

 Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive,
paid up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Experience Deploying Graph Applications on GPUs with SYCL

Abstract. SYCL allows for deployment and use of accelerators across vendors’ platforms. In this work, we describe the experience

of deploying graph analytics on vendors’ GPUs using SYCL. We contrast the CUDA and SYCL application programming interfaces

by describing the experience of migrating the applications from CUDA to SYCL, evaluate the performance of the applications on

NVIDIA and AMD GPUs, and explore performance improvement with device-level parallelism. The results show that the recent

SYCL extensions facilitate functional portability, but improving code optimizations and resource usage for performance

portability is needed in the compiler implementation.

1 INTRODUCTION

CUDA has enabled wide use of graphics processing units (GPUs) as an accelerator for computationally intensive

tasks [1]. However, it is a proprietary programming model mainly optimized for NVIDIA GPUs. In contrast, Open

Computing Language (OpenCL) is an open standard maintained by the Khronos group with the support of major

graphics hardware vendors as well as personal computer vendors interested in offloading tasks to heterogeneous

computing devices [2, 3]. An OpenCL program can execute on a variety of platforms, but porting a program from

CUDA to OpenCL tends to be error-prone and time-consuming [4, 5]. Built on the underlying concepts, portability,

and efficiency of OpenCL, SYCL is a specification that defines a single-source abstract layer in C++ on top of OpenCL

[6, 7]. The abstraction in SYCL could facilitate migrating CUDA programs although a typical SYCL platform still

consists of a host connected to one or more vendors’ devices as shown in Figure 1.

It is desirable to deploy a SYCL application across vendors’ computing platforms without much loss of

performance. However, achieving performance portability is challenging due to the characteristics of applications,

target platforms, and maturity of a compiler. Despite these factors, there is always a need to identify applications

where performance can be improved with the development of SYCL. Toward the goal of contributing to the SYCL

ecosystem in the deployment of SYCL applications across vendors’ platforms, we describe the experience of

deploying graph analytics on GPUs using SYCL. More specifically, we choose optimized CUDA implementations of

the graph algorithms, migrate the implementations from CUDA to SYCL manually, compile them with an open-

source SYCL compiler, and evaluate the performance of the compute kernels in the applications on NVIDIA and

AMD GPUs.

Here is a summary of our findings. More SYCL extensions have been added to the Intel SYCL compiler, an open-

source implementation of the SYCL specification [8]. These extensions are not necessarily the core SYCL features

Figure 1. A SYCL platform with multiple devices. Each device contains multiple compute units. A

compute unit is composed of one or more processing elements (PEs).

2

defined in the specification, but they facilitate migrating applications from CUDA to SYCL. Using the ratio of the raw

performance of the SYCL applications to the performance of the applications written in a native programming

model as a performance metric, we observe that the ratio ranges from 0.58 to 1 on an AMD RX6900 XT GPU and

from 0.989 to 1.024 on an NVIDA GeForce RTX3090 GPU for graph coloring. For connected components, the ratios

range from 0.659 to 0.986 and from 0.868 to 1.16 on the AMD and NVIDA GPUs, respectively. Furthermore, we

explore device-level parallelism by executing kernels in each application on the AMD and NVIDA GPUs

simultaneously. The performance speedup ranges from 0.56 to 1.99 for graph coloring and from 0.6 to 1.897 for

connected components. The speedups we could obtain depend on the raw performance of the application on each

GPU. We have described the motivation and scope of our study in this section. Section 2 briefly introduces the graph

applications and the compiler in our experiment. Section 3 contrasts the CUDA and SYCL applications by describing

in detail the migration paths from CUDA to SYCL. Section 4 presents the experimental results on the GPUs. Section

5 is a summary of related work, and Section 6 concludes the paper.

2 BACKGROUND

2.1 Brief introduction to the graph applications

Graph analytics algorithms such as graph coloring and connected components are widely used in many domains [9,

10, 11, 12, 13, 14, 15, 16]. Graph coloring assigns colors to all vertices of a graph such that no adjacent vertices have

the same color. It is also an optimization problem of coloring a graph with minimum number of colors. The problem

is NP-hard, so there is no known polynomial time algorithm that can solve it optimally [17]. Heuristic algorithms

can color a graph with no adjacent vertices assigned the same color, but they may require more colors than the

optimal algorithm [18, 19, 20, 21, 22]. Connected components computes maximal subgraphs of an undirected graph

such that there exists a path between any pair of vertices in the subgraph but there is no path between any pair of

vertices from different subgraphs [23, 24]. In this work, we choose the highly optimized implementations of the

algorithms that exploit the thread-, warp-, and block-level parallelism exposed in CUDA [25, 26, 27]. Hence, they

are considered as hybrid implementations optimized to reduce load imbalance and to exploit hardware parallelism.

The applications transfer a graph from a host to a GPU for parallel processing and send the result back to the host

for postprocessing and validation.

2.2 Brief introduction to the SYCL compiler with CUDA and HIP support in our experiment

In this work, we choose an open-source SYCL compiler from the SYCL branch of the Intel LLVM GitHub repository

[28, 29] for evaluating the applications. The initial approach to supporting NVIDIA computing platforms in the SYCL

compiler was based on the NVIDIA OpenCL 1.2 implementation [30]. The prototype demonstrated the success of

running on multiple platforms, but the capabilities of the OpenCL implementation from NVIDIA are limited. Taking

advantage of a plugin interface that can be selected at runtime [31], the new approach does not depend on the

OpenCL support from NVIDIA, facilitating extensions to more features and potentially higher overall performance.

To support AMD GPUs, the CUDA plugin is migrated to the heterogeneous interface for portability (HIP) plugin with

the support of Radeon Open Computing Platform [32]. The CUDA and HIP plugins have seen improvement in

functionality and performance with the evaluation of SYCL applications and benchmarks from the community.

3

3 CONTRAST THE CUDA AND SYCL APPLICATIONS

A contrast of the two programming models from the aspect of application programming interfaces allows for a good

understanding of their differences in device query, memory management, arithmetic and atomic functions, and

kernel execution.

