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ABSTRACT

We evaluate the Al-assisted generative capabilities of OpenAl
Codex on fundamental numerical kernels in high-performance
computing (HPC): AXPY, GEMV, GEMM, SpMYV, Jacobi Sten-
cil, CG. We test the generated kernel codes for a variety of
language-supported programming models: i) C++: OpenMP
(including offload), OpenACC, Kokkos, SyCL, CUDA, HIP; ii)
Fortran: OpenMP (including offload), OpenACC; iii) Python:
numba, Numba, cuPy, pyCUDA, iv) Julia: Threads, CUDAjl,
AMDGPU.j], KernelAbstractions.jl. We use GitHub Copilot
capabilities available in Visual Studio Code, as of April 2023,
to generate a vast amount of implementations given simple
<kernel> + <programming model> + <optional hints>
prompt variants. To quantify and compare the results, we
propose a proficiency metric around the initial 10 sugges-
tions given for each prompt. Results suggest that OpenAl
Codex outputs in C++ correlate with the adoption and ma-
turity of programming models: e.g. OpenMP, CUDA score
really high, while HIP is still lacking. We found that prompts
from either a targeted language like Fortran or the more
general-purpose Python can benefit from adding code key-
words, while Julia prompts perform acceptably well for its
mature programming models: Threads and CUDA.jl. We ex-
pect that these benchmarks provide a point of reference for
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each programming model community. Overall, understand-
ing the convergence of LLMs, Al and HPC is crucial due to
its rapidly evolving nature in how it is redefining human-
computer interactions.
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1 INTRODUCTION

Since its initial release in 2020, the Generative Pre-trained
Transformer 3 (GPT-3) [6] has signified a revolutionary step
in the evolution of human-computer interactions. Developed
by OpenAI', GPT-3 is the third generation prediction large
language model (LLM) used for several Al generated human-
like text applications. It has gained praise for the high-quality
results in several natural language processing (NLP) [20]
tasks, due in part to the unprecedented cost, US$12 million,
and size of its training model of 175 billion parameters at
800 GB. Hence GPT-3, and its successor GPT-4 2, are defining
several societal questions for the near future.

As we enter the current era of exascale computing dom-
inated by the extreme heterogeneity of our hardware and
programming models [46], Al-assisted code generation could
play a key role in how we develop, deploy, and test our
software targeting high-performance computing (HPC) sys-
tems. Traditional human-readable code in programming lan-
guages used in HPC applications like C++ [42], Fortran [2],
Python [45], and more recently Julia [4], are a straight-forward
application for GPT-3 LLM capabilities that would help rede-
fine software development. Hence, we need to understand
the current state-of-practice, limitations and potential of this
new technology.

We gather our early experiences in interacting with Ope-
nAl Codex, a GPT-3 descendant, via the GitHub Copilot *
plugin available on Visual Studio Code * for the generation

Thttps://openai.com/

Zhttps://openai.com/product/gpt-4
Shttps://github.com/features/copilot
4https://docs.github.com/en/copilot/getting- started-with-github-
copilot?tool=vscode
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of the implementation of relevant scientific kernels in HPC.
Our goal is to have an initial assessment and gather an un-
derstanding of the impact of GPT-3 state-of-art capabilities
in the overall interactive process for generating, optimizing,
building and testing well-established mathematical HPC ker-
nels. We evaluate i) AXPY, ii) general matrix-vector multiply,
the Sparse matrix-vector multiplication, SpMV, v) 3D Jacobi
stencil computations, and vi) Conjugate Gradients, CG. We
test the generation of these kernels over a variety of pro-
gramming models targeting CPU and graphical processing
units (GPU) hardware. Our goal is to establish a benchmark
and understand the status of “prompt” engineering in Ope-
nAI Codex when applied to these important kernels and
programming models as the technology continues to evolve
rapidly.

