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ABSTRACT

In many neuromorphic workflows, simulators play a vital role for
important tasks such as training spiking neural networks, run-
ning neuroscience simulations, and designing, implementing, and
testing neuromorphic algorithms. Currently available simulators
cater to either neuroscience workflows (e.g., NEST and Brian2)
or deep learning workflows (e.g., BindsNET). Problematically, the
neuroscience-based simulators are slow and not very scalable, and
the deep learning-based simulators do not support certain function-
alities that are typical of neuromorphic workloads (e.g., synaptic
delay). In this paper, we address this gap in the literature and present
SuperNeuro, which is a fast and scalable simulator for neuromor-
phic computing capable of both homogeneous and heterogeneous
simulations as well as GPU acceleration. We also present prelimi-
nary results that compare SuperNeuro to widely used neuromor-
phic simulators such as NEST, Brian2, and BindsNET in terms of
computation times. We demonstrate that SuperNeuro can be ap-
proximately 10X-300x faster than some of the other simulators for
small sparse networks. On large sparse and large dense networks,
SuperNeuro can be approximately 2.2X-3.4X faster than the other
simulators, respectively.
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1 INTRODUCTION

Neuromorphic computing is a promising computing paradigm for
low-power applications [17], including neuroscience simulations,
autonomous vehicles, anomaly detection, graph algorithms, epi-
demiological modeling, and may other scientific applications [3,
4, 10, 11, 15, 16]. If used in a machine learning setting, training
spiking neural networks (SNNs) is a critical step in the neuromor-
phic workflow, and this is usually accomplished on CPUs or GPUs
[2]. If used in another setting, it is important to design, implement,
and test novel neuromorphic algorithms efficiently and rapidly [1].
Both cases benefit from an efficient simulator.

Unlike CPUs and GPUs, neuromorphic hardware is not read-
ily available off-the-shelf [14] and is typically found in research
settings as research-grade prototype devices (e.g., Intel Loihi, IBM
TrueNorth, and SpiNNaker) [5, 6, 8]. As a result, it is difficult to work
with the neuromorphic hardware directly, especially for researchers
who design novel neuromorphic algorithms or train SNNs for their
applications. An efficient neuromorphic computing simulator is
needed to mitigate this lack of access to hardware.

Neuromorphic algorithms inform the design of the neuromor-
phic hardware in many ways [17]. For instance, some neuromor-
phic algorithms require dense connectivity, whereas others require
sparse connectivity. Some algorithms require floating point synap-
tic weights, whereas others require binary (0, 1) weights. Simulators
play a vital role in enabling this co-design between neuromorphic
algorithms and hardware. They establish the requirements for the
neuromorphic algorithms, thereby making it possible to realize
these requirements on the hardware.

Current neuromorphic computing simulators are primarily fo-
cused on either neuroscience workloads or deep learning workloads
[14]. The neuroscience-based simulators, such as NEST (based on
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Table 1: SuperNeuro Modes: Matrix Computation (MAT)
Mode and Agent-Based Modeling (ABM) Mode

MAT Mode ABM Mode

Homogeneous simulations
Built-in STDP learning

CPU execution

Heterogeneous simulations
Built-in STDP learning
GPU acceleration

Fast and scalable Custom neurons and synapses

discrete event simulation) and Brian2 (based on solving systems of
ordinary differential equations), are slow for SNN-based machine
learning and general-purpose computing applications [9, 14, 18].
On the other hand, the deep learning—based simulators, such as
snntorch and BindsNET, do not provide all the necessary features
(e.g., synaptic delays) needed for neuroscience and general-purpose
neuromorphic computing applications [7, 12]. To this end, we
present SuperNeuro, a fast and scalable Python-based simulator for
neuromorphic computing with GPU acceleration capability.

2 SUPERNEURO

SuperNeuro models the neuromorphic simulation problem by using
two different approaches: a matrix computation-based approach
(MAT) and an agent-based modeling (ABM) approach. To the best
of our knowledge, the neuromorphic simulation problem has never
been modeled using these approaches. SuperNeuro provides a de-
velopment framework for accelerating neuromorphic simulations
with the flexibility to define custom neuron and synapse models
while utilizing computationally efficient algorithms and hardware
for highly scalable simulations. SuperNeuro also provides the Al
practitioner with the capability to study and optimize large-scale
SNNs, regardless of neuromorphic hardware availability. The prac-
titioner can implement general-purpose computing algorithms (e.g.,
graph algorithms) and non-neural, network-based machine learn-
ing algorithms as well as to design neuromorphic primitives for data
encoding and data structures. Moreover, SuperNeuro lends itself
to different types of workloads, including neuroscience workloads,
deep learning workloads (based on SNNs), and general-purpose
computing workloads.