3.1 Device property query

It may be desirable to query the device properties of a GPU for allocating its hardware resources at runtime. The

CUDA device properties, which are defined in the “cudaDeviceProp” structure, can be queried using the

“cudaGetDeviceProperties()” function in CUDA. In SYCL, a device can be queried for information by calling the

“get_info()” member function of the SYCL “device” class, specifying a parameter related to the query. The CUDA

applications query the multi-processor count (i.e., the number of streaming multiprocessors) and the number of

maximum resident threads per multi-processor to determine the number of thread blocks for launching the CUDA

kernels. The multi-processor count in CUDA is mapped to the maximum number of compute-units in SYCL. Querying

the clock rate of a GPU device in KHz can be mapped to the maximum configured clock frequency of a device in MHz

in SYCL. The GPU memory clock rate is mapped to a vendor-specific extension to device information. Due to the lack

of compiler support, we map the number of maximum resident threads per multi-processor in CUDA to the

maximum work-item size per compute unit by implementing the query in the SYCL compiler. A CUDA device’s

compute capability represented by a major revision number and a minor revision number can be queried with the

version of the SYCL backend associated with the device. Table 1 lists the device information queried in the

applications. For clarity, we omit the full namespace for each device parameter in SYCL.

3.2 Memory management

Two abstractions are commonly used for managing memory in SYCL: unified shared memory and buffer. The former

is a pointer-based approach that allows for easier integration with existing C/C++ programs. In contrast, a buffer is

Table 1: Contrast the CUDA device properties with SYCL device information queries in the applications

 CUDA SYCL

1 multiProcessorCount info::device::max_compute_units

2 maxThreadsPerMultiProcessor info::device::max_work_item_size_per_compute_unit

3 clockRate info::device::max_clock_frequency

4 memoryClockRate info::device::memory_clock_rate

5 major/minor info::device::backend_version

Table 2: Contrast the CUDA and SYCL memory management and data transfers in the applications

CUDA SYCL

cudaMalloc(&dst, numBytes); T* dst = sycl::malloc_device<T>(count, q);

cudaMemcpy(dst, src, numBytes),

 cudaMempyHostToDevice);

q.memcpy(dst, src, numBytes);

cudaMemcpy(dst, src, numBytes),

 cudaMempyDeviceToHost);

q.memcpy(dst, src, numBytes);

cudaFree(p); sycl::free(p, q);

__device__ T var; T *var = sycl::malloc_device<T>(1, q);

l

4

considered as a high-level data abstraction because we can query characteristics of a buffer and determine whether

and where device data is read from or written back to host memory. Since the pointer-based approach is much

closer to how memory is handled by CUDA, we will choose unified shared memory for managing memory resources

and data transfers between a host and a device.

Table 2 lists the programming interfaces for memory management and data copy in CUDA and SYCL. In CUDA,

“cudaMalloc()” allocates one-dimensional linear memory on a device in bytes and returns a pointer to the allocated

memory. In SYCL, a templated function is called with the word size and a SYCL queue object “q” as the parameters.

Hence, a double pointer is not needed for allocating device memory from a programmer perspective. Compared to

the CUDA memory copy function that explicitly specifies the kind of transfer, the copy direction is implied by the

types of source and destination memories in SYCL. Releasing device memory in SYCL is similar to memory

deallocation in a C program, but the function requires a SYCL queue object associated with the allocated memory.

In the CUDA applications, device memory is also statically allocated in global scope using the “__device__”

declaration specifier. Neither the SYCL specification nor the SYCL compiler supports such specifier. Hence, we

explicitly allocate device memory of length 1.

3.3 Group functions

The SYCL specification has been improving functionality for groups of work-items, such as group barriers and

collective operations. A collective function represents an operation performed by a group of work-items. These

group functions act as synchronization points and must be reached by all work-items in the group before they move

on. When one work-item in a group calls a group function, all work-items in that group must call the same function

under the same conditions (e.g., in the same iterations of a loop). The group argument in the function indicates that

all work-items in the specified group work together for a specific operation.

Table 3 contrasts the CUDA warp-level primitives and the SYCL group functions called in the applications. The

warp vote functions in CUDA take as input an integer predicate from each thread in a warp and compare these

values with zero. Results of the comparisons are reduced across the active threads of the warp in “any”, “all” or

“ballot” logic. The result is then broadcasted to each participating thread. In contrast, the SYCL group functions

require a sub-group argument “sg” that represents the sub-group to which each work-item belongs. For the “mask”

argument in the CUDA warp vote functions, the SYCL “mask” is bitwise ANDed with a bit pattern computed from

each work-item in a sub-group before it is logically ANDed with a Boolean predicate. When the value of a “mask” is

Table 3: Contrast the CUDA warp-level primitives with the SYCL group functions in the applications

CUDA SYCL

__any_sync(mask, pred) sycl::any_of_group(sg,

 (mask & (1 << sg.get_local_linear_id())) && pred)

__all_sync(mask, pred) sycl::all_of_group(sg,

 (mask & (1 << sg.get_local_linear_id())) && pred)

__ballot_sync(mask, pred) auto mask = sycl::group_ballot(sg, pred);

mask.extract_bits(mask_bits, 0)

__shfl_sync(MASK, var,

 srcLane)

sycl::select_from_group(sg, var, srcLane)

__shfl_xor_sync(MASK, var,

 laneMask)

sycl::permute_group_by_xor(sg, var, laneMask)

5

0xFFFFFFFF (i.e., 32 active threads), we may optimize away the bitwise operation. Previously, the CUDA

“__ballot_sync” primitive was mapped to the SYCL “reduce_over_group” function in which a group sums up values

across a sub-group and each work-item provides one value. The new SYCL “group_ballot” function converts a

Boolean condition from each work-item in the group into a group mask (object). When a work-item’s predicate is

true, a bit corresponding to the work-item is set in this mask. The “extract_bits” method of the object is needed to

return the values of these bits from the mask.

The CUDA warp shuffle instruction “__shfl_sync” is mapped to the SYCL “select_from_group” function that allows

work-items to obtain a copy of a value held by any other work-item in the group. The “__shfl_xor_sync” is mapped

to the SYCL “permute_group_by_xor” function that permutes values by exchanging values held by pairs of work-

items identified by computing the bitwise exclusive OR of the work-item identifier and a fixed lane mask. The value

of the mask (MASK) is 0xFFFFFFFF in the applications.

