Experience Deploying Graph Applications on GPUs with SYCL

Abstract. SYCL allows for deployment and use of accelerators across vendors’ platforms. In this work, we describe the experience
of deploying graph analytics on vendors’ GPUs using SYCL. We contrast the CUDA and SYCL application programming interfaces
by describing the experience of migrating the applications from CUDA to SYCL, evaluate the performance of the applications on
NVIDIA and AMD GPUs, and explore performance improvement with device-level parallelism. The results show that the recent
SYCL extensions facilitate functional portability, but improving code optimizations and resource usage for performance
portability is needed in the compiler implementation.

1 INTRODUCTION

CUDA has enabled wide use of graphics processing units (GPUs) as an accelerator for computationally intensive
tasks [1]. However, it is a proprietary programming model mainly optimized for NVIDIA GPUs. In contrast, Open
Computing Language (OpenCL) is an open standard maintained by the Khronos group with the support of major
graphics hardware vendors as well as personal computer vendors interested in offloading tasks to heterogeneous
computing devices [2, 3]. An OpenCL program can execute on a variety of platforms, but porting a program from
CUDA to OpenCL tends to be error-prone and time-consuming [4, 5]. Built on the underlying concepts, portability,
and efficiency of OpenCL, SYCL is a specification that defines a single-source abstract layer in C++ on top of OpenCL
[6, 7]. The abstraction in SYCL could facilitate migrating CUDA programs although a typical SYCL platform still
consists of a host connected to one or more vendors’ devices as shown in Figure 1.

It is desirable to deploy a SYCL application across vendors’ computing platforms without much loss of
performance. However, achieving performance portability is challenging due to the characteristics of applications,
target platforms, and maturity of a compiler. Despite these factors, there is always a need to identify applications
where performance can be improved with the development of SYCL. Toward the goal of contributing to the SYCL
ecosystem in the deployment of SYCL applications across vendors’ platforms, we describe the experience of
deploying graph analytics on GPUs using SYCL. More specifically, we choose optimized CUDA implementations of
the graph algorithms, migrate the implementations from CUDA to SYCL manually, compile them with an open-
source SYCL compiler, and evaluate the performance of the compute kernels in the applications on NVIDIA and
AMD GPUs.

Here is a summary of our findings. More SYCL extensions have been added to the Intel SYCL compiler, an open-
source implementation of the SYCL specification [8]. These extensions are not necessarily the core SYCL features
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Figure 1. A SYCL platform with multiple devices. Each device contains multiple compute units. A
compute unit is composed of one or more processing elements (PEs).
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defined in the specification, but they facilitate migrating applications from CUDA to SYCL. Using the ratio of the raw
performance of the SYCL applications to the performance of the applications written in a native programming
model as a performance metric, we observe that the ratio ranges from 0.58 to 1 on an AMD RX6900 XT GPU and
from 0.989 to 1.024 on an NVIDA GeForce RTX3090 GPU for graph coloring. For connected components, the ratios
range from 0.659 to 0.986 and from 0.868 to 1.16 on the AMD and NVIDA GPUs, respectively. Furthermore, we
explore device-level parallelism by executing kernels in each application on the AMD and NVIDA GPUs
simultaneously. The performance speedup ranges from 0.56 to 1.99 for graph coloring and from 0.6 to 1.897 for
connected components. The speedups we could obtain depend on the raw performance of the application on each
GPU. We have described the motivation and scope of our study in this section. Section 2 briefly introduces the graph
applications and the compiler in our experiment. Section 3 contrasts the CUDA and SYCL applications by describing
in detail the migration paths from CUDA to SYCL. Section 4 presents the experimental results on the GPUs. Section
5 is a summary of related work, and Section 6 concludes the paper.

2 BACKGROUND

2.1 Brief introduction to the graph applications

Graph analytics algorithms such as graph coloring and connected components are widely used in many domains [9,
10,11, 12,13, 14, 15, 16]. Graph coloring assigns colors to all vertices of a graph such that no adjacent vertices have
the same color. It is also an optimization problem of coloring a graph with minimum number of colors. The problem
is NP-hard, so there is no known polynomial time algorithm that can solve it optimally [17]. Heuristic algorithms
can color a graph with no adjacent vertices assigned the same color, but they may require more colors than the
optimal algorithm [18, 19, 20, 21, 22]. Connected components computes maximal subgraphs of an undirected graph
such that there exists a path between any pair of vertices in the subgraph but there is no path between any pair of
vertices from different subgraphs [23, 24]. In this work, we choose the highly optimized implementations of the
algorithms that exploit the thread-, warp-, and block-level parallelism exposed in CUDA [25, 26, 27]. Hence, they
are considered as hybrid implementations optimized to reduce load imbalance and to exploit hardware parallelism.
The applications transfer a graph from a host to a GPU for parallel processing and send the result back to the host

for postprocessing and validation.

