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Abstract. The extreme-scale computing landscape is increasingly dom-
inated by GPU-accelerated systems. At the same time, in-situ workflows
that employ memory-to-memory inter-application data exchanges have
emerged as an effective approach for leveraging these extreme-scale sys-
tems. In the case of GPUs, GPUDirect RDMA enables third-party de-
vices, such as network interface cards, to access GPU memory directly
and has been adopted for intra-application communications across GPUs.
In this paper, we present an interoperable framework for GPU-based in-
situ workflows that optimizes data movement using GPUDirect RDMA.
Specifically, we analyze the characteristics of the possible data movement
pathways between GPUs from an in-situ workflow perspective, and de-
sign a strategy that maximizes throughput. Furthermore, we implement
this approach as an extension of the DataSpaces data staging service,
and experimentally evaluate its performance and scalability on a current
leadership GPU cluster. The performance results show that the proposed
design reduces data-movement time by up to 53% and 40% for the sender
and receiver, respectively, and maintains excellent scalability for up to
256 GPUs.

Keywords: In-Situ - Workflow - GPU - GPUDirect RDMA - Extreme-
Scale Data Management.

1 Introduction

Emerging HPC systems have widely adopted Graphic Processing Units (GPUs)
for their massive computing capability and high power efficiency. As of Novem-
ber 2022, seven of the top ten systems on the TOP500 list [23] have GPUs.
Scientific simulations and analyses benefit from both the parallelism and energy
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efficiency of GPUs’ architecture [12]. A variety of applications and tools, such
as LAMMPS [9] and ZFP [16], have released GPU-optimized versions.

However, a vast I/O gap still remains for the loosely-coupled in-situ work-
flow [15], which typically consists of several scientific applications as its compo-
nents. Within in-situ workflows, the component applications run on GPUs/CPUs
and exchange data through a high-speed network. Although individual applica-
tions can leverage GPUs, the inter-GPU and GPU-CPU I/O cross codes are im-
plemented in an ad hoc manner, which is prone to suboptimal performance. On
the other hand, the latest hardware-specific technique, i.e., GPUDirect RDMA
(GDR) [3], is available on many modern HPC systems and offers a performance
improvement opportunity, while requiring deep hardware knowledge and low-
level programming skills from domain scientists.

Existing solutions to the I/O across components in the workflows view the
devices (GPU) and hosts (CPU) as individual entities and employ a sequential
device = host = network pathway. As can be seen, the involvement of the hosts
is nonessential, and it slows down the I/O performance due to unnecessary data
movement to/from the hosts. This slowdown will be exacerbated at larger scales.
In addition, involving hosts during I/O across components requires the develop-
ers transfer data between hosts and devices with low-level GPU programming
APIs, such as CUDA, HIP, etc. It is nontrivial for domain scientists to program
with these low-level APIs, and such a programming approach often results in ad
hoc solutions that are limited in both interoperability and portability, especially
in cases of massive variables or complex I/O patterns.

Porting existing in-situ workflow to GPUs is an ongoing effort in many scien-
tific computing communities. Figure 1 illustrates the challenges of this workflow
porting problem: Some of the components have already been ready to run on
GPUs, whereas others are in the porting process or still left as legacies. This
heterogeneity complicates the I/O management between components in differ-
ent porting stages and thus makes the plug-n-play almost impossible. Complex
data communication patterns and a great number of variables make the situa-
tion even worse. For example, the I/O engine of MURaM workflow [19] contains
seven separate procedures with 50 1-D variables, 63 2-D variables, and 34 3-D
variables in total. We realized that although moving data between GPU and
the host plus conventional communications between host buffers and the net-
work remains a solution, it requires greatly repetitive code refactoring efforts
during the porting process but still gains no flexibility of being ported to other
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Fig. 1. A typical ongoing GPU-based in-situ workflow porting process. The main sim-
ulation has already been ported to GPU. Other components are ported, being ported,
or still remain the CPU version. The I/O between components also has to change ac-
cording to the data source/destination.
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GPU ecosystems. In addition, we observed that the I/O performance degraded
severely due to consecutive staging at the host buffer, which can be bypassed to
reduce the I/O overhead for most cases.