3.4 Arithmetic functions

Table 4 lists a migration path from the CUDA arithmetic functions invoked in the implementation of the algorithm

to the SYCL arithmetic functions. The “max()” or “min()” function in CUDA, which returns the maximum or minimum

of two numbers, is mapped to the “sycl::max()” or “sycl::min()” function. The “__clz()” intrinsic function in CUDA,

which returns the number of consecutive high-order zero bits in a 32-bit integer, starting at the most significant bit

(bit 31), is mapped to the “sycl::clz()” function. The “__ffs()” intrinsic function in CUDA finds the position of the least

significant bit set to 1 in a 32-bit integer. When the integer’s value is zero, the function returns zero. The SYCL

“sycl::ctz()” function counts the number of trailing zero bits in a number. When the value of the number is zero, the

function returns the size in bits of the type of the number. Counting the trailing number of zero bits starting at the

Table 4: Contrast the CUDA and SYCL arithmetic functions in the applications

CUDA SYCL

max(x,y) or min(x,y) sycl::max(x,y) or sycl::min(x,y)

__clz(x) sycl::clz(x)

__ffs(x) x == 0 ? 0 : sycl::ctz(x)

__popc(x) sycl::popcount(x)

Table 5: Contrast the CUDA atomic functions with the SYCL atomic references in the applications

CUDA SYCL

atomicAdd(int* x, int var) auto a = atomic_ref<int,

 memory_order::relaxed,

 memory_scope::device,

 address_space::global_space>(*x);

a.fetch_add(var)

atomicCAS(int *x,

 int expected,

 int desired)

int expected_value = expected;

auto a = atomic_ref<int,

 memory_order::relaxed,

 memory_scope::device,

 address_space::global_space>(*x);

a. compare_exchange_strong(expected_value, desired);

return expected_value;

6

most significant bit is equivalent to finding the position of the least significant bit set to 1, but the discrepancy of

the return values of the CUDA and SYCL functions when the number is zero should be considered. It should be

pointed out that “__ctz()” is not defined in the CUDA programming guide whereas “sycl::ffs()” is not defined in the

SYCL specification. The “__popc()” intrinsic function in CUDA, which counts the number of bits that are set to 1 in a

32-bit integer, is mapped to the “sycl::popcount()” function.

3.5 Atomic functions

Atomic operations enable concurrent memory accesses from multiple work-items in work-groups to a memory

location without introducing data race in the applications. They guarantee that multiple updates to a memory

location do not overlap, but the order of updates is not deterministic. We find that the application programming

interfaces for atomic functions differ significantly between CUDA and SYCL.

Table 5 lists the CUDA and SYCL atomic add and atomic compare and swap (exchange) functions invoked in the

implementations of the graph analytics algorithms. For the applications, the atomic operations are performed over

32-bit integer values stored in global device memory. The CUDA atomic add function reads the 32-bit word “old”

located at the address “x” in global memory, compute the sum, and stores the result to memory at the same address.

These three operations are performed in one atomic transaction. The function returns “old”. The SYCL “atomic_ref”

class, defined in the SYCL 2020 specification, extends the atomic operations with memory orders and scopes. The

“add” function atomically sums an operand and the value of the object referenced and assigns the result to the value

of the referenced object. The CUDA atomic compare and swap function reads the 32-bit word “old” located at the

address “x” in global memory, computes “(old == expected ? desired : old)”, and stores the result back to memory

at the same address. The function returns the value “old”. The SYCL compare and exchange function atomically

compares the value of the object referenced against the value of expected. If the values are equal, the value of the

referenced object is replaced with the value of desired; otherwise assigns the original value of the referenced object

to expected. The function returns a Boolean value of “true” if the comparison operation was successful.

3.6 Kernel attribute

A kernel attribute annotates a kernel to influence code generation by a SYCL device compiler. In the CUDA

implementation, the number of work-items in a warp is 32 by default. To inform the SYCL compiler that the kernel

must be compiled and executed with the specified sub-group size of 32, the SYCL-specific kernel attribute

“[[sycl::reqd_sub_group_size(32)]]” is required. The attribute is shown in Table 6.

3.7 Kernel launch and definition

Table 6 lists the execution of one of the GPU kernels in CUDA and SYCL. Other kernels can be launched in a similar

fashion. A CUDA kernel starts with the “__global__” declaration specifier. The number of thread blocks in a grid

(“grid”) and the number of threads per block (“block”) which will execute a kernel are specified using a “<<<...>>>”

execution configuration syntax. In SYCL, the body of a C++ lambda function represents a kernel and variables

captured by value will be passed to the kernel as arguments. The “submit” method of a SYCL queue object is invoked

to submit a data-parallel kernel to be executed on a device associated with the queue object. The number of thread

blocks in a grid and the number of threads per block in CUDA are converted to the global work size (“gws”) and

local work size (“lws”) using the SYCL “range” class, respectively. The number of threads per block equals the local

work size, and the global work size is the product of the number of thread blocks and the number of threads per

7

block. While SYCL uses work-items, local work size and global work size to describe its thread hierarchy, the

number of work-groups in SYCL is equal to the number of thread blocks in CUDA. These work-groups can execute

independently on a device. In the SYCL code, the “init” function is called inside a lambda function. Though this is not

required, it could minimize code changes when mapping a kernel from CUDA to SYCL.

Launching a SYCL kernel is verbose compared to the CUDA approach. This increases lines of code and decreases

programming productivity when there are many kernels in a large application. On the other hand, it offers the

flexibility of combining host and device codes in a single source. There is a tradeoff between verbosity and flexibility

in the SYCL programming model.

3.8 Debugging

The CUDA in-kernel “printf()” function, which is used for debugging kernel execution, behaves in a similar way to

the standard C-library “printf()” function. Although the function is handy, it is not part of the SYCL specification.

Instead, the SYCL “stream” class is a buffered output stream for displaying the values of built-in, vector and SYCL

types to the console. The SYCL stream is designed for debugging purposes only and should therefore be avoided for

performance critical applications. On the other hand, we find that the C function is only supported by the CUDA

backend of the SYCL compiler.

