev: Libraries, Services, and Adapters

Libraries: The INTERSECT-SDK provides a comprehensive set of libraries
that abstract the integrated ecosystem architecture and design patterns away
from the user to provide a unified method for accessing resources and instru-
ments. They are designed to address the complexities of developing scientific
applications and are cross-platform, cross-language, and reuseable to best sup-
port the unique environments that exist for different science use-cases, workflow
patterns, instruments, and computing resources. The overall goal of our software
stack is to be extremely flexible to easily adapt to future use-cases.

The core INTERSECT architecture is a hierarchical system-of-systems struc-
ture based on a publish-subscribe messaging architecture that allows communi-
cation between various micro-services. Two of the core libraries, messages and
client, abstract the specific messaging implementations away from the user and
provide the functionality to send and receive messages across the system bus.
Both of these libraries implement plugins using the dependency inversion prin-
ciple to be flexible and support different messaging engines and brokers. The
dependency structure for the messages and client libraries is shown in Figure 5.
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The messages library is the message abstraction layer for all of INTERSECT
and is responsible for compiling message definitions to language-specific stubs.
The messages are defined by the Architectures team and can be compiled and
packaged to support multiple languages and platforms. These are currently writ-
ten using Google’s ProtoBuf library [10] to take advantage of code generation,
but this is hidden from the user and can be easily changed if needed. This li-
brary also serializes and de-serializes message objects to over the wire formats
and different handlers can be used based on requirements. However, the same
serialization method must be used on a single message bus in order for microser-
vices to communicate properly. We implemented a single base message type that
encapsulates all messages sent over the message bus. Several core message types
exist that map to specific messaging patterns defined by the architecture. Appli-
cation and use-case specific messages inherit from a core message type and are
defined separately and versioned.

These specific messages can be published in separate packages which lets users
only install the specific messages required for an application. This design first
ensures that any service that is on a message bus can receive and understand all
of the base INTERSECT messages. The application messages can be unwrapped
and deserialized if the proper message version and package are installed and the
messages are applicable for the current microservice; otherwise, they are simply
ignored.

The client library handles communication with the message brokers and pro-
vides a localized view of the ecosystem from a service’s perspective. It uses plu-
gins which allows it to support several different messaging brokers based on the
use-case requirements; new backends can also be easily added if needed. Mes-
sages can be transmitted using publish and callbacks can be set with subscribe
for handling received messages. The client internally depends on the messages
library which handles all of the message serialization and de-serialization func-
tionality. Published messages are first passed to messages and serialized before
sending to the broker; received messages are first passed to the de-serializer for
validation before calling the application’s callback handler.

Core Services: Our INTERSECT reference implementation uses component-
based micro-services to support reusability and abstract functionality to reduce
overhead when developing new micro-services and components and extending
functionality. Our software implements some functionality of traditional work-
flows, but it is focused more on managing the system-of-systems environment.
Being flexible in de-
sign is a high priority
to our team because
this is a prerequisite

for wide-spread adop- Demo.profo
tion; if the system de-
sign is completely in- protoc Definitions
flexible and not com- PR ) Pl R
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patible with existing
workflows in any way,
it would not be used.

The main two ser-
vices we have imple-
mented are the mes-
saging broker and the
discovery service. We
used the RabbitMQ
broker [29] as the mes-
sage bus primarily be-
cause of its support
for multiple protocols
and since we are de-
veloping the client li-
brary to support dif-
ferent brokers. We have
currently implemented
both the MQTT and
AMQP protocols which can be chosen based on system requirements. The dis-
covery service is an important requirement for implementing a flexible messag-
ing system. Separate INTERSECT deployments may use different messaging
brokers, but the same INTERSECT-SDK software stack. The discovery service
implements a API the client calls when first connecting to an INTERSECT de-
ployment to determine the system messaging configuration. The client can then
use this to connect to the INTERSECT messaging bus.