2.2 Brief introduction to the SYCL compiler with CUDA and HIP support in our experiment

In this work, we choose an open-source SYCL compiler from the SYCL branch of the Intel LLVM GitHub repository
[28, 29] for evaluating the applications. The initial approach to supporting NVIDIA computing platforms in the SYCL
compiler was based on the NVIDIA OpenCL 1.2 implementation [30]. The prototype demonstrated the success of
running on multiple platforms, but the capabilities of the OpenCL implementation from NVIDIA are limited. Taking
advantage of a plugin interface that can be selected at runtime [31], the new approach does not depend on the
OpenCL support from NVIDIA, facilitating extensions to more features and potentially higher overall performance.
To support AMD GPUs, the CUDA plugin is migrated to the heterogeneous interface for portability (HIP) plugin with
the support of Radeon Open Computing Platform [32]. The CUDA and HIP plugins have seen improvement in
functionality and performance with the evaluation of SYCL applications and benchmarks from the community.



3 CONTRAST THE CUDA AND SYCL APPLICATIONS

A contrast of the two programming models from the aspect of application programming interfaces allows for a good
understanding of their differences in device query, memory management, arithmetic and atomic functions, and
kernel execution.

3.1 Device property query

It may be desirable to query the device properties of a GPU for allocating its hardware resources at runtime. The
CUDA device properties, which are defined in the “cudaDeviceProp” structure, can be queried using the
“cudaGetDeviceProperties()” function in CUDA. In SYCL, a device can be queried for information by calling the
“get_info()” member function of the SYCL “device” class, specifying a parameter related to the query. The CUDA
applications query the multi-processor count (i.e., the number of streaming multiprocessors) and the number of
maximum resident threads per multi-processor to determine the number of thread blocks for launching the CUDA
kernels. The multi-processor count in CUDA is mapped to the maximum number of compute-units in SYCL. Querying
the clock rate of a GPU device in KHz can be mapped to the maximum configured clock frequency of a device in MHz
in SYCL. The GPU memory clock rate is mapped to a vendor-specific extension to device information. Due to the lack
of compiler support, we map the number of maximum resident threads per multi-processor in CUDA to the
maximum work-item size per compute unit by implementing the query in the SYCL compiler. A CUDA device’s
compute capability represented by a major revision number and a minor revision number can be queried with the
version of the SYCL backend associated with the device. Table 1 lists the device information queried in the
applications. For clarity, we omit the full namespace for each device parameter in SYCL.

Table 1: Contrast the CUDA device properties with SYCL device information queries in the applications

CUDA SYCL
1 multiProcessorCount info::device::max compute units
2 maxThreadsPerMultiProcessor info::device::max work item size per compute unit
3 clockRate info::device::max clock frequency
4 memoryClockRate info::device::memory clock rate
5 major/minor info::device: :backend version

3.2 Memory management

Two abstractions are commonly used for managing memory in SYCL: unified shared memory and buffer. The former
is a pointer-based approach that allows for easier integration with existing C/C++ programs. In contrast, a buffer is

Table 2: Contrast the CUDA and SYCL memory management and data transfers in the applications

CUDA SYCL
cudaMalloc (&dst, numBytes); T* dst = sycl::malloc device<T>(count, q);
cudaMemcpy (dst, src, numBytes), g.memcpy (dst, src, numBytes);

cudaMempyHostToDevice) ;

cudaMemcpy (dst, src, numBytes), g.memcpy (dst, src, numBytes);
cudaMempyDeviceToHost) ;

cudaFree (p) ; sycl::free(p, q);

__device T var; T *var = sycl::malloc_device<T>(1l, q);




considered as a high-level data abstraction because we can query characteristics of a buffer and determine whether
and where device data is read from or written back to host memory. Since the pointer-based approach is much
closer to how memory is handled by CUDA, we will choose unified shared memory for managing memory resources
and data transfers between a host and a device.

Table 2 lists the programming interfaces for memory management and data copy in CUDA and SYCL. In CUDA,
“cudaMalloc()” allocates one-dimensional linear memory on a device in bytes and returns a pointer to the allocated
memory. In SYCL, a templated function is called with the word size and a SYCL queue object “q” as the parameters.
Hence, a double pointer is not needed for allocating device memory from a programmer perspective. Compared to
the CUDA memory copy function that explicitly specifies the kind of transfer, the copy direction is implied by the
types of source and destination memories in SYCL. Releasing device memory in SYCL is similar to memory

deallocation in a C program, but the function requires a SYCL queue object associated with the allocated memory.

“« »

In the CUDA applications, device memory is also statically allocated in global scope using the “_device__
declaration specifier. Neither the SYCL specification nor the SYCL compiler supports such specifier. Hence, we

explicitly allocate device memory of length 1.

3.3 Group functions

The SYCL specification has been improving functionality for groups of work-items, such as group barriers and
collective operations. A collective function represents an operation performed by a group of work-items. These
group functions act as synchronization points and must be reached by all work-items in the group before they move
on. When one work-item in a group calls a group function, all work-items in that group must call the same function
under the same conditions (e.g., in the same iterations of a loop). The group argument in the function indicates that
all work-items in the specified group work together for a specific operation.