3.9 Architecture-specific features

As far as we know, certain architecture-specific features in the CUDA applications have no SYCL equivalents though

extensions are being added to the compiler implementation. To aid the compiler with additional information about

register usage of the CUDA kernels, the CUDA program uses the “__launch_bounds__()” qualifier in the definition of

a “__global__” function to specify the maximum number of threads per block with which to launch the kernel and

the desired number of resident blocks per multiprocessor. The specification of the thread block counts at the SYCL

kernel scope is not supported by the compiler yet.

The CUDA applications set the preferred cache configuration with “cudaFuncSetCacheConfig()” for GPU devices

that share the level-1 cache and shared local memory (SLM). To facilitate the migration process, SYCL recently

Table 6: Contrast the CUDA and SYCL kernel execution

CUDA SYCL

__global__ void init (…) {

 // kernel code

}

dim3 grid (numBlocks)

dim3 block(threadsPerBlock)

init <<<grid, block>>> (…);

void init (…) {

 // kernel code

}

sycl::range<1> gws (numBlocks * threadsPerBlock);

sycl::range<1> lws (threadsPerBlock);

q.submit([&](sycl::handler &cgh) {

cgh.parallel_for(sycl::nd_range<1>(gws, lws)

 [=] (sycl::nd_item<1> item)

 [[sycl::reqd_sub_group_size(32)]] {

 init(…) // call the “kernel” function

});

});

8

introduces a cache configuration property for specifying the division between the cache and local memory [33]. The

value of the property is either “large_slm” or “large_data”. The former prefers larger shared local memory to smaller

L1 data cache. The latter prefers larger L1 data cache and smaller shared local memory. The new feature is an

experimental extension specification, intended to provide early access to features and gather community feedback.

The property may be ignored by GPU backends that do not support this extension.

4 EXPERIMENTAL RESULTS

4.1 Performance evaluation on the GPUs

We evaluate the performance of the applications with an open-source graph set [34]. The characteristics of the

graph set are listed in Table 7. These graphs are selected for their variety in characteristics though coloring them

does not necessarily make sense. We offload the compute kernels in the applications to a compute node equipped

with an NVIDIA GeForce RTX3090 GPU and an AMD RX6900 XT GPU. The CUDA and HIP programs are compiled

with the NVIDIA HPC SDK 22.11 and ROCm 5.4 [30], respectively. We build the SYCL compiler with CUDA and HIP

support from the source (2023-05-01). The optimization option is “-O3”. All GPU results are verified on the hosts.

In the CUDA programs, the number of thread blocks per grid is determined at runtime as follows:

 Blocks = SMs × maxThreadsPerMultiProcessor ÷ ThreadsPerBlock (1)

In the expression, the number of streaming multiprocessors (SMs) can be queried at runtime and the number of

threads per block (ThreadsPerBlock) is a constant value specified in the program. The thread block (work-group)

Table 7: Names, types, vertex and edge counts, average and maximum degrees of a vertex in each graph

No. Graph name Type Vertices Edges Degreeavg Degreemax

1 2d-2d20.sym Grid 1,048,576 4,190,208 4 4

2 amazon0601 Co-purchases 403,394 4,886,816 12.1 2752

3 as-skitter Internet topo. 1,696,415 22,190,596 13.1 35455

4 citationCiteseer Publication 268,495 2,313,294 8.6 1318

5 cit-Patents Patent cites 3,774,768 33,037,894 8.8 793

6 coPapersDBLP Publication 540,486 30,491,458 56.4 3299

7 delaunay_n24 Triangulation 16,777,216 100,663,202 6 26

8 europe_osm Road map 50,912,018 108,109,320 2.1 13

9 in-2004 Web links 1,382,908 27,182,946 19.7 21869

10 internet Internet topo. 124,651 387,240 3.1 151

11 kron_g500-logn21 Kronecker 2,097,152 182,081,864 86.8 213904

12 r4-2e23.sym Random 8,388,608 67,108,846 8 26

13 rmat16.sym RMAT 65,536 967,866 14.8 569

14 rmat22.sym RMAT 4,194,304 65,660,814 15.7 3687

15 soc-LiveJournal1 Community 4,847,571 85,702,474 17.7 20333

16 uk-2002 Web links 18,520,486 523,574,516 28.3 194955

17 USA-road-d.NY Road map 264,346 730,100 2.8 8

18 USA-road-d.USA Road map 23,947,347 57,708,624 2.4 9

9

size is fixed at 256. The maximum numbers of resident threads per multi-processor are 1536 and 2048 for the

RTX3090 and RX6900, respectively. The performance metrics are million nodes processed per second (Mnodes/s)

and million edges processed per second (Medges/s). We choose the maximum performance results among four trial

runs. Each run averages the performance of executing the compute kernels for 100 times.

Tables 8 and 9 list the performance of the two applications running on the GPUs, respectively. We observe that

the performance variances depend on the characteristics of the input graphs, the programming models selected for

implementing the algorithms, and the GPU devices. For each input graph, we compare the performance of the SYCL

implementation with that of the implementation using a native programming model (CUDA and HIP) on each GPU

for evaluating performance portability.

To visualize the results, Figure 2 shows the ratios of the raw performance of the SYCL applications to that of the

applications using native languages. When the ratio is above 1, the performance is higher for the SYCL

implementation. For graph coloring, the ratios range from 0.58 to 1 and from 0.989 to 1.024 on the AMD and NVIDA

GPUs, respectively. For connected components, the ratios range from 0.659 to 0.986 and from 0.868 to 1.16 on the

AMD and NVIDA GPUs, respectively. Hence, the SYCL applications have not fully achieved performance portability

on the GPUs.