The rest of the paper is structured as follows: Section 2 pro-
vides an overview of related efforts highlighting the recent
attention to these topics in the broader area of Computer
Science. We describe our prompt input pattern methodology
for interacting with GitHub Copilot for the kernel gener-
ation process along with the proposed metric to quantify
the quality of the suggested outputs in Section 3. Section 4
presents the results of our evaluation along with our find-
ings on prompt trade-offs options for each language, kernel,
programming model and additional keyword inputs on the
generated outputs. We aim to understand the current status
of the correctness, trade-offs and overall value of LLMs for
HPC practitioners adopting this technology. Conclusions
and future directions are presented in Section 5. Appendix A
provides the artifact description for the reproducibility of
this study.

2 BACKGROUND

The availability of GPT-3 has led to a recent trend in the lit-
erature focusing on the understanding of its large language
model (LLM) capabilities for a large variety of applications.
Brown et al. [6] introduced the seminal paper on GPT-3’s
unprecedented results showing strong performance on NLP
interactions aspects such as translation, question-answering,
and cloze tasks. They highlight the use and success rates of
prompt-based [14, 15] “zero", “one", and “few" - shots learners
(FSL) techniques when only few data examples are available
to train a model as opposed to other previously trained ma-
chine learning (ML) alternatives. Wang et al. [47] present
a comprehensive review on FSL pointing out that the “un-
reliable empirical risk minimizer" due to its nature to com-
pensate for the lack of supervised information using prior
available knowledge. Floridi and Chiriatti [17] provide a com-
mentary on the nature of GPT-3, its scope and limits while

outlining the social consequences of the “industrialization of
automatic cheap production of good, semantic artifacts".

On the code generation side, Dehaerne et al. [10] provide
a systematic review of the application of ML methods in
description-to-code, code-to-code, and code-to-description
studies from the past six years. They indicate limitations
such as the variability in the quality of generated mined
source code and the need and availability of large datasets,
e.g. GitHub sources. In their work, it was highlighted that
automatically generating data is a fast alternative for ob-
taining data but is only appropriate for certain contexts like
“programming by example". Recent works using GitHub’s
Copilot “Al pair programmer”, based on OpenAI Codex and
the vast availability of source code hosted on GitHub, study
GPT-powered products targeting specifically Al assisted code
generation and programming. Chen et al. [8] provides an in-
troduction and evaluation of Codex on Python code-writing
capabilities. It is important to mention that Copilot uses a
different Codex version from the one in this study. They
point out the current limitations in the difficulty with “doc-
strings describing long chains of operations and with bind-
ing operations to variables". A major challenge noted is the
over-reliance on Codex by novice programmers. Nguyen and
Nadi [31] provide an empirical evaluation of GitHub Copilot
suggestions for correctness and understandability to Leet-
Code questions in Java, JavaScript, Python, and C. Shortcom-
ings included generating further simplified code that relies
on undefined functions are discussed. Vaithilingam, Zhang
and Glassman [43] provide a human subject study consisting
of 24 participants on the usability of GitHub Copilot. They
concluded that Copilot did not necessarily reduce the task
completion time in common tasks such as file editing, web
scrapping and graph plotting for experienced users of the
Python language. Sobania et al. [41] found little difference
between Copilot and automatic generators using Genetic
Programming when applied to the PSB2 program synthesis
benchmarks [19]. Imai [21] provides a preliminary assess-
ment showing that while Copilot helps generate lines of code
faster, the quality is lower when compared to human pair
programming. Yetistiren et al. [49] assess the correctness,
validity, and efficiency of targeting the HumanEval problem
dataset [8] with a high success rate.

From an educational perspective, Sarsa et al. [40] discuss
Codex’s effectiveness in generating programming exercises
and explanations via Copilot, not without addressing the
need for oversight in output quality. Finnie-Ansley et al. [16]
reports that Codex ranks high when compared to a class of in-
troductory computer science students taking programming
tests. Similarly, Denny et al. [11] discuss the pedagogical
value of Copilot testing their answers and prompt nature in
introductory programming questions. Wermelinger [48] dis-
cusses important questions for how teaching programming



will evolve. Similarly, Brennan and Lesage [5] discuss the ed-
ucational opportunities for undergraduate engineering and
the need for students to have a strong intuition for software
development when using Al-assisted tools.