Table 3 contrasts the CUDA warp-level primitives and the SYCL group functions called in the applications. The
warp vote functions in CUDA take as input an integer predicate from each thread in a warp and compare these
values with zero. Results of the comparisons are reduced across the active threads of the warp in “any”, “all” or
“ballot” logic. The result is then broadcasted to each participating thread. In contrast, the SYCL group functions
require a sub-group argument “sg” that represents the sub-group to which each work-item belongs. For the “mask”
argument in the CUDA warp vote functions, the SYCL “mask” is bitwise ANDed with a bit pattern computed from
each work-item in a sub-group before it is logically ANDed with a Boolean predicate. When the value of a “mask” is

Table 3: Contrast the CUDA warp-level primitives with the SYCL group functions in the applications

CUDA SYCL
__any sync (mask, pred) sycl::any of group(sg,
(mask & (1 << sg.get local linear id())) && pred)
__all sync(mask, pred) sycl::all of group(sg,
(mask & (1 << sg.get local linear id())) && pred)
__ballot_sync(mask, pred) auto mask = sycl::group ballot(sg, pred);
mask.extract bits(mask bits, 0)
__shfl sync(MASK, var, sycl::select from group(sg, var, srcLane)
srcLane)
~_shfl xor sync(MASK, var, sycl::permute group by xor(sg, var, laneMask)
laneMask)




OxFFFFFFFF (i.e., 32 active threads), we may optimize away the bitwise operation. Previously, the CUDA
“__ballot_sync” primitive was mapped to the SYCL “reduce_over_group” function in which a group sums up values
across a sub-group and each work-item provides one value. The new SYCL “group_ballot” function converts a
Boolean condition from each work-item in the group into a group mask (object). When a work-item’s predicate is
true, a bit corresponding to the work-item is set in this mask. The “extract_bits” method of the object is needed to
return the values of these bits from the mask.

The CUDA warp shuffle instruction “__shfl_sync” is mapped to the SYCL “select_from_group” function that allows
work-items to obtain a copy of a value held by any other work-item in the group. The “__shfl_xor_sync” is mapped
to the SYCL “permute_group_by_xor” function that permutes values by exchanging values held by pairs of work-
items identified by computing the bitwise exclusive OR of the work-item identifier and a fixed lane mask. The value

of the mask (MASK) is OxFFFFFFFF in the applications.

3.4 Arithmetic functions

Table 4 lists a migration path from the CUDA arithmetic functions invoked in the implementation of the algorithm
to the SYCL arithmetic functions. The “max()” or “min()” function in CUDA, which returns the maximum or minimum
of two numbers, is mapped to the “sycl::max()” or “sycl::min()” function. The “__clz()” intrinsic function in CUDA,
which returns the number of consecutive high-order zero bits in a 32-bit integer, starting at the most significant bit
(bit 31), is mapped to the “sycl::clz()” function. The “__ffs()” intrinsic function in CUDA finds the position of the least
significant bit set to 1 in a 32-bit integer. When the integer’s value is zero, the function returns zero. The SYCL
“sycl::ctz()” function counts the number of trailing zero bits in a number. When the value of the number is zero, the
function returns the size in bits of the type of the number. Counting the trailing number of zero bits starting at the

Table 4: Contrast the CUDA and SYCL arithmetic functions in the applications

CUDA SYCL
max (x,y) or min(x,y) sycl::max(x,y) or sycl::min(x,vy)
_clz(x) sycl::clz (x)
_ ffs(x) x == 0 ? 0 : sycl::ctz(x)
__popc (x) sycl: :popcount (x)

Table 5: Contrast the CUDA atomic functions with the SYCL atomic references in the applications

CUDA SYCL

atomicAdd (int* x, int wvar) auto a = atomic_ ref<int,

memory order::relaxed,

memory scope::device,

address_space::global space> (*x) ;
a.fetch add(var)

atomicCAS (int *x, int expected value = expected;

int expected, auto a = atomic_ ref<int,

‘0t desired memory order::relaxed,
n esired) memory scope::device,
address_space::global space>(*x);

a. compare exchange strong(expected value, desired);

return expected value;




most significant bit is equivalent to finding the position of the least significant bit set to 1, but the discrepancy of
the return values of the CUDA and SYCL functions when the number is zero should be considered. It should be
pointed out that “__ctz()” is not defined in the CUDA programming guide whereas “sycl:ffs()” is not defined in the
SYCL specification. The “__popc()” intrinsic function in CUDA, which counts the number of bits that are setto 1 in a
32-bit integer, is mapped to the “sycl::popcount()” function.

3.5 Atomic functions

Atomic operations enable concurrent memory accesses from multiple work-items in work-groups to a memory
location without introducing data race in the applications. They guarantee that multiple updates to a memory
location do not overlap, but the order of updates is not deterministic. We find that the application programming
interfaces for atomic functions differ significantly between CUDA and SYCL.