Adapters: Adapters within the INTERSECT context are specialized micro-
services that handle interaction between the INTERSECT ecosystem and scien-
tific systems and resources. These will implement specific capabilities that need
to be exposed into INTERSECT through the client library and will be unique
per system and/or use-case. Typically, this service will act as a bridge between a
control system’s API and the INTERSECT messaging bus and in some use-cases
an adapter may be directly integrated into the scientific software application.

For our driver use case, we have identified two primary adapters in the work-
flow: the NionSwift adapter and the Edge DGX adapter. The NionSwift adapter
uses a custom exposed API to communicate with the control software and ex-
poses the higher level functions such as starting a scan, acquiring data, or moving
the probe on the microscope. The Edge-DGX adapter handles the analysis steps
of the workflow and executes AI models on the DGX accelerators. Both adapters
communicate through the orchestrator microservice which manages data flow be-
tween the two and determines when the experiment goal has been achieved.
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4.2 DevSecOps

The heterogeneity of scientific applications in the INTERESECT ecosystem pro-
vides unique challenges which are simplified by integrating DevSecOps processes.
Releasing many smaller, iterative improvements over a period of time enables
faster feature implementation and quicker issue resolution. Additionally, imple-
menting security practices into the development pipeline ensures that security is
addressed throughout the workflow, rather than something to be addressed by
operations experts during deployment. While the initial transition to DevSecOps
practices can be time-consuming for teams to adopt, these practices are exten-
sible across other projects, streamline development, and help ensure software
excellence and deliver strong scientific research software.

Containerization: The complexity of scientific applications demands consis-
tent, segregated environments. For example, some applications (like NionSwift)
require a graphical environment to successfully execute; others may demand a
precise version of a plotting library due to incompatibilities with later versions
or may require connections to a database or a message broker on startup. Scien-
tific instruments also often invoke unique interactions which cannot be replicated
within a generalized system; for example, a materials scientist may require work-
ing with a physical sample. To test the INTERSECT ecosystem, we require the
ability to replicate a deployment of the software components of an instrument,
known as a digital twin. A single scientific workflow could consist of multiple
digital twins, each of which will make certain assumptions about its host sys-
tem. Containerizing each application allows us to efficiently replicate its software
environment without having to painstakingly recreate its environment each time
we test minor modifications. As we grow the digital twin capabilities of in-
struments within INTERSECT, we can more easily deploy and scale an entire
virtual national laboratory level deployment with container benefits. Given that
we have containerized a digital twin of an electron microscope, one can envision
now deploying many of these containers to resemble a microscopy User Facil-
ity. The benefits of containerization directly correlate to digital twin capabilities
INTERSECT hopes to accomplish.

Infrastructure-as-Code : “Infrastructure-as-Code” (IaC) is a core DevOps
practice that has emerged where teams capture system requirements for appli-
cations as code and automate creating and deploying infrastructure resources.
There are many benefits of adopting IaC, including: easily reconfiguring changes
across all managed infrastructure, easily scaling the managed infrastructure, and
reliably deploying the infrastructure to a good, known state. Terraform ° is used
as the IaC tool to manage cloud infrastructure for hosting current INTERSECT
services. [aC benefits have already affected scientific research. One such benefit
is the ability to share IaC openly with other researchers to enable starting with

5 HashiCorp’s Terraform: https://www.terraform.io/
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properly configured infrastructure to run complex scientific sofware. An exam-
ple is Google publishing open-source IaC scripts to provision infrastructure on
Google Cloud Platform to run Folding@Home to support COVID-19 research. 6

Continuous Integration: Continuous integration (CI) is accomplished by mul-
tiple levels of integrating new code changes, and ensuring high quality of software
determined by the project standards. We use libraries which install pre-commit
hooks on developers’ local systems to enforce good practices before code can even
be committed to the system. Once it is committed, it runs through additional
stages of automated integration enabled by CI pipelines, which perform lint-
ing, testing, formatting, build, code coverage, etc. Using these standard software
engineering practices help build reliable, high-quality scientific software.

