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Abstract—Cas-OFFinder is a popular application written in 

OpenCL for searching potential off-target sites in parallel on a 

GPU. In this work, we describe our experience of migrating the 

application from OpenCL to SYCL. Evaluating the performance 

of the OpenCL and SYCL application using human genome 

sequences shows that the SYCL program could achieve 

performance portability on the target GPUs. Exploring the 

optimizations of the hotspot kernel in SYCL may further improve 

the performance of the application by 9% to 23%. 
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I. INTRODUCTION 

Open Computing Language (OpenCL) [1 , 2] is an open 
standard supported by major graphics hardware and personal 
computer vendors interested in offloading compute intensive 
workloads (kernels) to heterogeneous computing devices such 
as graphics processing units (GPUs) for acceleration. OpenCL 
promotes portability, allowing a program to execute on a variety 
of computing platforms with the support of OpenCL compilers. 
However, writing an OpenCL program tends to be error-prone 
and time-consuming compared to other popular programming 
models [3, 4]. SYCL is a programming model that builds on the 
underlying concepts, portability, and efficiency of OpenCL 
while adding much of the ease of use and flexibility of single-
source C++ [5, 6]. SYCL attempts to gain the simplicity of 
writing a single program and to enable compilers to statically 
type-check the correctness of the program. When migrating a 
program from OpenCL to SYCL, it is desirable that the program 
could still achieve reasonable performance on various platforms. 
Hence, it is worthwhile to investigate performance and 
portability we may obtain with SYCL. 

In this paper, we choose a bioinformatics application that 
searches in parallel for potential off-target sites in genome 
sequences as a case study on performance and portability of 
SYCL. We convert the application from OpenCL to SYCL and 
explain the migration paths. Then, we evaluate the performance 
of the OpenCL and SYCL applications on AMD GPUs and 
explore optimization techniques for improving the performance 
of the hotspot kernel in the SYCL program. The experimental 
results show that the SYCL application could achieve 
performance portability on the GPUs. Furthermore, exploring 
the kernel optimizations can further improve the performance of 
the SYCL program by 9% to 23%. While the application in our 
case study covers only a subset of the features in the SYCL 
specification [7], the experiences migrating OpenCL to SYCL 
in our case study can be applied to other applications. 

We have described the motivation and scope of our work. 
The remainder of the paper is organized as follows. Section II 
summarizes the bioinformatics application in OpenCL and 
contrasts the OpenCL and SYCL programming from an 
application aspect. Section III describes the SYCL application 
in detail by explaining the migration paths between OpenCL and 
SYCL. Section IV presents the experimental results including 
performance evaluation, profiling, and optimization. Section V 
is a summary of related work. Section VI concludes the paper. 

II. BACKGROUND 

A. Summary of Cas-OFFinder 

Cas-OFFinder is a fast and versatile algorithm that searches 
for potential off-target sites of Cas9 RNA-guided endonucleases 
[8, 9]. The application implements the algorithm with OpenCL 
for exploiting data parallelism on GPUs. In the application, the 
OpenCL host program reads genome sequence data in single- or 
multi-sequence data format, parses the data files with an open-
source parser library, and divides the genome data into chunks 
that can fit the memory of a heterogenous device. Then, these 
chunks are fed into a “search” kernel to select specific sites that 
include a protospacer-adjacent motif (PAM) sequence [10]. To 
search and select these specific sites efficiently, the OpenCL 
kernel performs parallel search over the sites in a chunk. After 
the kernel is complete, the OpenCL host program collects the 
information of the specific sites that contain PAM sequences and 
sends these sequences to a “compare” kernel in OpenCL. The 
kernel counts the number of mismatched bases in parallel. After 
the kernel is complete, the host program selects potential off-
target sites that contain mismatched bases under a given 
threshold, and saves the results (chromosome number, position, 
direction, the number of mismatched bases and potential off-
target DNA sequence with mismatched bases) in a file for 
analysis. The interaction between the OpenCL host and kernel 
programs continues until all chunks are processed. As 

 
Fig. 1. Abstract memory model 



mentioned in [11], Cas-OFFinder is one of the most popular 
tools for searching potential off-target sites, with no limit to the 
number of mismatches, PAM types, etc. It can also predict off-
target sites with deletions or insertions. 

B. Abstract memory model 

Figure 1 shows an abstract view of a memory hierarchy in 
which a kernel typically executes. To hide memory access 
latency and obtain high arithmetic throughput, a kernel is 
typically executed in multiple instances. Each instance is 
considered as a work-item for a single element of work. These 
instances are organized into work-groups that can be indexed in 
one, two, or three dimensions. The total number of work-items 
in a work-group is work-group size. Work-groups execute on a 
compute unit that comprises private memories, processing units 
and memory interfaces. A device global memory can be 
accessed by all work-items in work-groups. A constant memory 
may be utilized to store constant values across work-items in 
work-groups. A shared local memory enables low-latency 
communication between work-items within a work-group. A 
building block for communication is a barrier function. A 
barrier, which synchronizes execution of work-items in a work-
group, ensures that all work-items have finished an operation 
before using the result of that operation. It also ensures that 
results of memory operations performed before a barrier can be 
seen by other work-items after the barrier. 

