
A Parallel Machine Learning Workflow for Neutron Scattering Data Analysis

Tianle Wanga, Sudip K. Sealb, Ramakrishnan Kannanb, Cristina Garcia-Cardonac, Thomas Proffend and Shantenu Jhaa
aComputational Science Initiative, Brookhaven National Laboratory, USA

bComputer Science and Mathematics Division, Oak Ridge National Laboratory, USA
cComputer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, USA

dSpallation Neutron Source, Oak Ridge National Laboratory, USA

Abstract—As part of a larger effort, this work in progress
reports the possible advantages of modifying conventional
workflows used to generate labelled training samples and train
machine learning (ML) models on them. We compare results
from three different workflows using neutron scattering data
analysis as the motivating application and report about 20%
improvement in speedup, with no appreciable loss of model
accuracy, over a baseline workflow.

I. INTRODUCTION

Crystalline materials belong to seven crystallographic
classes. A set of unit cell lengths, denoted by the parameter
set {a, b, c}, and unit cell angles, denoted by the parameter
set {α, β, γ} together define each crystallographic class.
The parameters {a, b, c} and {α, β, γ} are constrained to
satisfy unique relations depending on the symmetry class
the crystal belongs to. In this study, we only consider three
classes, namely, tetragonal, trigonal and cubic symmetries.
These symmetries are defined by the following parameter
relations: tetragonal (a = b ̸= c, α = β = γ = 90◦), trigonal
(a = b = c, α = β = γ ̸= 90◦) and cubic (a = b = c,
α = β = γ = 90◦). A central goal of neutron scattering
analysis is to determine the values of the parameters {a, b, c}
and {α, β, γ} from the pattern of neutrons scattered by
the crystal and collected by detectors in the form of two-
dimensional patterns called Bragg profiles.

It was recently shown [1] that trained ML models have the
potential to predict these structural parameters directly from
their Bragg profiles with acceptable accuracy for certain

This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan) A portion of this research used resources at the Spallation
Neutron Source, a DOE Office of Science User Facility operated by the
Oak Ridge National Laboratory. A portion of this research used resources
at the Argonne Leadership Computing Facility, a DOE Office of Science
User Facility operated by the Argonne National Laboratory. A portion of
this research used resources at the Brookhaven National Laboratory, a DOE
Office of Science National Laboratory. This research was sponsored by
ExaLearn, an Exascale Computing Project, DOE.

classes of materials. Training these ML models typically
require large volumes of labelled training data. However,
the availability of experimentally labelled neutron scattering
data is very limited. To overcome this challenge, a physics-
based simulator called GSAS-II [2] is used in this work to
computationally simulate training samples of Bragg profiles
labelled by {a, b, c} and {α, β, γ}. To do this, domain
knowledge is used to limit the range of each of the six
parameters and labelled samples are generated at known
values of the six parameters within these ranges by stepping
through the parameter space in pre-defined step sizes. De-
pending on the crystallographic symmetry being simulated,
the total time to generate the training data can vary from a
few hours to days. The task of generating the training data
is shown by the blue circle in Fig. 1(a). The subsequent
task of training ML models using the labelled samples to
predict the parameters is shown by the red circle in Fig.
1(a). This sequence of tasks in which the data is generated
via simulations followed by the training task is referred to
as the baseline workflow here.

In this paper, we report the results of executing the
preceding simulation and training tasks using two alterna-
tive workflows and compare their performance in terms of
time-to-solution and training accuracy with those from the
baseline workflow.

II. WORKFLOW MIDDLEWARE

RADICAL-Cybertools (RCT) is a set of software sys-
tems that serve as middleware for scientific computing.
Specifically, RCT enables concurrent and sequential exe-
cution of applications with heterogeneous tasks on high-
performance computing resources [3]. RCT has three main
components: RADICAL-SAGA (RS), RADICAL-Pilot (RP)
and RADICAL-Ensemble Toolkit (EnTK). EnTK supports
the concurrent or sequential execution of tasks in an arbitrary
priority relation (i.e., ensemble or pipelines of tasks). EnTK
is implemented based on RP, which allows users to submit
jobs to computing infrastructures and then use the resources
acquired to execute one or more tasks. RP is implemented
based on RS, a high-level interface to distributed infras-
tructure components like job schedulers, file transfer, and
resource provisioning services. In this work, EnTK is used to

1

build three workflows (baseline and two alternate workflows)
and execute them on the Theta supercomputer housed in
the Argonne Leadership Computing Facility. Each Theta
node is an Intel KNL 7230 chipset with 64 cores and 192
GiB of DDR4 SDRAM and connected together by an Aries
Dragonfly high-speed interconnect.