Based on these insights, we investigate several designs for inter-application
bulk communications from/to GPUs and introduce a GDR design that circum-
vent unnecessary data movement path through the host. We therefore propose
the first interoperable I/O abstraction for GPU-based in-situ workflow and im-
plement it as an extension of the DataSpaces [10] data staging service. We make
the following key contributions in this paper:

— We investigate several designs for bulk data exchanges between GPU appli-
cations with respect to the features of in-situ workflow, and then propose a
GDR design that reduces I/O overhead by circumventing the host.

— We propose the first interoperable I/O abstraction for GPU-based in-situ
workflow, implemented as the extension of the DataSpaces data staging ser-
vice, which reduces the software refactoring cost and enables plug-n-play in
the workflow porting process.

— We evaluate the proposed designs on current leadership GPU clusters using
both synthetic and real workflows running on up to 256 GPUs and demon-
strate that they can reduce up to 53% and 40% of the I/O time for sender
and receiver, respectively, in comparison to the baseline.

2 Background

2.1 In-Situ Workflow

The traditional scientific workflow model first writes the simulation data to per-
sistent storage, and then reads it back into memory for the analysis or visualiza-
tion later, which is defined as a post-hoc method since it reflects that the visual-
ization or analysis is performed “after the fact” [8]. We have witnessed a signif-
icant performance slowdown for this method as the computational throughput
scaled up [4,5,7,17]. An alternative approach, which is named by the umbrella
term in-situ, saves the huge I/O cost by removing the nonessential involvement of
persistent storage. Two paradigms have emerged from the in-situ model: tightly-
coupled method and loosely-coupled method [15]. The tightly-coupled paradigm
is illustrated in Figure 2a. Simulation and analysis run in the same process using
the same set of computing resources. They alternate in each iteration, sharing
the data stored in the memory, and finally output the refined result to the file
system. As for the loosely-coupled paradigm, simulation and analysis run asyn-
chronously in the separate process groups on their dedicated resources, as shown

Resource A Resource A

SulAd| [S2]Ax| |Ss|As| |Sa|Asl - |Sa|An S, s, S, S, Ss Se | - | s,

Helper Resource Resource B

Se— —
Staging || Staging | =] [ A4|[|A,|[As]| - |An|—
Refined Raw Area Area || Raw Refined

Result Dat: Dat:
ata ata Result File System

File System
(a) Tightly-coupled in-situ workflow. (b) Loosely-coupled in-situ workflow.
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Fig. 2. A schematic illustration of in-situ workflow paradigms.
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(a) Vanilla data flow between GPU and NIC. The red path requires the data to be
staged in only one host buffer but needs a sequential DMA deregistration and regis-
tration by GPU/NIC or NIC/GPU, respectively. The blue path allows GPU and NIC
to register at two host buffers, but an extra memory copy is needed.
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Fig. 3. Data flow paths between GPU and network interface card (NIC).

in Figure 2b. They exchange the shared data over the high-speed network with
the help of a staging server, which takes extra resources to manage the data
forwarding.

The loosely-coupled in-situ workflow maintains its flexibility and modularity
by isolating the computational tasks at an appropriate granularity. We define
each isolated computational task that runs separately as an individual com-
ponent in the context of loosely-coupled in-situ workflow. Then, the flexibility
means that the running scale of each component can be configured individu-
ally according to its characteristics, avoiding the inefficiency under the holistic
resources allocation. Besides, the modularity supports easy plugin-and-play for
new components to join the workflow, which saves the significant development
cost and enables more complicated extensions. Both features offer great improve-
ment opportunities for in-situ workflows by leveraging the GPUs equipped in the
modern HPC systems. Assigning each component to its best-fit hardware will
finally improve the overall performance of the workflow.

2.2 GPUDirect Technologies

Direct Memory Access (DMA) requires memory registration before data access.
The DMA engine of GPU has to register a CPU memory region to enable asyn-
chronous data movement, and the network interface card (NIC) also requires this
registration to transfer data over the network. Therefore, as shown in Figure 3a,
either GPU and NIC registering the same host buffer sequentially or registering
two separate host buffers at the same time but introducing an extra data copy is
required for GPU data communication. Both the de-register/register process and
the extra memory copy can be summarized as the DMA overhead that increases
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I/0O latency. NVIDIA GPUDirect technologies eliminate unnecessary memory
copies between GPUs and other devices, decrease CPU overheads, and reduce
latency [3], thereby significantly enhancing data movement and access for GPUs.
Released with CUDA 4.0, the initial GPUDirect enabled both GPU and NIC to
register the same memory region on the CPU, avoiding the DMA overhead at
the host as shown in Figure 3b. From CUDA 5.0, GPUDirect RDMA (GDR)
is released as the extension of GPUDirect, which supports GPU memory regis-
tration by any third-party standard PCle device. Figure 3c illustrates the direct
data exchange path between GPU and NIC.