The causes of the performance gap are generally attributed to the implementations (e.g., code generation and

optimization) of the SYCL compiler for the target GPUs. Particularly, more optimizations are needed for the SYCL

compiler with HIP support. Table 10 lists the codes lengths in bytes and register usage of the three compute kernels

Table 8: Performance of the graph coloring applications in CUDA, HIP, and SYCL on the GPUs

Graph name Mnodes/s

(HIP)

Medges/s

(HIP)

Mnodes/s

(SYCL-

HIP)

Medges/s

(SYCL-

HIP)

Mnodes/s

(CUDA)

Medges/s

(CUDA)

Mnodes/s

(SYCL-

CUDA)

Medges/s

(SYCL-

CUDA)

2d-2d20.sym 2883.9 11524.33 2669.97 10669.45 1106.22 4420.55 1195.27 4776.44

amazon0601 581.31 7042.08 463.84 5619.04 497.2 6023.26 509.56 6172.91

as-skitter 230.63 3016.81 157.1 2290.43 171.53 2243.78 173.26 2266.37

citationCiteseer 724.93 6245.83 522.12 4498.47 951.16 8194.97 948.64 8173.27

cit-Patents 649.85 5687.68 641.47 5614.29 223.92 1959.83 221.62 1939.7

coPapersDBLP 31.34 1767.8 21.71 1224.78 25.32 1428.32 25.11 1416.45

delaunay_n24 1389.05 8334.28 1389.05 8334.29 359.62 2157.73 366.35 2198.09

europe_osm 2694.26 5721.15 2690.72 5713.62 933.06 1981.31 960.64 2039.87

in-2004 58.53 1150.48 37.32 733.57 57.38 1127.9 57.65 1133.11

internet 1393.67 4329.58 808.18 2510.67 2177.31 6764.01 2217.26 6888.13

kron_g500-logn21 14.76 1281.45 14.49 1257.91 26.38 2290.51 26.57 2306.65

r4-2e23.sym 645.54 5164.3 643.73 5149.83 209.18 1673.45 208.59 1668.72

rmat16.sym 130 1919.88 75.44 1114.13 141.5 2089.71 142.08 2098.34

rmat22.sym 149.67 2343.01 150.23 2351.78 83.45 1306.46 83.48 1306.88

soc-LiveJournal1 155.96 2757.23 136.54 2413.95 125.96 2226.9 125.4 2217

uk-2002 108.87 3077.72 83.23 2352.89 93.66 2647.81 93.18 2634.33

USA-road-d.NY 3948.47 10905.33 2850.56 7872.99 6593.38 18210.31 7045.48 19458.99

USA-road-d.USA 3035.05 7313.91 3003.55 7237.99 894.38 2155.28 913.58 2201.55

10

in HIP and SYCL in graph coloring on the AMD GPU. The code lengths of the first two SYCL kernels are 61.7% and

98.1% longer than those of the HIP kernels, respectively. In addition, the first two SYCL kernels need 43.8% and

78.8% more scalar registers, and 78.3% and 32.4% more vector registers, respectively.

We try to understand causes of the gap in resource usage by analyzing GPU assembly instructions generated by

the HIP and SYCL compilers. Our code analysis indicates that a SYCL group function would generate significantly

Table 9: Performance of the connected components application in CUDA, HIP, and SYCL on the GPUs

Graph name Mnodes/s

(HIP)

Medges/s

(HIP)

Mnodes/s

(SYCL-

HIP)

Medges/s

(SYCL-

HIP)

Mnodes/s

(CUDA)

Medges/s

(CUDA)

Mnodes/s

(SYCL-

CUDA)

Medges/s

(SYCL-

CUDA)

2d-2d20.sym 3773.03 15077.38 3169.33 12664.94 2471.51 9876.4 2332.1 9319.29

amazon0601 1712.25 20742.66 1504.46 18225.37 1335.86 16182.99 1287.96 15602.63

as-skitter 3852.72 37316.09 2548.08 33331.15 1779.5 23277.41 1677.9 21948.39

citationCiteseer 1562.21 13459.67 1222.43 10532.15 1231.12 10607.08 1091.31 9402.51

cit-Patents 1902.16 16648.25 1876.86 16426.8 906.45 7933.5 897.46 7854.83

coPapersDBLP 875.68 49395.65 706.98 39884.3 970.66 54759.62 944.43 53280.14

delaunay_n24 3477.98 20862.44 2987.05 17922.26 950.01 5700.04 904.04 5424.21

europe_osm 4425.53 9397.4 4160.08 8833.73 2564.98 5446.6 2467.13 5238.83

in-2004 2101.03 41298.7 1765.72 34707.59 1919.93 37738.78 1838.04 36129.26

internet 1472.94 4575.84 986.34 3064.17 2444.75 7594.83 2327.77 7231.45

kron_g500-logn21 422.26 36662.15 398.87 34631.58 471.06 40898.88 546.64 47460.68

r4-2e23.sym 2060.04 16480.29 2210.73 17685.79 898.37 7186.96 840.75 6725.97

rmat16.sym 673.25 9942.92 444.07 6558.2 815.04 12036.92 707.47 10448.17

rmat22.sym 1333.96 20882.82 1261.61 19750.24 785.78 12301.13 783.28 12262.02

soc-LiveJournal1 1519.5 26863.95 1360.12 24046.25 972.62 17195.48 936.84 16562.79

uk-2002 1061.35 30004 926.16 26182.67 980.68 27723.75 954.64 26987.6

USA-road-d.NY 2801.07 7736.29 1780.75 4918.28 4577.13 12641.63 4211.25 11631.1

USA-road-d.USA 5679.81 13687.27 4996.2 12039.9 1533.04 3694.33 1483.14 3574.09

 Table 10: Code lengths and register usage of the HIP and SYCL kernels (K1, K2, K3) in graph coloring on the AMD GPU

 K1-HIP K1-SYCL K2-HIP K2-SYCL K3-HIP K3-SYCL

Code length 1756 2840 2096 4152 772 784

Scalar registers 32 46 33 59 16 23

Vector registers 23 41 37 49 16 14

 const int thread = threadIdx.x + blockIdx.x * blockDim.x;

 const int threads = gridDim.x * blockDim.x

 for (int v = thread; __any(v < nodes); v += threads) {

 … …

 }

Listing 1: Code snippet in HIP for analyzing the assembly instructions generated for the function “__any()”

11

more assembly instructions, leading to longer code length and higher register utilization. Listings 1 and 2 show the

code snippets in HIP and SYCL, respectively. For the HIP group function “__any”, the HIP compiler would generate

four instructions whereas the SYCL compiler would generate over 60 instructions for the SYCL group function

“sycl::any_of_group”. The instruction stream generated by the SYCL compiler consists of a sequence of conditional

masking on each thread (v_cndmask_b32) and lane permutation (ds_bpermute_b32) instructions. Hence, it is

possible to optimize code generation for the SYCL group functions in the SYCL compiler.