III. WORKFLOW DESCRIPTION

The three workflows tested in this paper will be referred
to as the baseline workflow (Wb), the serial workflow (Ws)
and the parallel workflow (Wp). These are shown in Fig. 1.

Baseline Workflow, Wb: As mentioned earlier, the
baseline workflow, shown in Fig. 1(a), consists of two tasks,
the simulation task (blue circle), and the training task (red
circle). Given a set of P resources, the baseline workflow is
defined by the sequence of the following two tasks. In task 1,
the P resources are used to simulate all N labelled samples
of the training data set. This task is followed by task 2 in
which the ML model Mb is trained to a desired accuracy,
α, for a fixed number of epochs, say ne. The N training
samples are partitioned into nb = N/b batches where b is
the batch size. The batch size used in this study is b = 512.

Serial Workflow, Ws: The serial workflow, Ws, is sim-
ilar to the baseline workflow, Wb. The difference is that the
available P resources are used to simulate a smaller number
of labelled samples at a time, then using all P resources to
train the ML model Ms on this smaller training data set.
This sequence of simulation and training (called a phase
here) is repeated until all N training samples have been
generated and used for training Ms. This is shown in Fig.
1(b). The motivation for testing this workflow is two-fold:
(a) since each simulation task only needs to generate a small
portion of the entire training data, the number of phases can
be tuned so that the data can fit into memory of the available
P resources, and (b) the workflow allows introduction of
active learning policies between the simulation and training
tasks for intelligent sampling of the input parameter so that
the training sample batches simulated in the (k+1)th phase
can be based on the training result in the kth phase.

Parallel Workflow, Wp: The parallel workflow, Wp, is
a pipelined parallel version of the serial workflow. Here,
we take advantage of the fact that the training task in any
phase can be overlapped with simulation task of the next
phase. See Fig. 1(c). Note that the overlap itself will not
introduce significant benefit for the computational perfor-
mance. This workflow mimics the case when the available
resources consist of both CPU and GPU resources, as is
the case in many hardware accelerated platforms. Typically,
training tasks are offloaded to GPUs because most training
algorithms ultimately translate to SIMD (single-instruction
multiple-data) operations which are very efficiently executed
on GPUs. Wp emulates a workflow that overlaps simulation
tasks on CPUs and training tasks on GPUs. RCT is currently
under development for GPU support. As such, Wp provides

Figure 1: The baseline and alternate workflows.

a mechanism to mimic a GPU-supported RCT workflow that
overlaps CPU and GPU computations for simulation and
training tasks, respectively, but only using CPU executions.
The model trained using Wp is denoted by Mp.

IV. MODEL

The model M used in the training task in each of
the workflows is a multitask network shown in Fig. 2.
It uses the output from the first fully connected layer
of the deep neural network classifier described in [1]
to train both a regressor (using softmax) in addition
to the original classification task. The classifier updates
the weights using the error obtained from cross entropy
loss while the regressor uses MSE loss for every batch.

Feature
Learner

Fully
Connected

Softmax

Symmetry
Classifier

Cubic/Trigonal
/Tetragonal

Transfer Learning

Input Bragg
Profile

Fully
Connected

Parameters Ba
ck

Pr
op

Deep Regressor

Input Bragg
Profile

Input Bragg
Profile

Feature
Learner

Fully
Connected

Parameters

Ba
ck

Pr
op

Initial Weights

Input Bragg
Profile

Feature
Learner

Fully
Connected

Parameters

Deep Multitask

Softmax

Cubic/Trigonal
/Tetragonal

Class Conditional Models Integrated Models

Input Bragg
Profile

Encoder

DecoderANN
Regressor

Parameters

CAENN

Reconstruction

Feature
Learner

Figure 2: Model architecture.

V. DATA GENERATION
AND EXPERIMENT SETUPS

In this preliminary work,
we use a perovskite mate-
rial called barium titanate
(BaTiO3), since it naturally
exists only in three possi-
ble symmetry groups, namely,
tetragonal, trigonal and cubic.
Guided by domain knowledge,
specific ranges of the param-
eters were chosen to generate

the labelled samples for each symmetry class. Three exper-
imental setups, referred to as E1, E2 and E3, were used.
These are described next.