AMD GPUs also support this peer-direct technique in their ROCm ecosys-
tem, namely ROCmRDMA [2]. In this work, however, we use the umbrella term
GPUDirect RDMA (GDR) to refer to all direct data exchange solutions be-
tween GPU and NIC. We focus on NVIDIA GPUs with the CUDA programming
ecosystem and the RDMA-enabled network in the rest of the paper.

3 Related Work

Over last ten years, a fair amount of contributions from HPC community have
been made to accelerate GPU-related 1/O in widely used programming mod-
els and network substrates by GPUDirect technologies. Wang et al. proposed
MVAPICH2-GPU [26], which is the first GPU-aware MPI implementation with
the GPUDirect optimization for CUDA-based GPUs. Potluri et al. upgraded
the GPU-aware MPI libraries using GPUDirect RDMA (GDR) and proposed
a hybrid solution that benefits from the best of both GDR and host-assisted
GPU communication [18]. Shi et al. designed GDRCopy [22], a low-latency copy
mechanism between GPU and host memory based on GDR, which improved the
efficiency of small message transfer. NVIDIA NCCL [13], as a popular backend
for leading deep learning frameworks, also supported GDR in its communication
routine set. In addition, programming frameworks that simplify the GPU appli-
cation porting process have been explored as well. Kokkos [24], RAJA [6] and
SYCL [20] support compile-time platform specification for applications written
in their abstractions. However, research work in either data movement opti-
mization or I/O abstraction from a workflow perspective is extremely limited.
ADIOS?2 [11], a high-performance I/O framework that often plays as a data
coupler between components in a workflow, is extended to support GPU-aware
I/O [1]. However, its GPU I/O support works only for binary-pack version 4
(BP4) and BP5 file engines, which are still solutions based on persistent stor-
age. Zhang et al. explored the data layout mismatch in the CPU-GPU hybrid
loosely-coupled in-situ workflow and proposed a solution to minimize the data
reorganization overhead [27]. However, they did not optimize the data movement
pathway for GPU components. Wang et al. presented a conceptual overview of
the GPU-aware data exchange in an in-situ workflow [25], but they proposed
only a preliminary idea with neither implementation details nor quantitative
evaluation at scale. Our work is distinguished from related efforts in being the
first interoperable GPU-aware I1/O abstraction for the inter-component data
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exchange in loosely-coupled in-situ workflows. We provide a systematically com-
prehensive evaluation of the GDR design at the largest scales we were able to
reach on a state-of-the-art production HPC system equipped with GPUs.

4 Design

In this section, we discuss the baseline and optimized designs for the inter-
application bulk data movement from/to GPUs. As shown in Figure 1, compo-
nents in the workflow can be generally classified in three categories as staging
server, sender, and receiver. The staging server typically works as a memory-
bounded component that is responsible for storing the intermediate shared data
and processing the asynchronous I/O requests made by all other applications.
Therefore, even if the staging server may also run on nodes equipped with GPUs,
CPU main memory is still chosen as the primary storage media for its consid-
eration of capacity and cost. The sender is typically a simulation that produces
multidimensional data on GPUs and sends it out to the staging server. The re-
ceiver is usually an analysis or a visualization that fetches the data from the
staging server and consumes it. A loosely-coupled in-situ workflow has only one
staging server component and at least one sender and one receiver. In the fol-
lowing subsections, we discuss these two parts, respectively. We also present the
implementation overview of the proposed I/O framework and demonstrate its
interoperability through a code snippet.

4.1 Sender Side

Baseline Design To send the GPU data out to the staging server, the base-
line design simply uses CUDA memory copy from device to host and then sets
up a conventional CPU-CPU bulk data transfer between the sender and stag-
ing server. This straightforward approach takes the bulk I/O as an ensemble by
concatenating the GPU to CPU and CPU to the staging server data transfer
together, which runs sequentially after the meta-data preparation phase on the
CPU. The DMA control sequence introduced in Section 2.2 must be gone through
between the two concatenated I/O procedures, which increases the overall la-
tency. Although this design is intuitive and simple to implement, its weakness
becomes apparent when frequent and consecutive put requests are made because
the fixed overhead is incurred for every request.