Figure 2. Normalized performance of the SYCL applications on the AMD and NVIDIA GPUs (higher is

better)

0 0.2 0.4 0.6 0.8 1 1.2

2d-2e20
amazon0601

as-skitter
citationCiteseer

cit-Patents
coPapersDBLP

delaunay_n24.egr
europe_osm

in-2004
internet

kron_g500-logn21
r4-2e23
rmat16
rmat22

soc-LiveJournal
uk-2002

USA-road-d.NY
USA-road-d.USA

Normalized performance for graph
coloring

Medges/s (SYCL-CUDA)

Mnodes/s (SYCL-CUDA)

Medges/s (SYCL-HIP)

Mnodes (SYCL-HIP)

0 0.2 0.4 0.6 0.8 1 1.2

2d-2e20
amazon0601

as-skitter
citationCiteseer

cit-Patents
coPapersDBLP

delaunay_n24.egr
europe_osm

in-2004
internet

kron_g500-logn21
r4-2e23
rmat16
rmat22

soc-LiveJournal
uk-2002

USA-road-d.NY
USA-road-d.USA

Normalized performance for connected
components

Medges/s (SYCL-CUDA)

Mnodes/s (SYCL-CUDA)

Medges/s (SYCL-HIP)

Mnodes/s (SYCL-HIP)

 const int thread = item.get_global_id(0);

 const int threads = item.get_group_range(0) * item.get_local_range(0);

 for (int v = thread; sycl::any_of_group(sg, v < nodes); v += threads) {

 … …

 }

Listing 2: Code snippet in SYCL for analyzing the assembly instructions generated for the function sycl::any_of_group()

12

4.2 Improve the performance of the applications on the GPUs with device-level parallelism

Compiler optimizations are often evasive for most users who have little knowledge of the compiler

implementations. Hence, we try an alternative path to improving the performance of the applications. Since the

computing platform contains two GPUs, we may reduce the total kernel execution time by executing the compute

kernels on both GPUs simultaneously. We assume that this hybrid method could exploit parallel execution of the

kernels at the device level. In the modified SYCL program, a SYCL queue is instantiated for each device. We allocate

device memory needed by the kernels for each GPU, copy data from the host to the devices, submit kernels of the

application to each queue asynchronously, and finally wait for them to complete.

Tables 11 and 12 list the performance of the two SYCL applications running on both GPUs, respectively. For the

first two columns in the tables, we compare the performance results of the SYCL applications from Tables 8 and 9

to compute the maximum of the two values. We define “speedup” as the ratio of the performance of the application

running on both GPUs over the maximum performance achieved on one of the two GPUs. The speedup ranges from

0.56 to 1.99 for the graph coloring and from 0.6 to 1.897 for connected components. For each application, we find

that the speedup results are correlated to the raw performance of the application on the two GPUs. When the kernel

execution time of an application on one GPU is about two times faster or slower than that on the other GPU, there

is no performance gain from device-level parallelism. In other words, parallelism at the device level is most effective

when the execution time of an application on the AMD GPU is close to that on the NVIDIA GPU.

Table 11: Performance of graph coloring in SYCL when executed on the two GPUs

Graph name

Mnodes/s

(SYCL-

Single)

Medges/s

(SYCL-

Single)

Mnodes/s

(SYCL-

Hybrid)

Medges/s

(SYCL-

Hybrid)

Speedup

2d-2d20.sym 2669.97 10669.45 2175.35 8692.91 0.81

amazon0601 509.56 6172.91 898.38 10883.21 1.76

as-skitter 173.26 2290.43 344.84 4510.87 1.99

citationCiteseer 948.64 8173.27 985.85 8493.88 1.03

cit-Patents 641.47 5614.29 441.41 3863.37 0.68

coPapersDBLP 25.11 1416.45 43.26 2440.61 1.72

delaunay_n24 1389.05 8334.29 726.87 4361.19 0.52

europe_osm 2690.72 5713.62 1886.95 4006.86 0.70

in-2004 57.65 1133.11 74.73 1468.96 1.29

internet 2217.26 6888.13 1317.39 4092.59 0.59

kron_g500-logn21 26.57 2306.65 29.05 2522.25 1.09

r4-2e23.sym 643.73 5149.83 416.05 3328.36 0.64

rmat16.sym 142.08 2098.34 141.85 2094.96 0.99

rmat22.sym 150.23 2351.78 165.36 2588.63 1.10

soc-LiveJournal1 136.54 2413.95 252.71 4467.71 1.85

uk-2002 93.18 2634.33 167.27 4728.77 1.79

USA-road-d.NY 7045.48 19458.99 3964.29 10949 0.56

USA-road-d.USA 3003.55 7237.99 1802.09 4342.7 0.59

13

5 RELATED WORK

Many studies have focused on performance and portability of SYCL on vendors’ computing platforms. In [35], the

authors evaluate the performance of benchmarks and mini-apps having both SYCL and CUDA implementations on

an NVIDIA Volta GPU. They conclude that the performance of running SYCL can be competitive with using CUDA

directly. In [36], the authors evaluate the performance of a GPU accelerated sequence alignment algorithm across

multiple vendor GPUs and programming models. They describe the code changes required for the SYCL

implementation to execute the application successfully. They conclude that migrating their highly optimized CUDA

kernels to SYCL requires significant code changes. The performance of the SYCL implementation is 2X slower than

that of the CUDA implementation on the target devices. In [37], the authors evaluate the HPC applications written

in OpenCL and SYCL on AMD, Intel, and NVIDIA GPUs and show that across each application the SYCL

implementation achieves similar performance to a direct OpenCL implementation. In [38], the authors share their

experience in creating mini-apps for the Wilson-Dslash stencil operator for Lattice Quantum Chromodynamics

using the SYCL programming model. In their opinions, the SYCL way of managing memory through buffers and

accessors are somewhat cumbersome and may create difficulties interfacing with non-SYCL external libraries in an

efficient way. Sometimes, it is desirable to have explicit control over where the data is rather than delegating the

management of memory to the SYCL runtime. In [39], the authors describe their customized porting flow for their