For E1 and E2, the range of a for the cubic symmetry
(recall that for cubic symmetry, a = b = c) was chosen
to be [2.5, 5.5) with a step size of 0.005; for the trigonal
symmetry, the parameter range for a was [2.5, 5.5) with a
step size of 0.05 and for α was [20, 88) ∪ [92, 120) with
a step size of 0.5. For the tetragonal symmetry, the range
for a was [3.5, 4.5) with a step size of 0.005, and for c

2

was [3.5, 4.5) with a step size of 0.01. For E3, the samples
were simulated from the same parameter ranges as those of
E1 and E2 with the following difference: the step size of a
was 0.001 for cubic symmetry, the step size of a was 0.01
for trigonal symmetry and the step size of c was 0.002 for
tetragonal symmetry. These choices ensured that the amount
of data generated in E3 was five times larger than that in
E1 and E2. We used a larger data set for E3 because it used
four times the resources than E1 and E2.

Since the workflows Ws and Wp need to simulate the
samples in phases, care is needed in how the samples
are generated to ensure that all three workflows train the
models using an identical distribution of training samples.
In other words, if there are n phases in a workflow, then
the training data samples need to be simulated in each of
n partitions in such a manner that models trained in each
phase sample training data from the same distribution as the
baseline workflow to avoid any bias. A naive partitioning
strategy in which the range of a parameter, say a, for the
baseline simulation is [amin, amax) with a step size d, the
range can be partitioned such that the kth sub-range is
[amin + (k − 1) δan , amin + k δa

n) with the step size d, where
δa = amax − amin. This naive partition introduces a bias
in the training since the different phases sample the training
data with different distributions. Here, we use the following
bias-free policy for phased training sample generation: given
the baseline range δa and step size d, the simulator simulates
the samples [amin + (k − 1)d, amax − (n − k)d) with step
size n · d. This bias-free policy ensures that the training
samples simulated in each phase do not overlap and the
bias it introduces due to the difference in the distribution of
different phases has an order of O(d), which is negligible
in this work since d ≪ δa. This strategy is used for all the
different input parameters for the simulation tasks.

In both Ws and Wp, we choose the number of phases to be
two in E1 and E2, and four for E3 in this preliminary study.
Additionally, for all the symmetries, we apply the bias-free
policy explained above to partition the input parameters and
divide the baseline parameter ranges into two (in E1 and
E2) and four sub-ranges (in E3).

VI. PERFORMANCE RESULTS

The performance of the three workflows were compared
across three different experimental setups, E1, E2 and E3,
as described before. Table I lists the setup configurations of
each experiment. In each setup, the process ranks for the
simulation tasks were mapped to cores of a Theta node and
the process ranks for the training tasks were mapped directly
to the Theta nodes, each with 64 CPU cores.

The primary goals of this preliminary work are to inves-
tigate the performance of the three workflows in the context
of two main considerations. First, we wish to study how
the model accuracy reacts to the different workflows and,

Table I: The three experimental setups (E1, E2 and E3) and their performance
numbers. The ranks for simulation tasks are mapped to cores while the ranks for
training tasks are mapped to nodes (each Theta node consists of CPU 64 cores).

E1 E2 E3
Total cubic sample 600 600 3000

Total trigonal sample 11520 11520 57600
Total tetragonal sample 20000 20000 100000

Epochs 100 40 250
Rank for simulation 256 256 512

Rank for training 4 4 16
Phase (serial/parallel workflow) 2 2 4
Running time, Tb, for Wb (sec) 2720 1900 8633
Running time, Ts, for Ws (sec) 2573 1759 8752
Running time, Tp, for Wp (sec) 2301 1394 7222

Serial-to-baseline speed-up, Tb/Ts 1.057 1.080 0.986
Parallel-to-baseline speed-up, Tb/Tp 1.182 1.363 1.195

Parallel-to-serial speed-up, Sp2s 1.118 1.262 1.212

second, how their computational performance compares with
one another.

Model Performance: Although the same model archi-
tecture is used in the three different workflows, the mod-
els ultimately trained are characterized by different model
weights because of the differences in how each is trained in
the three different workflows.

For the baseline workflow, all the training samples (see
Table I) are generated once in the beginning and then the
model Mb is trained for 100 epochs. For the Ws workflow,
the bias-free policy described above was used to separate the
data generation into two phases. The model Ms was then
trained using the data generated in phase 1 for 100 epochs,
and then the training was continued with the data generated
in phase 2 for another 100 epochs. The baseline workflow
Wb can be viewed as a special case of the serial workflow
Ws where the number of phases is one. The model Mp

trained by the parallel workflow Wp is identically trained
as in Ws with the training task of one phase overlapped
with the simulation task of the next phase. The test loss as
a function of the number of local batches being trained is
plotted in Fig. 3a. In this study, 5% of the total data was
used for testing in each case. Fig. 3a and Fig. 3b illustrate
two important points. First, the testing loss for Ms and Mp

are identical. While this is not surprising since Ws and Wp

are identical (the cyan and black curves are overlapping
in Fig. 3a and Fig. 3b) in the computations performed
except that the simulation and training tasks overlap in one
compared to the other. The second and more important point
is that the testing loss of both models, Ms and Mp, are
comparable to that of the baseline model Mb and, in fact,
converge asymptotically in the number of local batches in
both experiments E1 and E3. This suggests that the multi-
phase parallel workflow will not compromise the accuracy of
the baseline workflow. The test loss slightly increases right
after 1500 local batches. This is where the training in the
second phase starts, and the reason for the slight increase
in the test loss can be attributed to the fact that the model
trained in the first phase does not generalize immediately.