Table 5 lists the CUDA and SYCL atomic add and atomic compare and swap (exchange) functions invoked in the
implementations of the graph analytics algorithms. For the applications, the atomic operations are performed over
32-bit integer values stored in global device memory. The CUDA atomic add function reads the 32-bit word “old”
located at the address “x” in global memory, compute the sum, and stores the result to memory at the same address.
These three operations are performed in one atomic transaction. The function returns “old”. The SYCL “atomic_ref”
class, defined in the SYCL 2020 specification, extends the atomic operations with memory orders and scopes. The
“add” function atomically sums an operand and the value of the object referenced and assigns the result to the value
of the referenced object. The CUDA atomic compare and swap function reads the 32-bit word “old” located at the
address “x” in global memory, computes “(old == expected ? desired : old)”, and stores the result back to memory
at the same address. The function returns the value “old”. The SYCL compare and exchange function atomically
compares the value of the object referenced against the value of expected. If the values are equal, the value of the
referenced object is replaced with the value of desired; otherwise assigns the original value of the referenced object

to expected. The function returns a Boolean value of “true” if the comparison operation was successful.

3.6 Kernel attribute

A kernel attribute annotates a kernel to influence code generation by a SYCL device compiler. In the CUDA
implementation, the number of work-items in a warp is 32 by default. To inform the SYCL compiler that the kernel
must be compiled and executed with the specified sub-group size of 32, the SYCL-specific kernel attribute
“[[sycl::reqd_sub_group_size(32)]]” is required. The attribute is shown in Table 6.

3.7 Kernel launch and definition

Table 6 lists the execution of one of the GPU kernels in CUDA and SYCL. Other kernels can be launched in a similar
fashion. A CUDA Kkernel starts with the “__global_" declaration specifier. The number of thread blocks in a grid
(“grid”) and the number of threads per block (“block”) which will execute a kernel are specified using a “<<<..>>>"
execution configuration syntax. In SYCL, the body of a C++ lambda function represents a kernel and variables
captured by value will be passed to the kernel as arguments. The “submit” method of a SYCL queue object is invoked
to submit a data-parallel kernel to be executed on a device associated with the queue object. The number of thread
blocks in a grid and the number of threads per block in CUDA are converted to the global work size (“gws”) and
local work size (“lws”) using the SYCL “range” class, respectively. The number of threads per block equals the local

work size, and the global work size is the product of the number of thread blocks and the number of threads per



Table 6: Contrast the CUDA and SYCL kernel execution

CUDA SYCL
~_global  wvoid init (..) { void init (..) {
// kernel code // kernel code
} }
dim3 grid (numBlocks) sycl::range<l> gws (numBlocks * threadsPerBlock);
dim3 block (threadsPerBlock) sycl::range<l> lws (threadsPerBlock);
init <<<grid, block>>> (..); g.submit ([&] (sycl::handler &cgh) {

cgh.parallel for(sycl::nd range<l>(gws, lws)
[=] (sycl::nd item<1> item)
[[sycl::reqd sub group size(32)]] {
init(..) // call the “kernel” function
}) i
}) i

block. While SYCL uses work-items, local work size and global work size to describe its thread hierarchy, the
number of work-groups in SYCL is equal to the number of thread blocks in CUDA. These work-groups can execute
independently on a device. In the SYCL code, the “init” function is called inside a lambda function. Though this is not
required, it could minimize code changes when mapping a kernel from CUDA to SYCL.

Launching a SYCL kernel is verbose compared to the CUDA approach. This increases lines of code and decreases
programming productivity when there are many kernels in a large application. On the other hand, it offers the
flexibility of combining host and device codes in a single source. There is a tradeoff between verbosity and flexibility
in the SYCL programming model.

3.8 Debugging

The CUDA in-kernel “printf()” function, which is used for debugging kernel execution, behaves in a similar way to
the standard C-library “printf()” function. Although the function is handy, it is not part of the SYCL specification.
Instead, the SYCL “stream” class is a buffered output stream for displaying the values of built-in, vector and SYCL
types to the console. The SYCL stream is designed for debugging purposes only and should therefore be avoided for
performance critical applications. On the other hand, we find that the C function is only supported by the CUDA
backend of the SYCL compiler.

3.9 Architecture-specific features

As far as we know, certain architecture-specific features in the CUDA applications have no SYCL equivalents though
extensions are being added to the compiler implementation. To aid the compiler with additional information about
register usage of the CUDA kernels, the CUDA program uses the “__launch_bounds__()” qualifier in the definition of
a “_global_" function to specify the maximum number of threads per block with which to launch the kernel and
the desired number of resident blocks per multiprocessor. The specification of the thread block counts at the SYCL
kernel scope is not supported by the compiler yet.

