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ABSTRACT
In many neuromorphic workflows, simulators play a vital role for

important tasks such as training spiking neural networks, run-

ning neuroscience simulations, and designing, implementing, and

testing neuromorphic algorithms. Currently available simulators

cater to either neuroscience workflows (e.g., NEST and Brian2)

or deep learning workflows (e.g., BindsNET). Problematically, the

neuroscience-based simulators are slow and not very scalable, and

the deep learning–based simulators do not support certain function-

alities that are typical of neuromorphic workloads (e.g., synaptic

delay). In this paper, we address this gap in the literature and present

SuperNeuro, which is a fast and scalable simulator for neuromor-

phic computing capable of both homogeneous and heterogeneous

simulations as well as GPU acceleration. We also present prelimi-

nary results that compare SuperNeuro to widely used neuromor-

phic simulators such as NEST, Brian2, and BindsNET in terms of

computation times. We demonstrate that SuperNeuro can be ap-

proximately 10×–300× faster than some of the other simulators for

small sparse networks. On large sparse and large dense networks,

SuperNeuro can be approximately 2.2×–3.4× faster than the other

simulators, respectively.
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1 INTRODUCTION
Neuromorphic computing is a promising computing paradigm for

low-power applications [17], including neuroscience simulations,

autonomous vehicles, anomaly detection, graph algorithms, epi-

demiological modeling, and may other scientific applications [3,

4, 10, 11, 15, 16]. If used in a machine learning setting, training

spiking neural networks (SNNs) is a critical step in the neuromor-

phic workflow, and this is usually accomplished on CPUs or GPUs

[2]. If used in another setting, it is important to design, implement,

and test novel neuromorphic algorithms efficiently and rapidly [1].

Both cases benefit from an efficient simulator.

Unlike CPUs and GPUs, neuromorphic hardware is not read-

ily available off-the-shelf [14] and is typically found in research

settings as research-grade prototype devices (e.g., Intel Loihi, IBM

TrueNorth, and SpiNNaker) [5, 6, 8]. As a result, it is difficult to work

with the neuromorphic hardware directly, especially for researchers

who design novel neuromorphic algorithms or train SNNs for their

applications. An efficient neuromorphic computing simulator is

needed to mitigate this lack of access to hardware.

Neuromorphic algorithms inform the design of the neuromor-

phic hardware in many ways [17]. For instance, some neuromor-

phic algorithms require dense connectivity, whereas others require

sparse connectivity. Some algorithms require floating point synap-

tic weights, whereas others require binary (0, 1) weights. Simulators

play a vital role in enabling this co-design between neuromorphic

algorithms and hardware. They establish the requirements for the

neuromorphic algorithms, thereby making it possible to realize

these requirements on the hardware.

Current neuromorphic computing simulators are primarily fo-

cused on either neuroscience workloads or deep learning workloads

[14]. The neuroscience-based simulators, such as NEST (based on
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Table 1: SuperNeuro Modes: Matrix Computation (MAT)
Mode and Agent-Based Modeling (ABM) Mode

MAT Mode ABM Mode

Homogeneous simulations Heterogeneous simulations

Built-in STDP learning Built-in STDP learning

CPU execution GPU acceleration

Fast and scalable Custom neurons and synapses

discrete event simulation) and Brian2 (based on solving systems of

ordinary differential equations), are slow for SNN-based machine

learning and general-purpose computing applications [9, 14, 18].

On the other hand, the deep learning–based simulators, such as

snntorch and BindsNET, do not provide all the necessary features

(e.g., synaptic delays) needed for neuroscience and general-purpose

neuromorphic computing applications [7, 12]. To this end, we

present SuperNeuro, a fast and scalable Python-based simulator for

neuromorphic computing with GPU acceleration capability.

2 SUPERNEURO
SuperNeuro models the neuromorphic simulation problem by using

two different approaches: a matrix computation-based approach

(MAT) and an agent-based modeling (ABM) approach. To the best

of our knowledge, the neuromorphic simulation problem has never

been modeled using these approaches. SuperNeuro provides a de-

velopment framework for accelerating neuromorphic simulations

with the flexibility to define custom neuron and synapse models

while utilizing computationally efficient algorithms and hardware

for highly scalable simulations. SuperNeuro also provides the AI

practitioner with the capability to study and optimize large-scale

SNNs, regardless of neuromorphic hardware availability. The prac-

titioner can implement general-purpose computing algorithms (e.g.,

graph algorithms) and non-neural, network-based machine learn-

ing algorithms as well as to design neuromorphic primitives for data

encoding and data structures. Moreover, SuperNeuro lends itself

to different types of workloads, including neuroscience workloads,

deep learning workloads (based on SNNs), and general-purpose

computing workloads.