Table 12: Performance of connected components in SYCL when executed on the two GPUs

Graph name

Mnodes/s

(SYCL -

Single)

Medges/s

(SYCL -

Single)

Mnodes/s

(SYCL-

Hybrid)

Medges/s

(SYCL-

Hybrid)

Speedup

2d-2d20.sym 3169.33 12664.94 3803.64 15199.71 1.20

amazon0601 1504.46 18225.37 2181.56 26427.99 1.45

as-skitter 2548.08 33331.15 2929.56 38321.21 1.14

citationCiteseer 1222.43 10532.15 1526.96 13155.92 1.24

cit-Patents 1876.86 16426.80 1524.27 13340.83 0.81

coPapersDBLP 944.43 53280.14 1276.96 72039.76 1.35

delaunay_n24 2987.05 17922.26 1792.33 10753.94 0.60

europe_osm 4160.08 8833.73 4913.33 10433.22 1.18

in-2004 1838.04 36129.26 2814.33 55319.55 1.53

internet 2327.77 7231.45 1485.99 4616.35 0.63

kron_g500-logn21 546.64 47460.68 806.64 70034.8 1.47

r4-2e23.sym 2210.73 17685.79 1670.57 13364.57 0.75

rmat16.sym 707.47 10448.17 645.46 9532.48 0.91

rmat22.sym 1261.61 19750.24 1374.4 21515.93 1.08

soc-LiveJournal1 1360.12 24046.25 1774.22 31367.20 1.30

uk-2002 954.64 26987.60 1811.88 51221.97 1.89

USA-road-d.NY 4211.25 11631.10 2780.85 7680.46 0.66

USA-road-d.USA 4996.20 12039.90 2947.34 7102.54 0.58

14

platform-portable math library. They present a hierarchical view of CUDA and SYCL kernel calls and parameters for

a clear understanding of the differences of the two programming models. The SYCL compiler did not support

subgroup vote functions, so they emulated these functions and suggested native support of subgroup vote function

for performance portability. With the active development of the SYCL compiler, we are now able to utilize the SYCL

group functions for migrating CUDA warp-level primitives. In [40], the author shares his extensive experience of

using SYCL for CUDA. While both programming models are extensions to the C/C++ languages, there are significant

differences in the application programming interfaces between CUDA and SYCL. The optimizations applied by a

compiler to a kernel also pose challenges and complexities to performance portability. Compared to the findings in

[41], more SYCL extensions have been added to facilitate the CUDA migration process. In addition, we extend the

work with performance evaluation of two graph applications on the NVIDIA and AMD GPUs and explore

performance optimization with device-level parallelism.

The CUDA-to-SYCL conversion tool can automate the migration process by automatically generating variants of

SYCL codes [42]. This significantly improves productivity compared to manual conversion. However, the generated

codes often require manual changes in GPU kernels for performance [43, 44, 45], and certain experimental features,

such as cache configuration, are not supported yet.

6 CONCLUSION

The plugin interfaces in the SYCL compiler facilitate functional portability of a SYCL program across vendors’

computing platforms. While programming models serve the same purpose of accelerating applications on GPUs, a

good understanding of vendors’ programming models is still needed for migrating applications from CUDA to SYCL.

Comparing the performance of the applications in CUDA, HIP, and SYCL calls for improving code optimizations and

register usage in the compiler implementation for performance portability. Exploiting device-level parallelism

requires manual changes of the SYCL program, and the performance speedup depends on the performance of the

application on each device. With the development of the SYCL compilers and applications from the community, we

hope our findings will help improve functional and performance portability.

ACKNOWLEDGMENT

We appreciate the reviewers for their comments and suggestions. This research used resources of the Experimental

Computing Lab at Oak Ridge National Laboratory. This research was supported by the US Department of Energy

Advanced Scientific Computing Research program under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., Zhang, Y. and Volkov, V., 2008. Parallel computing
experiences with CUDA. IEEE MICRO, 28(4), pp.13-27.

[2] Munshi, A., Gaster, B., Mattson, T.G. and Ginsburg, D., 2011. OpenCL programming guide. Pearson Education.

[3] Kaeli, D., Mistry, P., Schaa, D. and Zhang, D.P., 2015. Heterogeneous computing with OpenCL 2.0. Morgan Kaufmann.

[4] Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G. and Namyst, R., 2015, September. Automatic OpenCL code generation for multi-device
heterogeneous architectures. In 2015 44th International Conference on Parallel Processing (pp. 959-968). IEEE.

[5] Steuwer, M. and Gorlatch, S., 2014. SkelCL: a high-level extension of OpenCL for multi-GPU systems. The Journal of Supercomputing, 69(1),
pp.25-33.

[6] Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J. and Tian, X., 2021. Data Parallel C++: Mastering DPC++ for Programming of
Heterogeneous Systems using C++ and SYCL. Springer Nature.

[7] Stroustrup, B., 2013. The C++ Programming Language. Pearson Education.

[8] SYCL Extensions in DPC++. [online] https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/

15

[9] Leighton, F.T., 1979. A graph coloring algorithm for large scheduling problems. Journal of research of the national bureau of standards, 84(6),
pp.489-506.

[10] Chaitin, G.J., 1982. Register allocation and spilling via graph coloring. ACM Sigplan Notices, 17(6), pp.98-101.

[11] Matula, D.W. and Beck, L.L., 1983. Smallest-last ordering and clustering and graph coloring algorithms. Journal of the ACM (JACM), 30(3),
pp.417-427.

[12] Coleman, T.F. and Moré, J.J., 1983. Estimation of sparse Jacobian matrices and graph coloring blems. SIAM journal on Numerical Analysis, 20(1),
pp.187-209.

[13] Hansen, P. and Delattre, M., 1978. Complete-link cluster analysis by graph coloring. Journal of the American Statistical Association, 73(362),
pp.397-403.