The CUDA applications set the preferred cache configuration with “cudaFuncSetCacheConfig()” for GPU devices

that share the level-1 cache and shared local memory (SLM). To facilitate the migration process, SYCL recently



introduces a cache configuration property for specifying the division between the cache and local memory [33]. The
value of the property is either “large_slm” or “large_data”. The former prefers larger shared local memory to smaller
L1 data cache. The latter prefers larger L1 data cache and smaller shared local memory. The new feature is an
experimental extension specification, intended to provide early access to features and gather community feedback.
The property may be ignored by GPU backends that do not support this extension.

4 EXPERIMENTAL RESULTS

4.1 Performance evaluation on the GPUs

We evaluate the performance of the applications with an open-source graph set [34]. The characteristics of the

graph set are listed in Table 7. These graphs are selected for their variety in characteristics though coloring them

does not necessarily make sense. We offload the compute kernels in the applications to a compute node equipped

with an NVIDIA GeForce RTX3090 GPU and an AMD RX6900 XT GPU. The CUDA and HIP programs are compiled

with the NVIDIA HPC SDK 22.11 and ROCm 5.4 [30], respectively. We build the SYCL compiler with CUDA and HIP

support from the source (2023-05-01). The optimization option is “-03”. All GPU results are verified on the hosts.
In the CUDA programs, the number of thread blocks per grid is determined at runtime as follows:

Blocks = SMs x maxThreadsPerMultiProcessor + ThreadsPerBlock (D
In the expression, the number of streaming multiprocessors (SMs) can be queried at runtime and the number of

threads per block (ThreadsPerBlock) is a constant value specified in the program. The thread block (work-group)

Table 7: Names, types, vertex and edge counts, average and maximum degrees of a vertex in each graph

No. Graph name Type Vertices Edges Degreeavg |Degreemax
1 2d-2d20.sym Grid 1,048,576 4,190,208 4 4
2 amazon0601 Co-purchases 403,394 4,886,816 12.1 2752
3 as-skitter | Internet topo. 1,696,415 | 22,190,596 13.1 35455
4 citationCiteseer Publication 268,495 2,313,294 8.6 1318
5 cit-Patents Patent cites 3,774,768 | 33,037,894 8.8 793
6 coPapersDBLP Publication 540,486 | 30,491,458 56.4 3299
7 delaunay_n24 | Triangulation | 16,777,216 (100,663,202 6 26
8 europe_osm Road map | 50,912,018 (108,109,320 2.1 13
9 in-2004 Web links 1,382,908 | 27,182,946 19.7 21869

10 internet | Internet topo. 124,651 387,240 3.1 151
11 | kron_g500-logn21 Kronecker 2,097,152 (182,081,864 86.8 | 213904
12 r4-2e23.sym Random 8,388,608 | 67,108,846 8 26
13 rmat16.sym RMAT 65,536 967,866 14.8 569
14 rmat22.sym RMAT 4,194,304 | 65,660,814 15.7 3687
15 soc-LiveJournall Community 4,847,571 | 85,702,474 17.7 20333
16 uk-2002 Web links | 18,520,486 |523,574,516 283 | 194955
17 USA-road-d.NY Road map 264,346 730,100 2.8 8
18 USA-road-d.USA Road map | 23,947,347 | 57,708,624 2.4 9




size is fixed at 256. The maximum numbers of resident threads per multi-processor are 1536 and 2048 for the
RTX3090 and RX6900, respectively. The performance metrics are million nodes processed per second (Mnodes/s)
and million edges processed per second (Medges/s). We choose the maximum performance results among four trial
runs. Each run averages the performance of executing the compute kernels for 100 times.

Tables 8 and 9 list the performance of the two applications running on the GPUs, respectively. We observe that
the performance variances depend on the characteristics of the input graphs, the programming models selected for
implementing the algorithms, and the GPU devices. For each input graph, we compare the performance of the SYCL
implementation with that of the implementation using a native programming model (CUDA and HIP) on each GPU
for evaluating performance portability.

To visualize the results, Figure 2 shows the ratios of the raw performance of the SYCL applications to that of the
applications using native languages. When the ratio is above 1, the performance is higher for the SYCL
implementation. For graph coloring, the ratios range from 0.58 to 1 and from 0.989 to 1.024 on the AMD and NVIDA
GPUs, respectively. For connected components, the ratios range from 0.659 to 0.986 and from 0.868 to 1.16 on the
AMD and NVIDA GPUs, respectively. Hence, the SYCL applications have not fully achieved performance portability
on the GPUs.