Table 1 shows the features of the two SuperNeuro modes. More

detailed descriptions are provided in Section 2.1 for MAT mode

and Section 2.2 for ABM mode, although the mathematical and

algorithmic details are beyond the scope of this paper and will

be explored in future work. The SuperNeuro code is open-source

and available on GitHub.
1
The goal of this paper is to highlight

preliminary computational results for SuperNeuro and compare

the new framework with other widely used simulators. The results

of this comparison are described in Section 3.

2.1 The MAT Mode
SuperNeuro’s MAT mode models neuromorphic simulations by

using matrices and vectors. It supports homogeneous simulations

(i.e., in which all neurons and all synapses are of the same type). All

neurons in the MATmode are leaky integrate and fire (LIF) neurons,

1
https://github.com/ORNL/superneuro

and each neuron has four parameters: threshold, leak, reset state,

and refractory period. The leak used in the MAT mode is a constant.

Specifically, at each time step, a constant value is subtracted from

(or added to) the internal state of each neuron to bring the internal

state closer to the reset state. So, if the internal state is greater than

the reset state but less than the threshold, then we subtract the leak;

else, we add the leak. The internal states of all neurons at a given

time step in the simulation are represented as a vector. The neuron

thresholds, leaks, reset states, refractory periods, and spikes are

also represented as vectors.

Each synapse in the MAT mode has two parameters: weight and

delay. The weights are represented in a square matrix such that the

weight of the synapse going from neuron 𝑖 to neuron 𝑗 is captured

at the element located at the 𝑖th row and 𝑗 th column in the matrix.

The delay is computed by adding proxy neurons in the simulations

such that each and every synapse in the simulation always has a

delay of unity. For example, say that a synapse from neuron 𝑖 to

neuron 𝑗 must have a delay of 3. We implement this functionality

by adding two proxy neurons, 𝑘1 and 𝑘2, both having a threshold

of 0 and infinite (very high) leak. Next, we connect neuron 𝑖 to

neuron 𝑘1, neuron 𝑘1 to neuron 𝑘2, and neuron 𝑘2 to neuron 𝑗 such

that each of these synapses has a weight and delay of unity. The

effective delay going from neuron 𝑖 to neuron 𝑗 is thus 3 as required.

Although this implementation of synaptic delay sidesteps any tem-

poral computational overheads, it does introduce spatial overheads

by adding proxy neurons. As a result, this approach could be ineffi-

cient for neuromorphic simulations that contain significant delays

on the synapses. In general, all neuron and synapse operations are

represented as matrix or vector operations in the MAT mode and

thus can be easily parallelized.

To compute the internal states of all neurons at the current

time step, we first start with the internal state vector from the

previous time step and apply the constant leak to it. Second, the

vector of spikes from the previous time step is multiplied by the

weight matrix and then added to the internal state vector from the

previous time step. Third, if there are any external spikes at the

current time step, they are added to the internal state vector of the

current time step. Next, the spike vector at the current time step

is computed by comparing the current internal state vector to the

vector of neuron thresholds. Last, for neurons in their refractory

periods, the spikes are zeroed out. All of the above operations are

implemented in numpy, which is a highly efficient, CPU-based,

numerical computation library in Python.

When the problem is formulated in this fashion, it allows for

both speed and scalability for homogeneous simulations. The MAT

mode also has a built-in spike-time dependent plasticity (STDP)

learning mechanism, which can be used for training SNNs. The

STDP mechanism is also implemented by using matrix and vector

operations. At present, MAT mode only supports CPU execution,

but GPU acceleration will be provided in the future. The MATmode

should be used when speed and scalability are important.

2.2 The ABMMode
In SuperNeuro’s ABM mode, we take a complex adaptive systems

perspective to SNN design by simulating each neuron as an in-

dividual agent. ABM is a widely used modeling and simulation

https://github.com/ORNL/superneuro
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technique for complex adaptive systems, and accordingly, neurons

are autonomous entities, thereby allowing for heterogeneous simu-

lations; i.e., neurons may be of different breeds, each supporting a

unique spiking mechanism. The simulation is clock driven, with

step functions defining the actions taken by agents at each time

step. Heterogeneous simulation is a useful feature for exploring

neuron and synapse mechanisms that have yet to be realized on

the hardware (e.g., stochastic neurons, stochastic synapses).