[14] Wu, M., Li, X., Kwoh, C.K. and Ng, S.K., 2009. A core-attachment based method to detect protein complexes in PPI networks. BMC bioinformatics,
10(1), pp.1-16.

[15] Hossam, M.M., Hassanien, A.E. and Shoman, M., 2010, November. 3D brain tumor segmentation scheme using K-mean clustering and connected
component labeling algorithms. In 2010 10th International Conference on Intelligent Systems Design and Applications (pp. 320-324). IEEE.

[16] He, L., Ren, X., Gao, Q., Zhao, X., Yao, B. and Chao, Y., 2017. The connected-component labeling problem: A review of state-of-the-art algorithms.
Pattern Recognition, 70, pp.25-43.

[17] Garey, Michael R., and David S. Johnson. “Computers and Intractability”, vol. 29. W. H. Freeman and Company, New York (2002), pp 1-99.

[18] Jones, M.T. and Plassmann, P.E., 1993. A parallel graph coloring heuristic. SIAM Journal on Scientific Computing, 14(3), pp.654-669.

[19] Çatalyürek, Ü.V., Feo, J., Gebremedhin, A.H., Halappanavar, M. and Pothen, A., 2012. Graph coloring algorithms for multi-core and massively
multithreaded architectures. Parallel Computing, 38(10-11), pp.576-594.

[20] Cohen, J. and Castonguay, P., 2012, May. Efficient graph matching and coloring on the gpu. In GPU Technology Conference (pp. 1-10).

[21] Hasenplaugh, W., Kaler, T., Schardl, T.B. and Leiserson, C.E., 2014, June. Ordering heuristics for parallel graph coloring. In Proceedings of the
26th ACM symposium on Parallelism in algorithms and architectures (pp. 166-177).

[22] Singhal, N., Peri, S. and Kalyanasundaram, S., 2017, January. Practical multi-threaded graph coloring algorithms for shared memory
architecture. In Proceedings of the 18th International Conference on Distributed Computing and Networking (pp. 1-7).

[23] Di Stefano, L. and Bulgarelli, A., 1999, September. A simple and efficient connected components labeling algorithm. In Proceedings 10th
international conference on image analysis and processing (pp. 322-327). IEEE.

[24] Azami, N. and Burtscher, M., 2022, November. Compressed In-memory Graphs for Accelerating GPU-based Analytics. In 2022 IEEE/ACM
Workshop on Irregular Applications: Architectures and Algorithms (IA3) (pp. 32-40). IEEE.

[25] Jaiganesh, J. and Burtscher, M., 2018, June. A high-performance connected components implementation for GPUs. In Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed Computing (pp. 92-104).

[26] Alabandi, G., Powers, E. and Burtscher, M., 2020, February. Increasing the parallelism of graph coloring via shortcutting. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 262-275).

[27] Hong, S., Kim, S.K., Oguntebi, T. and Olukotun, K., 2011. Accelerating CUDA graph algorithms at maximum warp. ACM Sigplan Notices, 46(8),
pp.267-276.

[28] The Intel DPC++ compiler. https://github.com/intel/llvm

[29] Lattner, C. and Adve, V., 2004, March. LLVM: A compilation framework for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. (pp. 75-86). IEEE.

[30] Reyes, R., Brown, G. and Burns, R., 2020, April. Bringing performant support for NVIDIA hardware to SYCL. In Proceedings of the International
Workshop on OpenCL (pp. 1-1).

[31] https://github.com/intel/llvm/blob/sycl/sycl/doc/PluginInterface.md

[32] Radeon Open Compute (ROCm) Platform. https://rocmdocs.amd.com

[33] https://github.com/intel/llvm-test-suite/pull/1687

[34] https://userweb.cs.txstate.edu/~burtscher/research/ECLgraph/index.html

[35] Homerding, B. and Tramm, J., 2020, April. Evaluating the Performance of the hipSYCL Toolchain for HPC Kernels on NVIDIA V100 GPUs. In
Proceedings of the International Workshop on OpenCL (pp. 1-7).

[36] Haseeb, M., Ding, N., Deslippe, J. and Awan, M., 2021, November. Evaluating Performance and Portability of a core bioinformatics kernel on
multiple vendor GPUs. In 2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC) (pp. 68-78). IEEE.

[37] Deakin, T. and McIntosh-Smith, S., 2020, April. Evaluating the performance of HPC-style SYCL applications. In Proceedings of the International
Workshop on OpenCL (pp. 1-11).

[38] Joó, B., Kurth, T., Clark, M.A., Kim, J., Trott, C.R., Ibanez, D., Sunderland, D. and Deslippe, J., 2019, November. Performance portability of a wilson
dslash stencil operator mini-app using kokkos and SYCL. In 2019 IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (pp. 14-25). IEEE.

[39] Tsai, Y.M., Cojean, T. and Anzt, H., 2021. Porting a sparse linear algebra math library to Intel GPUs. arXiv preprint arXiv:2103.10116.

[40] Migdal, M. 2021. From CUDA to SYCL. SYCL summer sessions.
https://sycl.tech/assets/files/Michel_Migdal_Codeplay_Porting_Tips_CDUA_To_SYCL.pdf

16

[41] Jin, Z., 2022. Experience of Migrating Parallel Graph Coloring from CUDA to SYCL (No. ORNL/TM-2022/2433). Oak Ridge National Lab.(ORNL),
Oak Ridge, TN (United States).

[42] Huang, A., 2023, April. SYCLomatic compatibility library: making migration to SYCL easier. In Proceedings of the 2023 International Workshop
on OpenCL (pp. 1-2).

[43] Jin, Z. and Vetter, J., 2021, June. Evaluating CUDA Portability with HIPCL and DPCT. In 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (pp. 371-376). IEEE.

[44] Castaño, G., Faqir-Rhazoui, Y., García, C. and Prieto-Matías, M., 2022. Evaluation of Intel's DPC++ Compatibility Tool in heterogeneous
computing. Journal of Parallel and Distributed Computing, 165, pp.120-129.

[45] Tsai, Y.H.M., Cojean, T. and Anzt, H., 2022. Providing performance portable numerics for Intel GPUs. Concurrency and Computation: Practice
and Experience, p.e7400