Pierce et al. [37] assessed security aspects of Copilot’s code
contributions in a large sample resulting in relatively high
vulnerability rates. They concluded that there is a need to
quantify the limits of generated code in low-level scenarios
and that Copilot must be paired with security-aware tooling.

Overall, there is a common narrative that the current state-
of-the-art GPT-based tools are here to stay impacting almost
every aspect of human-computer interactions. However, we
are at an inflection point in which more exploratory research
is needed when assessing Al code-generating capabilities
and their technical, economic, and social implications need
to be carefully understood.

3 METHODOLOGY

We evaluate prompt outputs for parallel programming mod-
els available in four different languages: C++, Fortran, Python,
and Julia. Our methodology consists of two different aspects:
i) Copilot code suggestion generation from prompt queries
based on kernels, the parallel programming model for each
language, and ii) defining and using a simple metric to evalu-
ate the correctness of the results. As stated in their documen-
tation®, GitHub Copilot is trained on all languages that appear
in public repositories. For each language, the quality of sug-
gestions you receive may depend on the volume and diversity
of training data for that language. Hence, we attempt to find
out if these results correlate with the expected availability of
correct programming models and public code examples. This
perception is given by metrics of popularity, in particular in
open source software [30], for i) number of repositories per
language on GitHub, e.g. GitHut® or ii) the TIOBE index’.
Hence, C++ and Python codes are expected to have wider
availability than Julia and Fortran. Nevertheless, because of
the general purpose nature of C++ and Python this metric
might not be as relevant as for Fortran and Julia targeting
scientific and mathematical applications.

We observe the outputs from each prompt and categorize
them in a way we can measure their level of correctness. The
rest of the section describes the experiment setup and the
proposed metric to quantify the quality of the Al-generated
results.

Shttps://docs.github.com/en/copilot/overview-of-github-copilot/about-
github-copilot-for-individuals
Shttps://madnight.github.io/githut/#/pull_requests/2023/1
https://www.tiobe.com/tiobe-index/

3.1 Experiments setup

We select a simple prompt base structure for each targeted
language. Visual Studio Code recognizes the targeted lan-
guage through the appropriate support plugin and the cur-
rently opened file based on language extension (e.g. cpp, 90,
py and jl) and makes it part of the prompt prefix. The rest
of the prompt is generated through a comment line comple-
mented with optional code. Pressing <Control> + <Enter>
results in a separate window containing a maximum of 10
code suggestions. Given the highly sensitive current nature
of the LLM, even one additional keyword could heavily in-
fluence the outputs.

GEMMf20 ® © ® m -

Synthesizing 9/10 solutions

subroutine genm(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc)
implicit none

integer, intent(in) :: m, n, k, lda, ldb, ldc
real(kind=8), intent(in) :: alpha, beta

9 real(kind=8), intent(in) :: A(lda, k), B(ldb, n)

10 real(kind=8), intent(inout) :: C(ldc, n)

11 integer :: i, j, 1

12 !$OMP PARALLEL DO PRIVATE(i, j, 1) SCHEDULE(static)

13 doi=1,m

14 doj=1,n

15 C(1, j) = beta * C(1, §)

16 dol=1,k

1
2
3
4] 1 genm OpenhP I
5, subrouting

6

7

17 C(i, j) = C(1, j) + alpha * A(i, 1) * B(L, j)
18 end do
19 end do
20 end do
21 1$0MP END PARALLEL DO
22 end subroutine gemm
23
24 1 gemm OpenMP with SIMD
25 subroutine gemm(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc)
()
2 GEMMpy1 @ [~ © ® @ - @ GitWub Copilot
on > @ GEMM.p; 1 Synthesizing 7/10 solutions (Duplicates hidden)
2
1 P
2 4
3
4} # gemm cuPy -I 5 def gemm cupy(A, B, C, alpha, beta, size):
5] def 6 a = cp.asarray(A)
7 b = cp.asarray(B)
8 ¢ = cp.asarray(C)
9 cp.cuda.Stream.null.synchronize()
10 tl = time.time()
11 for i in range(size):
12 cp.gemm(a, b, ¢, alpha, beta, False, False)
13 cp.cuda.Stream.null.synchronize()
14 t2 = time.time()
15 return (t2 - t1) / size
16
17 =======
(b)