Table 1 shows the features of the two SuperNeuro modes. More
detailed descriptions are provided in Section 2.1 for MAT mode
and Section 2.2 for ABM mode, although the mathematical and
algorithmic details are beyond the scope of this paper and will
be explored in future work. The SuperNeuro code is open-source
and available on GitHub.! The goal of this paper is to highlight
preliminary computational results for SuperNeuro and compare
the new framework with other widely used simulators. The results
of this comparison are described in Section 3.

2.1 The MAT Mode

SuperNeuro’s MAT mode models neuromorphic simulations by
using matrices and vectors. It supports homogeneous simulations
(i.e., in which all neurons and all synapses are of the same type). All
neurons in the MAT mode are leaky integrate and fire (LIF) neurons,

!https://github.com/ORNL/superneuro

Date and Gunaratne, et al.

and each neuron has four parameters: threshold, leak, reset state,
and refractory period. The leak used in the MAT mode is a constant.
Specifically, at each time step, a constant value is subtracted from
(or added to) the internal state of each neuron to bring the internal
state closer to the reset state. So, if the internal state is greater than
the reset state but less than the threshold, then we subtract the leak;
else, we add the leak. The internal states of all neurons at a given
time step in the simulation are represented as a vector. The neuron
thresholds, leaks, reset states, refractory periods, and spikes are
also represented as vectors.

Each synapse in the MAT mode has two parameters: weight and
delay. The weights are represented in a square matrix such that the
weight of the synapse going from neuron i to neuron j is captured
at the element located at the i row and j™ column in the matrix.
The delay is computed by adding proxy neurons in the simulations
such that each and every synapse in the simulation always has a
delay of unity. For example, say that a synapse from neuron i to
neuron j must have a delay of 3. We implement this functionality
by adding two proxy neurons, k1 and kz, both having a threshold
of 0 and infinite (very high) leak. Next, we connect neuron i to
neuron k1, neuron kq to neuron kz, and neuron kj to neuron j such
that each of these synapses has a weight and delay of unity. The
effective delay going from neuron i to neuron j is thus 3 as required.
Although this implementation of synaptic delay sidesteps any tem-
poral computational overheads, it does introduce spatial overheads
by adding proxy neurons. As a result, this approach could be ineffi-
cient for neuromorphic simulations that contain significant delays
on the synapses. In general, all neuron and synapse operations are
represented as matrix or vector operations in the MAT mode and
thus can be easily parallelized.

To compute the internal states of all neurons at the current
time step, we first start with the internal state vector from the
previous time step and apply the constant leak to it. Second, the
vector of spikes from the previous time step is multiplied by the
weight matrix and then added to the internal state vector from the
previous time step. Third, if there are any external spikes at the
current time step, they are added to the internal state vector of the
current time step. Next, the spike vector at the current time step
is computed by comparing the current internal state vector to the
vector of neuron thresholds. Last, for neurons in their refractory
periods, the spikes are zeroed out. All of the above operations are
implemented in numpy, which is a highly efficient, CPU-based,
numerical computation library in Python.

When the problem is formulated in this fashion, it allows for
both speed and scalability for homogeneous simulations. The MAT
mode also has a built-in spike-time dependent plasticity (STDP)
learning mechanism, which can be used for training SNNs. The
STDP mechanism is also implemented by using matrix and vector
operations. At present, MAT mode only supports CPU execution,
but GPU acceleration will be provided in the future. The MAT mode
should be used when speed and scalability are important.

2.2 The ABM Mode

In SuperNeuro’s ABM mode, we take a complex adaptive systems
perspective to SNN design by simulating each neuron as an in-
dividual agent. ABM is a widely used modeling and simulation
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technique for complex adaptive systems, and accordingly, neurons
are autonomous entities, thereby allowing for heterogeneous simu-
lations; i.e., neurons may be of different breeds, each supporting a
unique spiking mechanism. The simulation is clock driven, with
step functions defining the actions taken by agents at each time
step. Heterogeneous simulation is a useful feature for exploring
neuron and synapse mechanisms that have yet to be realized on
the hardware (e.g., stochastic neurons, stochastic synapses).