GPU Memory D VemCorl > >
CPU Memory >~DMA o > ‘\ >
Meta Data Prep. ! Bulk Data ~ Meta Data Prep. / Bulk Data
Meta Data & RTS ”.'CTS 1B_Transfer() Meta Data & RTS /CTS 1B_Transfer()
Remote Staging 1B_Transfer() ] IB_Transfer()
CPU Memory
(a) Sender Pipeline Design. (b) Sender GDR Design.

Fig. 4. A schematic illustration of sender side designs.
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Fig. 5. Data Object Reassembly on the receiver side. 4 PEs of the sender put local
4x4 2D arrays into a global 8x8 domain. 2 PEs of the receiver expect to get a subset
of the 8x8 shared domain, a 3x3 array and a 3x2 array, respectively. Receiver PE1 has
to find the data object A, copy the memory line once, and find data object C, copy
the memory line twice. Receiver PE2 has to find the data objects B, D and copy the
memory line accordingly.

Pipeline Design We are able to optimize the baseline design by overlapping
independent tasks after splitting the entire send procedure into several stages
and analyzing their dependencies carefully. Figure 4a illustrates the pipeline
design that requires no additional prerequisites. The meta-data are prepared on
the host when the bulk data is copied from GPU to the host. Also, the DMA
operations partially overlap with the connection setup between the sender and
the staging server. This design exploits the potential overlaps between different
stages of the send procedure by leveraging the asynchrony on both the GPU and
CPU.

GDR Design As long as the GPU data are transferred to the staging server,
the less intermediate stages result in better performance. We fully circumvent
the host involvement by employing GDR, in the bulk data transfer. Figure 4b
presents the neat GDR design. After the essential meta-data preparation and
connection setup phase, data are directly sent from GPU memory to the staging
server. No memory allocations and DMA overhead are incurred in this design.

4.2 Receiver Side

Due to the simplicity of the sender design, on the receiver side, a data object
reassembly stage is introduced in addition to the bulk data I/O for the scale flex-
ibility mentioned in Section 2.1 and the random access to the multidimensional
data specified by a geometric descriptor. We discuss these two stages separately
in this subsection.

Data Object Reassembly Every get request on the receiver side has to go
through the data reassembly stage before delivering the queried data to users.
Figure 5 demonstrates the necessity of data reassembly by an example. A 2-D
data domain is shared by two applications served as a sender with four processing
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elements(PEs) and a receiver with two PEs, respectively. The sender puts four
data objects into the staging server, while the receiver expects to get a subset
of data in each of two PEs. Therefore, each PE in the receiver has to figure out
the original data objects, extract each subset, and finally reassemble the subset
to a contiguous data object accordingly. Even if the receiver query the entire
domain, reassembling the original data objects to the queried contiguous data
object is still essential as long as the two applications are running at different
scales.

Algorithm 1 CUDA Data Object Reassembly Kernel

Input: src_obj, dst_obj.bbox{bounding box descriptor}
Output: dst_obj.data
its_bbox < Intersection(src_obj.bbox, dst_obj.bbox)
srcnz, src.ny, src.nz < Distance(src_obj.bbox)
dst_nz, dst_ny, dst_nz < Distance(dst_obj.bbox)
sub_nz, sub_ny, sub_nz < Distance(its_bbox)
1 < blockIdx.z * blockDim.xz + threadldx.z
j < blockldxz.y * blockDim.y + threadldx.y
k < blockIdx.z x blockDim.z + threadldx.z
if ¢ < sub_nz and j < sub-ny and k < sub_nz then
dst_idx < it + j * dst_nxz + k = dst_nx * dst_ny
srcaidr <— 1+ j * sreonx + k * sre-nx * srce-ny
dst_obj.dataldst_idx] < src_obj.data[src_idz]
end if

The existing solution for data object reassembly is based purely on CPU.
It iteratively calls Memcpy (), which moves a data line along the lowest dimen-
sion at once, for the multidimensional data. Since the data destination is ported
to GPU memory in the GPU applications, we design a CUDA kernel to ac-
celerate this data object reassembly task by utilizing the intrinsic parallelism
of GPU architecture. Algorithm 1 describes the details of the kernel. Although
an individual kernel supports only up to 3-D data object reassembly, it can be
iteratively launched several times for data in more dimensions. Asynchronous
kernel launch is utilized for concurrency depending on the capability of the tar-
get CUDA device.