Figure 1: GitHub Copilot prompt interface with op-
tional language keywords for (a) Fortran’s “subroutine”
and (b) Python’s “def".

Therefore our simple prompt queries can be described
using the following structure:

o <kernel> <programming-model>
e <kernel> <programming-model> <optional keyword:
function, subroutine, def>

Table 1 shows the programming language and model com-
binations used for this study. The additional post fix optional
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keywords correspond to our attempt to add more informa-
tion to the prompt query to obtain better-quality suggestions.
As it will be shown in Section 4, C++ models sensitivity can
vary using the word “function" (not a language keyword),
while Fortran and Python are consistently sensitive to the
subroutine and def keywords. We also found that there is
little sensitivity in Julia prompts when adding a postfix (e.g.
“function"), hence we did not add it in this study.

4 RESULTS

To assess the accuracy and proficiency of the code sugges-
tions generated by OpenAl Codex, we have developed a
simple approach based on our observations rather than any
specific formalism. We have categorized the correctness and
proficiency of the suggestions into five levels, ranging from
[0] or non-knowledge to [1] or expert. The suggested answers
are analyzed based on these labels, as shown in Figure 1a
and 1b, for each combination listed in Table1. This approach
enables us to evaluate the effectiveness of OpenAl Codex
in generating accurate and proficient code, providing valu-
able insights that can help users optimize their use of this
technology.

4.1 C++

Table 2 shows the resulting metric for all of our C++ experi-
ments, while Figure 2 illustrates the results according to the
different kernels and programming models.

Language Programming Model  post fix
C++ OpenMP [36] offload, function
OpenACC [35] function
Kokkos [7] function
CUDA [33] function
HIP [1] function
Thrust [34] function
Fortran OpenMP offload, subroutine
OpenACC subroutine
Python numpy [44] def
Numba [29] def
pyCUDA [26] def
cuPy [32] def
Julia Threads [27]
CUDA [3]

AMDGPU [39]
KernelAbstractions [9]

Table 1: Scope of our experimental setup applied for
each kernel in terms of language and targeted parallel
programming model

3.2 Correctness metric

To evaluate the correctness of the generated suggestions, we
propose a simple approach that is based on our observations
more than on any particular formalism. We consider five
different levels of correctness and proficiency labels, between
[0] or non-knowledge and [1] or expert when observing the
suggested answers given by Copilot as those illustrated in
Figure 1a and 1b for each combination in Table 1.

0 non-knowledge, no code at all or not a single correct

code

.25 novice, one correct code, but includes other several cor-
rect or incorrect programming models (e.g. OpenACC
suggestions in a OpenMP prompt)

.5 learner, one correct code, there are other incorrect
codes, but all of them are using the requested program-
ming model.

.75 proficient, all the codes are correct using the program-
ming model requested.
1 expert, only one piece of code is provided and is totally
correct.

ng‘& § Q)@@ @ 060\ ©)
prompt GO R O
prefix <kernel>

OpenMP 75 5 5 5 0 .25
OpenMPoffload 5 5 5 25 .25 0
OpenACC 5 0 25 0 0 O
Kokkos 5 0 0 0 25 0
CUDA 75 75 75 0 0 .25
HIP 75 0 0 0 25 0
Thrust 25 0 0 0 0 O
SyCL 75 025 0 0 0 0
prefix <kernel>

postfix “function"