Continuous Delivery and Continuous Deployment: Continuous delivery
is a mostly automated deployment pipeline, but one that does have a manual
stage for human-in-the-loop confirmation the deployment should be carried out.
Continuous deployment is a fully automated deployment pipeline without any
manual intervention. Continous deployment is the desired deployment approach,
but sometimes the complexity necessitates using continuous delivery or even
manual approaches. We deploy infrastructure to our own Kubernetes cluster in
the CADES OpenStack cloud [5], to the Slate OpenShift cluster [32] inside Oak
Ridge Leadership Computing Facility for HPC resources, and to ORNL’s DGX
Edge compute resources.

Security: For the initial implementation of authentication, tokens issued via
available identity providers will be used across services. Based on existing in-
frastructure, authorization will first be implemented against Lightweight Direc-
tory Access Control (LDAP) and local system methods. The current web-based
user interface mitigates cross-site scripting (XSS) attacks by applying a strong
Content Security Policy and utilizing input-sanitizing frameworks. For ensuring
security of the INTESERCT-SDK software artifacts, automated static security
scanning tools, such as Bandit [28] and Harbor [11], will be set up in CI/CD for
software packages and container images, respectively.

4.3 Digital Twins

The last main focus of INTERSECT-SDK is developing instrument digital twins
for the STEM use-case that can be deployed within our DevSecOps infrastruc-
ture. Ideally, instrument vendors would provide software, interfaces, and digital
twins for their instruments, but this does not happen often. There were several
major steps involved with creating and deploying the digital twin that we used
for our STEM use-case.

5 See https://github.com/GoogleCloudPlatform /terraform-folding-at-home
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Containerization: The NionSwift control software for the microscopes uses
plugins and provides the ability to simulate STEM instruments with generated
data. Our first step was integrating NionSwift and its simulator plugins into a
container that could be easily deployed for testing and demonstration. NionSwift
uses a graphical user interface (GUI) which introduced some initial roadblocks
because containers do not typically have display servers installed. We used an
existing base image that includes a X-window server which exposes a GUI over
an HTTP VNC connection. This proved to be a sufficient solution for the digital
twin by allowing remote access to the GUI as long as the container ports were
properly mapped.

Custom Plugin: The next major hurdle is remotely accessing the digital twin
from the adapter. NionSwift does have some basic APIs, but these were not
adequate for handling remote control. Luckily, NionSwift is open source and the
INTERSECT Integration team had developed a prototype remote API using
the Pyro library (Python Remote Objects) [27] We want to reuse as much code
as possible for other scenarios, so we identified generic patterns of controlling
the microscope that are useful for STEM workflows. We extended the proof-of-
concept server to expose new capabilities and also created a plugin that can be
directly integrated into NionSwift for both the instrument and the digital twin.
This simplifies the workflow even further for scientists as it is directly integrated
and automatically started with NionSwift. Our NionSwift adapter connects to
the API and calls the proper functions when handling INTERSECT messages.

Security: Some applications may not have INTERSECT compatible security
and we must take additional steps to properly integrate them. Pyro lacks an
integrated security solution, which is a major concern for the digital twin and
instrument. Any user could connect to the unsecured API and run commands on
the microscope without authorization. We addressed this issue by incorporating
a secure socket layer to both the digital twin and the adapter to ensure only the
adapter could successfully connect. This uses standard public/private certificates
to validate a connecting user against a list of allowed keys. These certificates
could be passed to users that need to control the microscope remotely, but
ideally they should only be installed on trusted systems like the adapter.

5 Related Work

The scientific community has recently emphasized the need for intelligent sys-
tems, instruments, and facilities for enabling the science breakthroughs with
autonomous experiments, self-driving laboratories, and supporting Al-driven de-
sign, discovery and evaluation [7]. Today, many scientific experiments are time
and labor intensive [6]. A majority of effort is spent designing ad-hoc software
stacks and data processing tools specifically for the experiments [18]. This spe-
cialization also creates interoperability challenges among scientific software tools
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leading to reduced automation and integration across multiple science disci-
plines [9]. In addition, scaling the experiments would be difficult, as the teams
responsible for developing the software are domain scientists and might have
inadequate experience software engineering. In brief, it would be helpful to de-
couple the domain science from the science of software responsible for executing
the experiments. Earlier, researchers aiming to enhance interactions between
traditional high performance computer resources and experimental equipment
have developed a Software Framework for Federated Science Instruments [22].
The main objective of this work is the development of an interconnected SDK
that would relinquish the software development by scientific domain experts,
and instead benefit from a wide array of inter-connected infrastructure.