The causes of the performance gap are generally attributed to the implementations (e.g., code generation and
optimization) of the SYCL compiler for the target GPUs. Particularly, more optimizations are needed for the SYCL
compiler with HIP support. Table 10 lists the codes lengths in bytes and register usage of the three compute kernels

Table 8: Performance of the graph coloring applications in CUDA, HIP, and SYCL on the GPUs

Graph name Mnodes/s |Medges/s |Mnodes/s |Medges/s |Mnodes/s |Medges/s |Mnodes/s |[Medges/s

(HIP) (HIP) (SYCL- (SYCL- (CUDA) | (CUDA) (SYCL- (SYCL-
HIP) HIP) CUDA) CUDA)

2d-2d20.sym 2883.9 | 1152433 | 2669.97 | 1066945 | 1106.22 | 442055 | 119527 | 4776.44

amazon0601 58131 | 7042.08 46384 | 5619.04 4972 | 6023.26 509.56 | 617291

as-skitter 23063 | 3016.81 157.1 | 2290.43 17153 | 2243.78 17326 | 2266.37

citationCiteseer 724.93 6245.83 522.12 4498.47 951.16 8194.97 948.64 8173.27
cit-Patents 649.85 5687.68 641.47 5614.29 223.92 1959.83 221.62 1939.7

coPapersDBLP 31.34 1767.8 21.71 1224.78 25.32 1428.32 25.11 1416.45
delaunay_n24 1389.05 8334.28 1389.05 8334.29 359.62 2157.73 366.35 2198.09

europe_osm 2694.26 5721.15 2690.72 5713.62 933.06 1981.31 960.64 2039.87
in-2004 58.53 1150.48 37.32 733.57 57.38 1127.9 57.65 1133.11

internet 1393.67 4329.58 808.18 2510.67 2177.31 6764.01 2217.26 6888.13

kron_g500-logn21 14.76 1281.45 14.49 125791 26.38 2290.51 26.57 2306.65
r4-2e23.sym 645.54 5164.3 643.73 5149.83 209.18 1673.45 208.59 1668.72
rmat16.sym 130 1919.88 75.44 1114.13 141.5 2089.71 142.08 2098.34
rmat22.sym 149.67 2343.01 150.23 2351.78 83.45 1306.46 83.48 1306.88
soc-LiveJournall 155.96 2757.23 136.54 2413.95 125.96 2226.9 125.4 2217
uk-2002 108.87 3077.72 83.23 2352.89 93.66 2647.81 93.18 2634.33

USA-road-d.NY 3948.47 | 10905.33 2850.56 7872.99 6593.38 | 18210.31 7045.48 | 19458.99
USA-road-d.USA 3035.05 7313.91 3003.55 7237.99 894.38 2155.28 913.58 2201.55




Table 9: Performance of the connected components application in CUDA, HIP, and SYCL on the GPUs

Graph name Mnodes/s |Medges/s |Mnodes/s |Medges/s |Mnodes/s |Medges/s |Mnodes/s |Medges/s
(HIP) (HIP) (SYCL- (SYCL- (CUDA) (CUDA) (SYCL- (SYCL-
HIP) HIP) CUDA) CUDA)
2d-2d20.sym 3773.03 | 15077.38 3169.33 | 12664.94 2471.51 9876.4 2332.1 9319.29
amazon0601 1712.25 | 20742.66 1504.46 | 18225.37 1335.86 | 16182.99 1287.96 | 15602.63
as-skitter 3852.72 | 37316.09 2548.08 | 33331.15 1779.5 | 23277.41 1677.9 | 21948.39
citationCiteseer 1562.21 | 13459.67 1222.43 | 10532.15 1231.12 | 10607.08 1091.31 9402.51
cit-Patents 1902.16 | 16648.25 1876.86 16426.8 906.45 7933.5 897.46 7854.83
coPapersDBLP 875.68 | 49395.65 706.98 39884.3 970.66 | 54759.62 944.43 | 53280.14
delaunay_n24 3477.98 | 20862.44 2987.05 | 17922.26 950.01 5700.04 904.04 5424.21

europe_osm 4425.53 9397.4 4160.08 8833.73 2564.98 5446.6 2467.13 5238.83
in-2004 2101.03 41298.7 1765.72 | 34707.59 1919.93 | 37738.78 1838.04 | 36129.26

internet 1472.94 4575.84 986.34 3064.17 2444.75 7594.83 2327.77 7231.45

kron_g500-logn21 422.26 | 36662.15 398.87 | 34631.58 471.06 | 40898.88 546.64 | 47460.68
r4-2e23.sym 2060.04 | 16480.29 2210.73 | 17685.79 898.37 7186.96 840.75 6725.97

rmat16.sym 673.25 9942.92 444.07 6558.2 815.04 | 12036.92 707.47 | 10448.17
rmat22.sym 1333.96 | 20882.82 1261.61 | 19750.24 785.78 | 12301.13 783.28 | 12262.02

soc-LiveJournall 1519.5 | 26863.95 1360.12 | 24046.25 972.62 | 17195.48 936.84 | 16562.79
uk-2002 1061.35 30004 926.16 | 26182.67 980.68 | 27723.75 954.64 26987.6

USA-road-d.NY 2801.07 7736.29 1780.75 4918.28 457713 | 12641.63 4211.25 11631.1
USA-road-d.USA 5679.81 | 13687.27 4996.2 12039.9 1533.04 3694.33 1483.14 3574.09

Table 10: Code lengths and register usage of the HIP and SYCL kernels (K1, K2, K3) in graph coloring on the AMD GPU

K1-HIP |[K1-SYCL [K2-HIP |K2-SYCL [K3-HIP [K3-SYCL
Code length 1756 2840 | 2096 4152 772 784
Scalar registers 32 46 33 59 16 23
Vector registers 23 41 37 49 16 14

in HIP and SYCL in graph coloring on the AMD GPU. The code lengths of the first two SYCL kernels are 61.7% and
98.1% longer than those of the HIP kernels, respectively. In addition, the first two SYCL kernels need 43.8% and
78.8% more scalar registers, and 78.3% and 32.4% more vector registers, respectively.