Remote Staging

'V Y AL
CPU Memory H Bulk Data H Bulk Data
Query ] 1B_Transfer() Query H 1B_Transfer()
] Data Object Re-Assembly i
CPU Memory AA4 > — >
Meta Data Prep. H->D MemCp (\) \ CUDA Data
- V! Object Re-Assembly
GPU Memory »

(a) Receiver Baseline Design. (b) Receiver GDR Design.

v
v

Fig. 6. A schematic illustration of receiver side designs.

Bulk Data Transfer The bulk data I/O path on the receiver side keeps the
same options as the sender side: CPU-CPU transfer plus CUDA memory copy
from host to device or GDR. Therefore, we propose three receiver designs as the
combination of bulk data transfer and data object reassembly options. Figure 6a
illustrates the baseline design that reassembles the received data objects on the
host to a new CPU buffer, and then transfers it to the GPU destination. Because
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Fig. 7. Architecture of DataSpace-GPU. Existing modules are extended to support
both GPU computation and storage under the heterogeneous memory management
layer.

two buffers are used on the host and the data object reassembly intrinsically
finishes the memory copy between them, no DMA overhead is incurred in this
design. The hybrid design takes the conventional I/O path but uses the CUDA
kernel for data object reassembly. It holds only one buffer for both receiving
data from the staging server and transferring to the GPU, but its DMA overhead
partially overlaps with the CUDA kernel computation since multiple data objects
are received typically and the following work is done asynchronously. The GDR
design keeps clear as shown in Figure 6b. There is no CPU involvement, and the
data object reassembly is done by CUDA kernels.

4.3 Implementation and Interoperability

Our designs are implemented in the existing DataSpaces staging framework as an
extension to support the data exchanges from/to GPU components inside an in-
situ workflow. Figure 7 presents a schematic overview of the DataSpaces-GPU.
It leverages the existing components by reusing its data transport, indexing,
and querying capabilities. The GDR capability of the Margo [21] communica-~
tion layer is employed by the GPU memory extension of the data object storage
module at the application client. The object assembler module adds support to
launch the concurrent CUDA kernel when the target GPU is capable. All the
GPU extensions are organized by the heterogeneous memory management layer,
which determines whether the user data are located on the CPU or GPU. For
the purpose of minimizing the software porting cost, we design a set of unified
APIs for both CPU and GPU I/O to address the interoperability issue with the
legacy CPU workflows. Figure 8 presents a code example that compares the lines
of code (LOC) changes for a single variable I/O procedure with or without our
framework. After setting up the proper meta-data, only one LOC is needed to
send or receive the CPU data. When the data are located on the GPU, we need to
calculate the data size, manage the CPU memory buffer, and handle the CUDA
memory copy at the sender and receiver side, respectively. Approximately 10
LOC are added on each side for a single variable without any performance opti-
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/% Meta Data Defination */ /* I/0 procedure call for GPU data
struct meta_data { without DataSpaces-GPU */
char var_name[128]; size_t data_size = meta.element_size;
unsigned int version; for(int i=0; i<meta.ndim; i++) {
int element_size; data_size *= meta.ub[i] - meta.lb[i] +1;
int ndim; }
uint64_t* 1b; // upper bound void* host_buffer = (void*) malloc(data_size);
uint64_t* ub; // lower bound // Sender Side
}; cudaMemcpy (host_buffer, device_data, data_size,
cudaMemcpyDeviceToHost) ;
struct meta_data meta; dspaces_put (meta, host_buffer);
void* host_data, device_data; // Receiver Side
dspaces_get (meta, host_buffer);
/* Meta Data Preparation */ cudaMemcpy (device_data, host_buffer, data_size,
prepare(meta) ; cudaMemcpyHostToDevice) ;

free(host_buffer);

/% I/0 procedure call for /* I/0 procedure call for GPU data
CPU data */ with DataSpaces-GPU */
// Sender Side // Sender Side
dspaces_put (meta, host_data); dspaces_put (meta, device_data);
// Receiver Side // Receiver Side
dspaces_get (meta, host_data); dspaces_get (meta, device_data);

Fig. 8. Code example of porting a single variable 1/O procedure to GPU with or
without DataSpaces-GPU.

mization. However, with DataSpaces-GPU, the only effort that needs to be made
is changing the CPU pointer to the GPU pointer and no extra code is required,
which saves great software porting costs, especially when many variables are
communicated or the communication pattern is complex. DataSpaces-GPU thus
enables procedure-wise I/O plug-n-play in the entire workflow porting process.