Both the System of Systems (SoS) Computing Architecture [9, 1] and Arti-
ficial Intelligence brings transformative change to the scientific community and
foster novel discoveries. This change largely be fueled by the scientific appli-
cations that would operate at the intersection of problem and solution space
across varied domains, including materials, neutron science, systems biology, en-
ergy, and national security. While successes have been achieved by applying Al,
albeit owing to its complexity and technological difficulty, Al is still limited to
its domain experts and core practitioners. With the arrival of automated ma-
chine learning (AutoML) [8,3,17], there is now an unparallel opportunity to
democratize the use of Al across all scientific domains and give its power in the
hands of non-practitioners, too. As part of further work, we plan to extend the
functionality by deploying machine learning packages and scale it through what
is increasingly referred to as Machine Learning Operations (MLOps) [35] This
includes model training and optimization, endpoint deployment, and endpoint
monitoring for the application using ML-related functionalities.

Over the last 15 years or so, the community has recognized the key roles that
Development and Operations (DevOps) play in bridging the gap between soft-
ware development and deployment into production [3,17,37]. However, a skills
and knowledge gap exists to realize the necessity of DevOps for scientific soft-
ware development. Software for scientific experiments should require prototyping
and flexibility to accommodate advances in the instrument setup and innovative,
original experiments [12, 20, 21]. A great deal of progress has been made by try-
ing to adopt standardized SDKs [1,8] for science. However, a feedback loop is
required to rapidly adapt and modify for cutting-edge developments due to the
novelty [23,2,31]. DevOps plays a crucial role in moving developers’ changes
from version control to a released software artifact, allowing scientists to run the
latest version of the prototype. Bayser et al. [3] coined the term ResearchOps in
their work where they outline the importance of a continuous cycle for research,
development, and operation. This allowed for the latest prototype versions to
be available in practice at the IBM Research Brazil lab (i.e., short release cy-
cles) [3]. Our work will be the first to connect such a wide variety of devices,
HPC environments, and edge federated instruments [4, 16] together under a sin-
gle workflow. This brings a seamless and secure infrastructure for multi-domain
science that drives the future of federated research [14, 15].
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6 Conclusion

The main outcome of this work is a process toward a robust INTERSECT-SDK,
a development environment for building scientific applications on an open ar-
chitecture specification allowing for autonomous experiments and “self-driving"
controls. The design and development of INTERSECT as a platform of transfor-
mative sciences underpins the need for a broader collaboration and coordination
from computing and domain science. The proposed INTERSECT-SDK will en-
able the optimal use of federated architectures connecting disparate instruments
and Al-driven compute for novel scientific discoveries. In addition, this will allow
the research community to run multi-domain experiments virtually from distant
locations, control such instruments, and process data by combining the optimal
workflow. The DevSecOps capability demonstrated through this work will allow
for application development and execution in an end-to-end secure environment
and across different levels of access hierarchies and instruments.

Additionally, we showcased the efficacy of the proposed SDK through a
case-study on Scanning Transmission Electron Microscopy. This example is an
archetype of future interconnected science applications that connect experimen-
tal hardware (e.g., microscopes) and Al-guided experimental control systems to
speed up and improve the repeatability of scientific discovery.

The other core outcome of this work is an articulation of the software engi-
neering best practices for the development of scientific workflow for autonomous
experiments. We propose and demonstrate early results for a complete software
life-cycle framework that addresses the need to automate the development, inte-
gration and deployment of software applications in a repeatable and reproducible
way. In subsequent work, we plan to complete the development of the proposed
SDK with interfaces to connect with standard scientific instruments from mul-
tiple domains. In addition, we plan to develop APIs which allow for extending
the SDK to new instruments. The SDK will be released as open-source, allowing
the research community to benefit in their R&D work.
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