OpenMP 75 75 75 25 25 .25
OpenMPoffload 5 5 5 25 25 0
OpenACC 5 5 5 25 0 0
Kokkos 75 025 25 0 25 0
CUDA 75 .25 0 0 0 0
HIP 75 0 0 0 25 0
Thrust S5 0 25 0 0 0
SyCL 75 5 25 0 0 0

Table 2: Metric assessment for GitHub Copilot’s C++
outputs using the input prompt pattern “<kernel>
<programming model> (function)"

As shown, the best results are achieved for the AXPY ker-
nel. We see a clear trend in these results (Figure 2-left): the
more complex the kernel the fewer quality results are ob-
tained. While we see a level between learner and proficient
for the AXPY kernel (the simplest kernel), for Conjugate
Gradient (the most complicated kernel), the level is close
to non-knowledge. Regarding programming models, we see
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Figure 2: Results for C++ kernels (top) and program-
ming models (bottom).

better results for OpenMP and CUDA. This could be due to
the maturity of these programming models with respect to
others and their availability in public code. We notice that
the use of “function” as part of the prompt is very beneficial,
which increments the quality of the results in the dense ma-
trix cases. Sparse matrix and high level algorithms (SpMV,
Jacobi and Conjugate Gradient) do not show much improve-
ments. However, a different trend is observed for CUDA,
where, instead of improving the level of proficiency, actu-
ally it decreases the quality of the answer. This is perhaps
because the word “function” is not used for CUDA codes.
In our experimentation - not shown here - the use of the
words “kernel” or “__global__" lead to better code genera-
tion quality. This is an example of how important is to adapt
the language used for the prompts to the particularities or
syntax habitually used by such a community.

Results also show that high-level programming model
prompts from Kokkos, Thrust, or SyCL perform poorly over

several kernels. We view these results as a reflection of the
user community size of these high-level abstractions. Over
several instances, we observed that many wrong answers
or no answers at all dominate as the kernel becomes more
complex. It is important to point out the availability of large
benchmark repositories such as HecBench [22, 23], from
which some of the responses originate.

4.2 Fortran

Fortran is a particular case in this analysis due to its impor-
tance for the HPC and scientific community. Despite not
being a “mainstream" language in terms of code availabil-
ity, Copilot is able to provide some good results due to its
domain-specific nature and legacy.

As seen in Table 3, the use of an “optimized" prompt using
the “subroutine” keyword is particularly beneficial. Not using
it leads to very poor results, with the AXPY OpenMP case
being the only exception due to its simplicity and availabil-
ity. We observe a similar trend as in C++, the more mature
solutions like OpenMP and OpenACC give better results for
parallel codes using Fortran.

L Q5 e
FFE LS &

prompt >N & O
prefix <kernel>

OpenMP J5 0 0 0 O O
OpenMP offload 0 0 0 0 o0 O
OpenACC 0 0 0 0 0 0
prefix <kernel>

postfix “subroutine”

OpenMP 75 25 25 5 5 .25
OpenMP offload 25 .25 25 25 5 .25
OpenACC 25 25 25 25 .25 .25

Table 3: Metric assessment for Copilot’s outputs us-
ing the input prompt pattern “<kernel> <programming
model> (subroutine)" for Fortran

Figure 3 illustrates the uniform characteristic in the re-
sponses across kernels. Fortran has a lot of available legacy
targeting HPC applications, so it is not surprising that we can
obtain correct kernels implementations with higher complex-
ity (CG, Jacobi) as well as more simple ones (AXPY, GEMM).

4.3 Python

Python is one of the most used general-purpose languages
in industry, research, Al and also has an important role for
educational purposes and as a major target of Al-generative
code as documented in Section 2. While neither a parallel
programming model nor part of the standard, numpy is con-
sidered in our evaluation due to being the “de-facto" standard
for scientific computing in Python.
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Figure 3: Results for Fortran kernels (top) and program-
ming models (bottom).