5 Evaluation

In this section, we present an evaluation of the proposed GDR design compared
to the conventional host-based designs in terms of both time-to-solution and
scalability. The end-to-end benchmark is tested using a synthetic workflow emu-
lator, and the weak scaling experiment is performed on a real scientific workflow
that consists of LULESH-CUDA [14] and ZFP-CUDA.

Our synthetic workflow emulator uses two application codes, namely writers
and readers, to simulate the inter-application data movement behaviors in real
loosely-coupled in-situ workflows. Writers produce simulation data and send it
to the staging servers, whereas readers fetch the data from staging servers and
then perform some analysis. In our real workflow experiment, LULESH is the
simulation that writes the data out and ZFP is the reader. The data are organized
in a 3-D Cartesian grid format with X x Y x Z scale in both workflows.

All the experiments were performed on the Phase 2 GPU nodes of the
Perlmutter supercomputer at National Energy Research Scientific Computing
(NERSC). Phase 2 GPU nodes have a single socket of an AMD EPYC 7763
(Milan) 64-core processor with 160GB of DDR4 RAM. Each node equips four
NVIDIA Ampere A100 GPUs with four Slingshot-11 Cassini NICs. All the nodes
run libfabric-1.15.0 with Cray Slingshot-11 cxi support. All four NICs are lever-
aged and evenly mapped to the PEs on each node. Concurrent CUDA kernel
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Table 1. Experimental setup configurations for end-to-end benchmark
No. of Parallel Writer Cores / GPUs / Nodes | 128 / 64 / 16
No. of Parallel Reader Cores / GPUs / Nodes| 128 / 64 / 16

No. of Staging Cores / Nodes 32/8

Total 1/0O Iterations 10

I/0 Iteration Frequency Every 2 seconds

Writer Benchmark Reader Benchmark Data Object Re-Assembly Benchmark
600
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Fig. 9. Performance comparison per 1/O iteration among proposed designs with in-
creasing message size.

launch is enabled, and the maximum number of concurrent kernel launch is set
to 32 as the default. In subsequent sections, all measured times refer to the wall
time of the blocking I/0 routine that guarantees the message is sent to the desti-
nation. All the test runs have been executed three times, and the average result
is reported.

5.1 End-to-end benchmark

This experiment compares the I/O performance between applications and stag-
ing servers for various message sizes using different designs introduced in Section
4. Table 1 details the setup for all test cases in this experiment. In order to al-
leviate the iterative interference, we set the I/O frequency to 2 seconds. The
message size we choose to evaluate starts from 8MB, which is the smallest data
size for a single variable in each parallel PEs in a typical fine-grained domain
decomposition.

Figure 9a presents the benchmark result for writers and readers, respectively.
In general, although GDR is designed to optimize small and frequent communi-
cation to/from GPUs, it achieves better performance in bulk data transfer than
other host-involved designs as well. On the writer side, the baseline method
and pipeline method show almost the same trend, which means the overhead
of sending metadata is negligible in the bulk data movement. Compared to the
baseline and pipeline methods, the GDR method reduces 53% of the put time for
the 8MB bulk transfer while still maintaining a 34% of reduction when sending
1024MB messages.