The ABM mode is implemented on SAGESim, a GPU-capable,

ABM framework developed at the Oak Ridge National Laboratory.

While using GPUs, SAGESim works by assigning a GPU thread to

each agent. SAGESim supports the execution of multi-breed simula-

tion and multiple step functions ordered by priority for each breed.

Each neuron in the ABM mode is an agent within the SAGESim

simulation. Each neuron agent is provided with two step functions:

the neuron step function and the synapse step function. The neuron

step function aggregates external spikes at the current time step

with the current internal state of the neuron and subtracts the leak.

If the new internal state is greater than the neuronal threshold, then

the neuron spikes, and the delay registers at outgoing synapses are

updated accordingly. In the synaptic step function, the synaptic

delay registers are updated, and the final elements of the delay

registers are used to update the internal states of the postsynaptic

neurons.

The ABMmode supports both CPU and GPU execution, although

the GPU device must meet NVIDIA compute capability 6 or higher.

In fact, the agent-based form is well suited for GPU acceleration and

greatly improves speed and scalability. ABM also supports the LIF

mechanism for the neuron. Furthermore, the neuron and synapse

parameters supported include threshold, leak, refractory period,

axonal delay, synaptic weights, and synaptic delays. The notion of

leak supported in the ABM mode is the same as the one for MAT

mode. The ABM mode also has a spike-time dependent plasticity

(STDP) learning mechanism implemented for on-simulation SNN

training. The STDP mechanism is implemented such that each

neuron updates the weights of each of its outgoing synapses to

postsynaptic neurons by comparing spike time co-occurrences over

a specified number of past time steps. The degree of weight change

follows an exponential decay with relation to the difference in time

between two postsynaptic and presynaptic spikes, and considers

both positive (postsynaptic neuron firing after presynaptic neuron)

and negative (postsynaptic neuron firing before presynaptic neuron)

instances [13].

3 RESULTS
We compare the performance of both SuperNeuro modes against

three widely used neuromorphic simulators: NEST, Brian2, and

BindsNET. We generated random networks by using a graph and

network algorithms Python library called networkx. Using the Erdős-
Rényi graph generation algorithm in networkx, we generated ran-

dom graphs such that each node of the graph would correspond

to a neuron, and each edge of the graph would correspond to a

synapse in our neuromorphic simulations. Networks of 100, 1,000,

and 10,000 neurons were generated because networks of these sizes

can be efficiently run on a desktop workstation. For each size of

the network, we varied the sparsity by changing the connection

probabilities of the synapses. We chose the following values for the

synapse connection probabilities: 0.25, 0.5, 0.75, and 1. With three

values for the number of neurons and four values for the synapse

connection probabilities, we had 12 network configurations. Each

of these network configurations was used to initialize the neurons

and synapses within each of the five simulators. Each simulation

was run for 1,000 time steps, and 3 input neurons were chosen at

random. Each input neuron was externally spiked at every 10 time

steps. All neuron thresholds were set to 1, reset states were set to 0,

refractory periods were set to 0, and the axonal delays (if applicable)

were set to 0. All synaptic weights and delays were set to 1.

Table 2 lists the total execution times in seconds for all simu-

lator runs. Runs that exceeded 1 hour were terminated and are

listed in the table with values of >1 h. All ABM and BindsNET runs

leveraged GPU acceleration. The MAT mode in SuperNeuro was

the fastest across all network configurations. For the smaller jobs

(100 neurons), MAT obtained a speedup of 9× for the 0.25 connec-

tion probability over the next best simulator, which was NEST in

this case. With increasing connection probabilities, MAT obtained

increasing speedups of 15×, 20×, and 27× over NEST. Compared

with some of the slower simulators, such as Brian2, MAT obtained

speedups of 150×, 290×, 406×, and 530× for the four sparsity con-

figurations. The total execution times for ABM were comparable to

NEST for the configuration with 100 neurons and a 1.0 connection

probability. For this configuration, ABM obtained a speedup of 19×
over Brian2 and 2× over BindsNET.

For the medium-sized networks (1,000 neurons), BindsNET per-

formed better than all other simulators except MAT, which obtained

speedups of 10×, 7×, 6×, and 6× over BindsNET for the four sparsi-

ties. MAT also obtained speedups ranging from 1,695× to 3,174×
over Brian2 for the different sparsities. ABM was 7×, 11×, 11×, and
12× faster than NEST for the four sparsities. Compared with Brian2,

ABM’s speedup ranged from 149× to 279× for the four sparsities.