Table 4 shows the resulting metric from our evaluation.
Similar to Fortran, we observe that the quality improves
dramatically with the addition of the Python def keyword
to clarify the intention that we are looking for functions in
the language. Overall, Copilot is able to generate acceptable
numpy, cuPy and pyCUDA implementations across several
kernels, while Numba falls behind. Perhaps this is an in-
dication that the former is a more popular alternative in
the community via lightweight layers on top of compiled
C or CUDA code, rather than using Numba’s just-in-time
approach on top of LLVM. It’s worth noticing that Numba
deprecated support for AMD GPU hardware recently, hence
reinforcing the vendor-specific target of GPU kernels written
in Python favoring CUDA-like implementations. An interest-
ing observation is that successful GPU (pyCUDA and cuPy)
instances include a correct raw CUDA kernel source code as
a user-defined kernel. Also, successful cuPy instances include
a kernel source using cuPy’s abstractions. These instances

reflect the documentation of pyCUDA [25] and cuPy [38],
respectively.

&4 &

7
prompt Y‘j-' & &F K \‘T’Q &
prefix <kernel>
numpy 25 0 0 0 0 0
CuPy 0 0 25 0 0 0
pyCUDA 0 0 0 0 0 0
Numba 0 0 0 0 0 O
prefix <kernel>
postfix “def"
numpy 75 025 25 5 5 75
CuPy S 25 25 25 25 25
pyCUDA 5 25 5 5 25 0
Numba 25 0 0 0 0 O

Table 4: Metric assessment for Copilot’s outputs us-
ing the input prompt pattern “<kernel> <programming
model> (def)" for Python

As seen in Figure 4, the resulting kernels can have a vary-
ing degree of success, but most return at least one correct
answer. This is perhaps attributed to the wide availability of
Python and numpy code in public repositories. The trend also
confirms the lack of Numba correct results and perhaps it is
an opportunity to exploit its pure-Python nature. Although,
as it was recently highlighted by Kailasa et al. [24] writing
Numba code for complex algorithms can be as challenging
as using a compiled language.

4.4 Julia

Due to its mathematical and performance focus, we included
the Julia language in our experiments. Julia provides an in-
teresting proposition for building a dynamic language on
top of LLVM heavily influenced by Fortran in its syntax
for targeting scientific computing problems. Julia provides
an accessible programming model for CPU Threads, which
is part of the base language, vendor-specific CUDA.jl and
AMDGPU jl, and KernelAbstraction.jl for portable kernels
across vendors. In previous work [18] we showed promising
results, not without gaps, for simple performance compari-
son on CPU and GPU runs.

Table 5 and Figure 5 show the metrics obtained for each
kernel and programming model in our evaluation. For each
programming model, we see a proficiency level between
novice and learner for Threads (part of the base language) and
CUDA.jl, which are the most used and mature programming
models. AMDGPU.jl and KernelAbstractions.jl rank lower,
which correlates with their novelty and the availability of
example code targeting GPU hardware other than NVIDIA’s.
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Figure 4: Results for Python kernels (top) and program-
ming models (bottom).

Similarly to C++, a more complex kernel led to fewer cor-
rect results. For example, we could not get an appropriate
implementation for the Conjugate Gradient kernel (a multi-
kernel algorithm). Not surprisingly, as in the case of Fortran,
Julia’s mathematical nature allowed OpenAI Codex to find
and suggest appropriate solutions in other kernels. The latter
is despite Julia being a relatively new language with fewer
publicly available codes, in particular, if compared to C++
or Python. We also note that our results did not necessarily
improve by adding more information to the prompt (e.g. the
function language keyword). This could be an advantage
for domain-specific syntax, as in the case of Fortran, as most
existing codes have a very targeted use with fewer words.

4.5 Discussion

To gain insights into the performance of OpenAl Codex
across different languages and kernels, we have collated the
results in Figure 6. As depicted in the graph, we observe sim-
ilar trends to those observed in the previous graphs, where
the complexity of the kernel directly impacts the quality

Y:,\S"* § Q)@%\ $ 060\ O
prompt ¢ O KR O
prefix <kernel>

Threads 75 25 5 0 0 0
CUDA 755 5 25 25 0
AMDGPU 0 0 0 25 0 0

KernelAbstractions .25 .25 .25 .25 .25 0

Table 5: Metric assessment for Copilot’s outputs us-
ing the input prompt pattern “<kernel> <programming
model>" for Julia
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Figure 5: Results for Julia kernels (top) and program-
ming models (bottom).

of the results obtained. In other words, it becomes increas-
ingly challenging to achieve acceptable results as the kernel’s
complexity increases.