On the reader side, the hybrid and GDR methods achieve up to 28% and
33% reduction of the get time compared to the baseline. The GDR method
always performs slightly better than the hybrid method since it avoids the DMA
overhead introduced in Section 2.2. Both methods use the CUDA kernel for the
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Table 2. experimental setup configurations of data domain, core-allocations and size
of the staged data for shock hydrodynamics workflow

Data Domain 512 x 512 x 512|768 x 768 x 768|1024 x 1024 x 1024|1280 x 1280 x 1280|1536 x 1536 x 1536
No. of LULESH-CUDA Cores / GPUs / Nodes 5/8/2 272 ] 7 61/64/16 128 /128 ] 32 256 / 256 ] 64
No. of ZFP-CUDA Cores / GPUs / Nodes 8/8/2 27 /217 61/64/16 128 /128 / 32 256 / 256 / 64
No. of Staging Cores / Nodes 4/1 16 / 4 32 /8 64 /16 128 /32
Total Staged Data Size (3 variables, 10 I/O Iterations) 30 GB 60 GB 120GB 240GB 480GB
1/O Tteration Frequency Every 100 computing iteration
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data object reassembly instead of the host Memcpy () function, which contributes
mainly to the performance improvement. Figure 9b extracts and compares the
data object reassembly performance from the overall I/O time. The CUDA kernel
accelerates the the data object reassembly task by up to 90x as the message
size increases. By utilizing the asynchronous kernel execution feature of CUDA
devices, launching the kernels concurrently with a barrier that waits all kernels
to complete can even achieve an acceleration up to 6000x.

5.2 Real Scientific Workflow

In addition to evaluations based on the synthetic workflow emulator, we also
apply our proposed designs to a CUDA-based shock hydrodynamics simulation
workflow. We use the LULESH-CUDA component for the simulation purpose,
which generates 3-D data and sends them to the staging servers. For the analysis,
the ZFP-CUDA component gets the data from the staging servers, compresses
and writes it to the persistent storage. We select three scalar data fields (energy,
pressure, mass) from 13 variables to perform the inter-application data exchange.
The experimental configurations of our hydrodynamics workflow tests are listed
in Table 2. Since LULESH supports only cubic PEs increment, our evaluation
was performed with 8, 27, 64 cores, with a 1 : 1 mapping to GPUsand a ~4:1
mapping to nodes. The grid domain sizes were chosen such that each core was
assigned a spatial local domain of size 256 x 256 x 256. We keep this same data
volume per LULESH/ZFP core to perform a weak scaling test in this evaluation.

Figure 5.1 compares the proposed designs in the weak scaling workflow with
a fixed ratio of LULESH/ZFP resources to the staging server. The GDR design
still takes ~ 24% less time to consecutively send the data fields out compared to
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others, while performing ~40% and ~17% better in fetching the data fields than
the baseline and hybrid design, respectively. The I/O time remains relatively
constant for all designs as the overall problem size and total resources increase.
Little overhead is introduced as the amount of resources increases, which indi-
cates that all proposed designs maintain great scalability to solve the problem
in a larger scale.

From our synthetic and real scientific workflow evaluations, we can infer that
the straightforward baseline design of data movement between GPU applications
performs poorly at any scale due to the sequential device = host = network
pathway. Pipelining I/O design on the sender side and applying CUDA kernels
for data object reassembly on the receiver side improves the performance, but
nonessential host involvement remains. In contrast, our GDR design enables di-
rect data movement between GPU memory and the RDMA-enabled network,
which reduces up to 53% of the I/O time compared to the baseline. In addi-
tion, our I/O abstraction for the GPU-based in-situ workflow shares the same
API with the conventional CPU-based workflow, which minimizes the software
porting effort. In summary, our GDR I/O optimization can effectively reduce the
overhead of data exchanges between GPU components in the scientific workflow,
while maintaining the interoperability with legacy CPU-based applications.

6 Conclusion and Future Work

GPUDirect RDMA has emerged as an effective optimization for inter-node com-
munications from/to GPUs, but it has been adopted only by I/O substrate de-
signed for individual applications. In this paper, we present a novel design that
applies GPUDirect RDMA to the bulk data movement between GPU applica-
tions within a workflow. Also, we propose the first interoperable I/O abstraction
for GPU-based in-situ workflows, which simplifies the GPU workflow porting
process and enables procedure-wise plug-n-play through the unified interface.
We implemented the proposed solution based on the DataSpaces framework and
evaluated it on the NERSC Perlmutter system. Our experimental results, using
both synthetic and real GPU workflows, demonstrate that the proposed solution
yields an I/O improvement of up to 53% and 40% for sender and receiver, re-
spectively, while maintaining great scalability for up to 256 processing elements
on 256 GPUs. As future work, we plan to investigate the performance portabil-
ity of our design on other network hardware, such as Mellanox EDR and HDR
interconnect. We also plan to provide comprehensive support to AMD GPUs in
our workflow I/O abstraction.
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