We try to understand causes of the gap in resource usage by analyzing GPU assembly instructions generated by
the HIP and SYCL compilers. Our code analysis indicates that a SYCL group function would generate significantly

const int thread = threadIdx.x + blockIdx.x * blockDim.x;
const int threads = gridDim.x * blockDim.x
for (int v = thread; _ any(v < nodes); v += threads) {

}
Listing 1: Code snippet in HIP for analyzing the assembly instructions generated for the function “__any()”
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more assembly instructions, leading to longer code length and higher register utilization. Listings 1 and 2 show the
code snippets in HIP and SYCL, respectively. For the HIP group function “__any”, the HIP compiler would generate
four instructions whereas the SYCL compiler would generate over 60 instructions for the SYCL group function
“sycl::any_of_group”. The instruction stream generated by the SYCL compiler consists of a sequence of conditional
masking on each thread (v_cndmask b32) and lane permutation (ds_bpermute_b32) instructions. Hence, it is
possible to optimize code generation for the SYCL group functions in the SYCL compiler.

const int thread = item.get global id(0);
const int threads = item.get group range(0) * item.get local range(0);
for (int v = thread; sycl::any of group(sg, v < nodes); v += threads) ({

}
Listing 2: Code snippet in SYCL for analyzing the assembly instructions generated for the function sycl::any_of_group()
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4.2 Improve the performance of the applications on the GPUs with device-level parallelism

Compiler optimizations are often evasive for most users who have little knowledge of the compiler
implementations. Hence, we try an alternative path to improving the performance of the applications. Since the
computing platform contains two GPUs, we may reduce the total kernel execution time by executing the compute
kernels on both GPUs simultaneously. We assume that this hybrid method could exploit parallel execution of the
kernels at the device level. In the modified SYCL program, a SYCL queue is instantiated for each device. We allocate
device memory needed by the kernels for each GPU, copy data from the host to the devices, submit kernels of the
application to each queue asynchronously, and finally wait for them to complete.

Tables 11 and 12 list the performance of the two SYCL applications running on both GPUs, respectively. For the
first two columns in the tables, we compare the performance results of the SYCL applications from Tables 8 and 9
to compute the maximum of the two values. We define “speedup” as the ratio of the performance of the application
running on both GPUs over the maximum performance achieved on one of the two GPUs. The speedup ranges from
0.56 to 1.99 for the graph coloring and from 0.6 to 1.897 for connected components. For each application, we find
that the speedup results are correlated to the raw performance of the application on the two GPUs. When the kernel
execution time of an application on one GPU is about two times faster or slower than that on the other GPU, there
is no performance gain from device-level parallelism. In other words, parallelism at the device level is most effective
when the execution time of an application on the AMD GPU is close to that on the NVIDIA GPU.

Table 11: Performance of graph coloring in SYCL when executed on the two GPUs

Mnodes/s | Medges/s |Mnodes/s |Medges/s
Graph name (SYCL- (SYCL- (SYCL- (SYCL- Speedup
Single) Single) Hybrid) Hybrid)

2d-2d20.sym 2669.97 | 10669.45 2175.35 869291 0.81
amazon0601 509.56 6172.91 898.38 | 10883.21 1.76
as-skitter 173.26 2290.43 344.84 4510.87 1.99
citationCiteseer 948.64 8173.27 985.85 8493.88 1.03
cit-Patents 641.47 5614.29 44141 3863.37 0.68
coPapersDBLP 25.11 1416.45 43.26 2440.61 1.72
delaunay_n24 1389.05 8334.29 726.87 4361.19 0.52
europe_osm 2690.72 5713.62 1886.95 4006.86 0.70
in-2004 57.65 1133.11 74.73 1468.96 1.29
internet 2217.26 6888.13 1317.39 4092.59 0.59
kron_g500-logn21 26.57 2306.65 29.05 2522.25 1.09
r4-2e23.sym 643.73 5149.83 416.05 3328.36 0.64
rmat16.sym 142.08 2098.34 141.85 2094.96 0.99
rmat22.sym 150.23 2351.78 165.36 2588.63 1.10
soc-LiveJournall 136.54 2413.95 252.71 4467.71 1.85
uk-2002 93.18 2634.33 167.27 4728.77 1.79
USA-road-d.NY 7045.48 | 19458.99 3964.29 10949 0.56
USA-road-d.USA 3003.55 7237.99 1802.09 4342.7 0.59
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Table 12: Performance of connected components in SYCL when executed on the two GPUs