We see a relatively “low" level of proficiency in OpenAl
Codex with an average of novice level, for the languages
and kernels tested. We see a slightly higher quality in the
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Fortran Python Julia

more popular C++ and Python languages than in Julia and
Fortran. This may be related to the popularity, maturity, and
accessibility of public codes implemented in those languages.
However, languages like Fortran or Julia, provide very ac-
ceptable results. This confirms that it is more a question of
targeted quality than of quantity in a specific domain as the
scope of this work.
To summarize:

e As code complexity increases, obtaining acceptable
results becomes more challenging.

e Generating high-quality multi-step or multi-kernel
codes, such as Conjugate Gradient, can be difficult.

o The use of keywords can improve the proficiency of the
answers, but it’s essential to choose the correct words
that are specific and sensitive to each programming
language/model or community.

o While the popularity or accessibility of a programming
language or public code can be important, less popular
languages can also provide good results due to their
targeted nature.

5 CONCLUSIONS AND FUTURE
DIRECTIONS

We have carried out an initial study to evaluate the current
capacity of OpenAl Codex via Copilot for the generation
of HPC numerical kernels targeting parallel programming
models in C++, Fortran, Python and Julia. Despite current
limitations, we believe that generative Al can have an extraor-
dinary beneficial impact on the HPC software development,
maintenance and education in the future.

The research community still has several gaps to under-
stand, and one such gap is the need for a more comprehensive
taxonomy, akin to natural languages, to evaluate accuracy
and trustworthiness. While our proposed taxonomy was ben-
eficial for this initial study, it is imperative that such metrics
be expanded to create a widely accepted methodology that
the entire community can utilize. Therefore, there is a need
for a standard and recognized approach to ensure uniformity
in evaluating results across studies.

The emergence of LLMs technologies such as GPT-3 and
other Al generative tools presents significant questions about
their integration into the future ecosystem of HPC software
development. For instance, can a human-in-the-loop and
compiler be incorporated to refine initial LLMs suggestions?
Can metadata-rich suggestions be incorporated to facilitate
a human decision-making process? Additionally, how do
significant HPC software modernization initiatives similar to
DARPA’s High Productivity Computing Systems (HPCS)[12]
or the US Department of Energy Exascale Computing Project
(ECP) [13, 28] incorporate these novel tools?

The automation of ecosystem aspects such as building sys-
tems, packaging, validation & verification, reproducibility,
and continuous integration/continuous deployment (CI/CD)
pipelines could significantly impact the HPC community.
These technologies that put today’s imperfect information
closer to the human in question could redefine the educa-
tional aspects of HPC. Therefore, it is crucial to understand
how each community can leverage these revolutionary ca-
pabilities to further advance their respective domains.
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A ARTIFACT DESCRIPTION

The entire prompt input and resulting output sets are pub-
licly available at: https://github.com/keitaTN/Copilot-hpc-
kernels. Due to the rapid evolution and statistical nature of
these technologies reproducibility and replicability of the
present results is a challenging aspect that we expect to im-
prove over time, but has no guarantees as of today. Hence, it’s
imperative that the reproducibility information is provided.
Some additional information:

e Experiments used the Visual Studio Code GitHub Copi-
lot plugin service on three separate Linux systems
using Ubuntu 22.04

e Experiments were carried between April 14th and
April 21st of 2023.

e The raw dataset are identified by
<kernel>/<language>/<kernel>_outputs.<ext>
directory and file structure.

e Each Prompt used in this study is identified with the
line comment
Prompt: <kernel> <programming model> <additional
text>.
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