For the large-sized networks (10,000 neurons), BindsNET was once

again faster than other simulators, except MAT. In this case, MAT

obtained a speedup of 2×–3× over BindsNET for the four different

configurations. For the 10,000 neuron and 0.25 connection prob-

ability configuration, MAT was 107× faster, and ABM 19× faster,

than NEST. At this neuron count, NEST runs for higher connec-

tivity and all Brian2 runs exceeded 1 hour and were terminated,

speedups were therefore not calculated. For these larger configura-

tions, ABM took roughly a third of the time as BindsNET. Overall,

on smaller-sized networks, MAT was the fastest, followed by NEST,

ABM, BindsNET, and finally Brian2. On medium and large-sized

networks, MAT was the fastest, followed by BindsNET, ABM, NEST,

and finally Brian2.

4 DISCUSSION
An efficient neuromorphic simulator allows us to work with cus-

tomizable neuron and synapse mechanisms that go beyond the

typical deferential equation specifications found in traditional neu-

roscience. This enables engineering and computer science focused

design of SNNs for neuromorphic devices in an accelerated manner.

Unlike existing neuromorphic simulators, SuperNeuro enables the

practitioner to include heterogeneous neuron and synapse spiking

mechanisms within the same SNN.



ICONS’23, August 1–3, 2023, Santa Fe, NM Date and Gunaratne, et al.

Number of neurons 100 1,000 10,000

Connection probability 0.25 0.50 0.75 1.0 0.25 0.50 0.75 1.0 0.25 0.50 0.75 1.0

SuperNeuro

MAT 0.04 0.04 0.05 0.05 0.36 0.52 0.68 0.80 30.37 40.34 55.38 71.62
ABM 1.10 1.16 1.18 1.26 4.11 5.59 7.22 9.08 166.72 325.30 488.83 641.36

NEST 0.41 0.65 0.91 1.23 28.05 61.42 81.54 112.82 3242.83 >1 h >1 h >1 h

Brian2 6.63 12.43 18.36 24.23 612.43 1,249.31 1,892.19 2,529.77 >1 h >1 h >1 h >1 h

BindsNET 2.44 2.34 2.46 2.38 3.45 3.67 4.19 4.64 63.73 117.78 181.04 230.07

Table 2: Total execution times in seconds for SuperNeuro vs. other state-of-the-art simulators for different configurations of
network sizes (given by number of neurons) and network sparsities (given by synapse connection probabilities).

SuperNeuro can simulate larger SNNs in less time with higher

computational efficiency than any other neuromorphic simulator

available today. It can even simulate networks at a scale comparable

to some living organisms studied in neuroscience. For example, we

have simulated networks with 100,000 neurons (lobster-sized brain)

with all-to-all connectivity on a desktop computer in approximately

5 minutes when using MAT mode. By contrast, current simulators

such as NEST and Brian2 take more than 1 hour for such tasks. By

leveraging high-performance computing resources at Oak Ridge

National Laboratory, SuperNeuro could potentially simulate net-

works with a few million neurons, such as those found in bees and

lizards.

SNNs have been used to realize various cognitive and machine

learning algorithms, including control, reinforcement learning, clas-

sification, decision trees, and regression. Having access to a high-

performance simulator is crucial for the rapid development and

benchmarking of these algorithms in the neuromorphic domain.

By using a high-performance simulator such as SuperNeuro, we

can train SNNs for deployment on edge platforms for autonomous

vehicles, industrial robotics, autonomous drones, and high energy

physics, among others. This enables AI practitioners to rapidly

develop and prototype new SNN architectures significantly faster,

thereby enabling the co-design of neuromorphic hardware.

5 CONCLUSION
Neuromorphic computing suffers from a lack of fast, highly scalable,

and flexible neuromorphic simulators for designing and training

SNNs. SuperNeuro provides AI practitioners with a neuromorphic

simulator in Python that is both fast and scalable and also provides

the option of simulating the user’s own spiking mechanisms. Su-

perNeuro is capable of leveraging GPU acceleration and can provide

superior performance compared with existing simulation platforms.

SuperNeuro can easily integrate with learning and optimization

tools for SNN optimization. This opens many possibilities for the

successful co-design of neuromorphic circuits to enable intelligent

edge computing device design while also facilitating large-scale AI

experimentation on accelerated computing infrastructure.
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