3

Computational Performance: In Table I, the runtimes
of each experiment for the indicated number of epochs are
denoted by Tb, Ts and Tp corresponding to the workflows
Wb, Ws and Wp, respectively. We compare the computa-
tional speedup, if any, from the workflows Ws and Wp by
comparing their corresponding runtimes with the runtime
of the baseline workflow, Wb, respectively. Accordingly,
the speedups from Ws and Wp are Ts/Tb and Tp/Tb,
respectively.

In E1, the serial-to-baseline speedup is found to be 1.057
and the parallel-to-baseline speedup is found to be 1.182.
In addition, the parallel-to-serial speedup is found to be
1.118. These speedup factors are small due to the imbalance
between the training and simulation tasks - the running time
of the training task was about three times more than that of
the simulation task.

If it is assumed that each simulation sub-task takes
approximately the same time ts, and each training sub-task
takes approximately the same time tt, then the theoretical
speed-up of the parallel workflow with respect to the serial
workflow is:

Speedup, Sp2s =
n · (ts + tt)

ts + tt + (n− 1) ·max(ts, tt)
(1)

This speed-up is expected to increase as tt and ts approach
each other, suggesting that when the simulation and training
sub-tasks are designed to roughly consume equal amounts
of time, the Sp2s speedup is expected to improve. This
improvement is also expected with increasing number of
phases n.

In E2, which is identical to E1, the model is trained for
only 40 epochs in each phase. Since the model does not
converge in E2 due to the reduced number of epochs, the
corresponding test losses are not presented here. However,
the Sp2s = 1.262 in E2 is better than that of E1 and is
close to the theoretical maximum speedup of 1.333 when
n = 2, according to Eq. (1). The two main reasons why
the theoretical limit was not achieved are: (a) the training
time and the simulation time are not balanced, and (b) RCT
incurs some task scheduling overhead.

In E3, five times greater training data is generated than in
E1 or E2. Also, more resources are used for simulation and
training. See Table I. Additionally, the model was trained
for 250 epochs instead of 100, which made it an imbalanced
scenario. As expected, the observed Sp2s speedup of 1.212
was smaller than the theoretical value of 1.6 when n = 4 due
to this imbalance. The test loss as a function of the number
of local batches being trained, plotted in Fig. 3b, shows
that the final test loss in the parallel workflow is slightly
higher than that of the baseline workflow. Note the three
spikes in the test loss at the advent of a new phase. These
spikes gradually decrease in the latter phases as the model
generalization improves.

(a) E1

(b) E3

Figure 3: Loss function on the test set as a function of the number of local batches
trained. The loss for the serial and parallel workflows are identical and, hence, overlap.

VII. SUMMARY AND FUTURE WORK

This short paper reports 20% improvements in computa-
tional speed without any appreciable loss of model accuracy
resulting from modifications in a typical data generation and
model training workflow for neutron scattering data analysis.
In the present study, the ML models in every phase of the
workflows were trained to the same number of epochs. In
future, the stopping criterion will be changed to an early stop
condition in which the models will stop training as soon as
the calculated loss over a pre-defined number of consecutive
epochs remains bounded by some pre-defined loss value.
In addition, active learning policies will be integrated into
the workflows to guide the task of generating lesser, but
carefully chosen, training data to further reduce simulation
and training times compared to the baseline workflow.

REFERENCES

[1] C. Garcia-Cardona, R. Kannan, T. Johnston, T. Proffen, and
S. K. Seal, “Structure Prediction from Neutron Scattering Pro-
files: A Data Sciences Approach,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 1147–1155.

[2] B. H. Toby and R. B. Von Dreele, “GSAS-II: The Genesis of
a Modern Open-Source All Purpose Crystallography Software
Package,” Journal of Applied Crystallography, vol. 46, no. 2,
pp. 544–549, 2013.

[3] V. Balasubramanian, S. Jha, A. Merzky, and M. Turilli,
“RADICAL-Cybertools: Middleware Building Blocks for
Scalable Science,” 2019. [Online]. Available: https://arxiv.org/
abs/1904.03085

4