The ABM mode is implemented on SAGESim, a GPU-capable,
ABM framework developed at the Oak Ridge National Laboratory.
While using GPUs, SAGESim works by assigning a GPU thread to
each agent. SAGESim supports the execution of multi-breed simula-
tion and multiple step functions ordered by priority for each breed.
Each neuron in the ABM mode is an agent within the SAGESim
simulation. Each neuron agent is provided with two step functions:
the neuron step function and the synapse step function. The neuron
step function aggregates external spikes at the current time step
with the current internal state of the neuron and subtracts the leak.
If the new internal state is greater than the neuronal threshold, then
the neuron spikes, and the delay registers at outgoing synapses are
updated accordingly. In the synaptic step function, the synaptic
delay registers are updated, and the final elements of the delay
registers are used to update the internal states of the postsynaptic
neurons.

The ABM mode supports both CPU and GPU execution, although
the GPU device must meet NVIDIA compute capability 6 or higher.
In fact, the agent-based form is well suited for GPU acceleration and
greatly improves speed and scalability. ABM also supports the LIF
mechanism for the neuron. Furthermore, the neuron and synapse
parameters supported include threshold, leak, refractory period,
axonal delay, synaptic weights, and synaptic delays. The notion of
leak supported in the ABM mode is the same as the one for MAT
mode. The ABM mode also has a spike-time dependent plasticity
(STDP) learning mechanism implemented for on-simulation SNN
training. The STDP mechanism is implemented such that each
neuron updates the weights of each of its outgoing synapses to
postsynaptic neurons by comparing spike time co-occurrences over
a specified number of past time steps. The degree of weight change
follows an exponential decay with relation to the difference in time
between two postsynaptic and presynaptic spikes, and considers
both positive (postsynaptic neuron firing after presynaptic neuron)
and negative (postsynaptic neuron firing before presynaptic neuron)
instances [13].

3 RESULTS

We compare the performance of both SuperNeuro modes against
three widely used neuromorphic simulators: NEST, Brian2, and
BindsNET. We generated random networks by using a graph and
network algorithms Python library called networkx. Using the Erdés-
Rényi graph generation algorithm in networkx, we generated ran-
dom graphs such that each node of the graph would correspond
to a neuron, and each edge of the graph would correspond to a
synapse in our neuromorphic simulations. Networks of 100, 1,000,
and 10,000 neurons were generated because networks of these sizes
can be efficiently run on a desktop workstation. For each size of
the network, we varied the sparsity by changing the connection
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probabilities of the synapses. We chose the following values for the
synapse connection probabilities: 0.25, 0.5, 0.75, and 1. With three
values for the number of neurons and four values for the synapse
connection probabilities, we had 12 network configurations. Each
of these network configurations was used to initialize the neurons
and synapses within each of the five simulators. Each simulation
was run for 1,000 time steps, and 3 input neurons were chosen at
random. Each input neuron was externally spiked at every 10 time
steps. All neuron thresholds were set to 1, reset states were set to 0,
refractory periods were set to 0, and the axonal delays (if applicable)
were set to 0. All synaptic weights and delays were set to 1.

Table 2 lists the total execution times in seconds for all simu-
lator runs. Runs that exceeded 1 hour were terminated and are
listed in the table with values of >1 h. All ABM and BindsNET runs
leveraged GPU acceleration. The MAT mode in SuperNeuro was
the fastest across all network configurations. For the smaller jobs
(100 neurons), MAT obtained a speedup of 9% for the 0.25 connec-
tion probability over the next best simulator, which was NEST in
this case. With increasing connection probabilities, MAT obtained
increasing speedups of 15x%, 20X, and 27X over NEST. Compared
with some of the slower simulators, such as Brian2, MAT obtained
speedups of 150%, 290%, 406X, and 530X for the four sparsity con-
figurations. The total execution times for ABM were comparable to
NEST for the configuration with 100 neurons and a 1.0 connection
probability. For this configuration, ABM obtained a speedup of 19x
over Brian2 and 2Xx over BindsNET.