Mnodes/s | Medges/s | Mnodes/s | Medges/s
Graph name (SYCL - (SYCL - (SYCL- (SYCL- Speedup
Single) Single) Hybrid) Hybrid)

2d-2d20.sym 3169.33 | 12664.94 3803.64 | 15199.71 1.20
amazon0601 1504.46 | 18225.37 2181.56 | 26427.99 1.45
as-skitter 2548.08 | 33331.15 2929.56 | 38321.21 1.14
citationCiteseer 1222.43 | 10532.15 1526.96 | 13155.92 1.24
cit-Patents 1876.86 | 16426.80 1524.27 | 13340.83 0.81
coPapersDBLP 944.43 | 53280.14 1276.96 | 72039.76 1.35
delaunay_n24 2987.05 | 17922.26 1792.33 | 10753.94 0.60
europe_osm 4160.08 8833.73 4913.33 | 10433.22 1.18
in-2004 1838.04 | 36129.26 2814.33 | 55319.55 1.53
internet 2327.77 7231.45 1485.99 4616.35 0.63
kron_g500-logn21 546.64 | 47460.68 806.64 70034.8 1.47
r4-2e23.sym 2210.73 | 17685.79 1670.57 | 13364.57 0.75
rmat16.sym 707.47 | 10448.17 645.46 9532.48 0.91
rmat22.sym 1261.61 | 19750.24 1374.4 | 21515.93 1.08
soc-LiveJournall 1360.12 24046.25 1774.22 31367.20 1.30
uk-2002 954.64 | 26987.60 1811.88 | 51221.97 1.89
USA-road-d.NY 4211.25 | 11631.10 2780.85 7680.46 0.66
USA-road-d.USA 4996.20 | 12039.90 2947.34 7102.54 0.58

5 RELATED WORK

Many studies have focused on performance and portability of SYCL on vendors’ computing platforms. In [35], the
authors evaluate the performance of benchmarks and mini-apps having both SYCL and CUDA implementations on
an NVIDIA Volta GPU. They conclude that the performance of running SYCL can be competitive with using CUDA
directly. In [36], the authors evaluate the performance of a GPU accelerated sequence alignment algorithm across
multiple vendor GPUs and programming models. They describe the code changes required for the SYCL
implementation to execute the application successfully. They conclude that migrating their highly optimized CUDA
kernels to SYCL requires significant code changes. The performance of the SYCL implementation is 2X slower than
that of the CUDA implementation on the target devices. In [37], the authors evaluate the HPC applications written
in OpenCL and SYCL on AMD, Intel, and NVIDIA GPUs and show that across each application the SYCL
implementation achieves similar performance to a direct OpenCL implementation. In [38], the authors share their
experience in creating mini-apps for the Wilson-Dslash stencil operator for Lattice Quantum Chromodynamics
using the SYCL programming model. In their opinions, the SYCL way of managing memory through buffers and
accessors are somewhat cumbersome and may create difficulties interfacing with non-SYCL external libraries in an
efficient way. Sometimes, it is desirable to have explicit control over where the data is rather than delegating the

management of memory to the SYCL runtime. In [39], the authors describe their customized porting flow for their
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platform-portable math library. They present a hierarchical view of CUDA and SYCL kernel calls and parameters for
a clear understanding of the differences of the two programming models. The SYCL compiler did not support
subgroup vote functions, so they emulated these functions and suggested native support of subgroup vote function
for performance portability. With the active development of the SYCL compiler, we are now able to utilize the SYCL
group functions for migrating CUDA warp-level primitives. In [40], the author shares his extensive experience of
using SYCL for CUDA. While both programming models are extensions to the C/C++ languages, there are significant
differences in the application programming interfaces between CUDA and SYCL. The optimizations applied by a
compiler to a kernel also pose challenges and complexities to performance portability. Compared to the findings in
[41], more SYCL extensions have been added to facilitate the CUDA migration process. In addition, we extend the
work with performance evaluation of two graph applications on the NVIDIA and AMD GPUs and explore
performance optimization with device-level parallelism.

The CUDA-to-SYCL conversion tool can automate the migration process by automatically generating variants of
SYCL codes [42]. This significantly improves productivity compared to manual conversion. However, the generated
codes often require manual changes in GPU kernels for performance [43, 44, 45], and certain experimental features,

such as cache configuration, are not supported yet.

6 CONCLUSION

The plugin interfaces in the SYCL compiler facilitate functional portability of a SYCL program across vendors’
computing platforms. While programming models serve the same purpose of accelerating applications on GPUs, a
good understanding of vendors’ programming models is still needed for migrating applications from CUDA to SYCL.
Comparing the performance of the applications in CUDA, HIP, and SYCL calls for improving code optimizations and
register usage in the compiler implementation for performance portability. Exploiting device-level parallelism
requires manual changes of the SYCL program, and the performance speedup depends on the performance of the
application on each device. With the development of the SYCL compilers and applications from the community, we

hope our findings will help improve functional and performance portability.
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