For the medium-sized networks (1,000 neurons), BindsNET per-
formed better than all other simulators except MAT, which obtained
speedups of 10X, 7X, 6X, and 6x over BindsNET for the four sparsi-
ties. MAT also obtained speedups ranging from 1,695X to 3,174X
over Brian2 for the different sparsities. ABM was 7%, 11X, 11X, and
12x faster than NEST for the four sparsities. Compared with Brian2,
ABM'’s speedup ranged from 149x to 279X for the four sparsities.
For the large-sized networks (10,000 neurons), BindsNET was once
again faster than other simulators, except MAT. In this case, MAT
obtained a speedup of 2x-3x over BindsNET for the four different
configurations. For the 10,000 neuron and 0.25 connection prob-
ability configuration, MAT was 107X faster, and ABM 19X faster,
than NEST. At this neuron count, NEST runs for higher connec-
tivity and all Brian2 runs exceeded 1 hour and were terminated,
speedups were therefore not calculated. For these larger configura-
tions, ABM took roughly a third of the time as BindsNET. Overall,
on smaller-sized networks, MAT was the fastest, followed by NEST,
ABM, BindsNET, and finally Brian2. On medium and large-sized
networks, MAT was the fastest, followed by BindsNET, ABM, NEST,
and finally Brian2.

4 DISCUSSION

An efficient neuromorphic simulator allows us to work with cus-
tomizable neuron and synapse mechanisms that go beyond the
typical deferential equation specifications found in traditional neu-
roscience. This enables engineering and computer science focused
design of SNNs for neuromorphic devices in an accelerated manner.
Unlike existing neuromorphic simulators, SuperNeuro enables the
practitioner to include heterogeneous neuron and synapse spiking
mechanisms within the same SNN.
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Number of neurons 100 1,000 10,000
Connection probability  0.25 0.50 0.75 1.0 0.25 0.50 0.75 1.0 0.25 0.50 0.75 1.0
SuperNeuro MAT 0.04 0.04 0.05 0.05 0.36 0.52 0.68 0.80 30.37 40.34 55.38 71.62
P ABM 1.10 1.16 1.18 1.26 4.11 5.59 7.22 9.08 166.72  325.30 488.83 641.36
NEST 0.41 0.65 0.91 1.23 28.05 61.42 81.54 112.82 3242.83 >1h >1h >1h
Brian2 6.63 12.43 18.36 24.23 | 612.43 1,249.31 1,892.19 2,529.77 >1h >1h >1h >1h
BindsNET 2.44 2.34 2.46 2.38 3.45 3.67 4.19 4.64 63.73 117.78 181.04 230.07

Table 2: Total execution times in seconds for SuperNeuro vs. other state-of-the-art simulators for different configurations of
network sizes (given by number of neurons) and network sparsities (given by synapse connection probabilities).

SuperNeuro can simulate larger SNNs in less time with higher
computational efficiency than any other neuromorphic simulator
available today. It can even simulate networks at a scale comparable
to some living organisms studied in neuroscience. For example, we
have simulated networks with 100,000 neurons (lobster-sized brain)
with all-to-all connectivity on a desktop computer in approximately
5 minutes when using MAT mode. By contrast, current simulators
such as NEST and Brian2 take more than 1 hour for such tasks. By
leveraging high-performance computing resources at Oak Ridge
National Laboratory, SuperNeuro could potentially simulate net-
works with a few million neurons, such as those found in bees and
lizards.

SNNs have been used to realize various cognitive and machine
learning algorithms, including control, reinforcement learning, clas-
sification, decision trees, and regression. Having access to a high-
performance simulator is crucial for the rapid development and
benchmarking of these algorithms in the neuromorphic domain.
By using a high-performance simulator such as SuperNeuro, we
can train SNNs for deployment on edge platforms for autonomous
vehicles, industrial robotics, autonomous drones, and high energy
physics, among others. This enables Al practitioners to rapidly
develop and prototype new SNN architectures significantly faster,
thereby enabling the co-design of neuromorphic hardware.

5 CONCLUSION

Neuromorphic computing suffers from a lack of fast, highly scalable,
and flexible neuromorphic simulators for designing and training
SNNs. SuperNeuro provides Al practitioners with a neuromorphic
simulator in Python that is both fast and scalable and also provides
the option of simulating the user’s own spiking mechanisms. Su-
perNeuro is capable of leveraging GPU acceleration and can provide
superior performance compared with existing simulation platforms.
SuperNeuro can easily integrate with learning and optimization
tools for SNN optimization. This opens many possibilities for the
successful co-design of neuromorphic circuits to enable intelligent
edge computing device design while also facilitating large-scale Al
experimentation on accelerated computing infrastructure.
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