C. Contrast OpenCL and SYCL programming 

In Table I, we contrast the general steps of writing an 
OpenCL program and those of a SYCL program. The first three 
steps in OpenCL are reduced to an instance of the SYCL device 
selector class. A selector searches a device of a user’s provided 
preference (e.g., GPU) at runtime. The SYCL queue class 
encapsulates a command queue for offloading kernels to a 
device. A kernel function in SYCL, which is invoked as a 
lambda function, is submitted to execution via a command 
queue. Hence, steps 6 to 10 in OpenCL are reduced to the 
definition and execution of of a lambda expression and via a 
SYCL queue. Data transfers between a host and a device may be 
realized by the SYCL accessor objects and memory copy 
commands, and the event handling can be handled by the SYCL 
event class. An OpenCL program needs to release the allocated 
sources of queue, program, kernel, and memory objects 
explicitly. In SYCL, they can be handled by the SYCL runtime 
which implicitly calls destructors.  

The total numbers of logical programming steps are 13 and 
8 for the OpenCL and SYCL programs, respectively. Hence, 
SYCL could improve programming productivity with 
abstractions, relieving a programmer from the burden of 
managing device, program, kernel, and memory objects in 
OpenCL. 

III. EXPERIENCES MIGRATING OPENCL TO SYCL 

While there exists a comprehensive guide on migrating 
OpenCL to SYCL codebase from a vendor, this section gives a 
detailed explanation of the migration paths between OpenCL 
and SYCL in the application. 

A. Memory management 

 Two abstractions are commonly used for managing memory 
in SYCL: unified shared memory and buffer. The former is a 
pointer-based approach that allows for easier integration with 
existing C/C++ programs. To migrate the OpenCL program, we 
get started with SYCL buffers for data management in our study. 
A SYCL buffer defines a data structure of one, two or three 
dimensions that can be accessed by a kernel. The underlying 
data type of a buffer must be trivially copyable as defined by 
C++. A SYCL buffer is considered as a high-level data 
abstraction for data management because properties of a buffer 
can be queried to determine whether and where device data is 
read from or written back to host memory. However, accessing 
the underlying data in a buffer requires an SYCL accessor 
object. Such object indicates where and how data is accessed. 

Table II contrasts the memory management using OpenCL 
and SYCL buffers. For clarity, we will omit the SYCL 
namespace in the following examples. In OpenCL, a memory 
object is allocated by creating a memory buffer with a context 
(ctx), access flags (flags), buffer size in bytes (BS), an optional 
pointer to a host memory (h), and error status (err). In SYCL, a 
buffer is instantiated with the specifications of the data type (T), 
dimension (D), and word size (WS) of the underlying data. The 
initial content of the buffer is not specified. The constructed 
SYCL buffer will use a default allocator when allocating 
memory on a host. A SYCL buffer can also be constructed by 
passing a host pointer. The buffer is initialized with the data 
pointed to by a host pointer (“h”). The ownership of the memory 
is given to the buffer for the duration of its lifetime. An OpenCL 
memory object is released explicitly with the OpenCL function 
“clReleaseMemObject()”. In contrast, the SYCL runtime will 
deallocate any storage required for the buffer when it is no 
longer in use. This may improve programming productivity 
since programmers are relieved of releasing memory objects 
manually in a complex program. However, understanding the 
implications of buffer destruction is required. Before the buffer 
is destroyed, the runtime will wait until all work on the buffer 
have completed, and then copy, if needed, the buffer content 
back to the host memory. The failure of constructing a SYCL 
buffer is reported as runtime exception.  

TABLE II.  MEMORY MANAGEMENT IN OPENCL AND SYCL  

OpenCL SYCL 
d = clCreateBuffer(ctx, flags, BS, NULL, err) buffer<T, D> d (WS) 

d = clCreateBuffer(ctx, flags, BS, h, err) buffer<T, D> d (h, WS) 

clReleaseMemObject(d) 
Handled by the SYCL 
runtime 

 

TABLE I.  PROGRAMMING STEPS IN OPENCL AND SYCL 

Step OpenCL program SYCL program 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 Enqueue a kernel object for execution 
Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructors 

 

 



B. Data movement between a host and a device 

Table III contrasts a migration path from OpenCL to SYCL 
for data transfers between a host and a device. 
“clEnqueueReadBuffer()” and “clEnqueueWriteBuffer()”, 
enqueue commands to read from a buffer object to host memory 
and write to a buffer object from host memory in OpenCL, 
respectively. Both commands accept an offset in bytes (offset) 
and a data size in bytes (cb) being read from or written to. In 
contrast, a SYCL ranged accessor is constructed with a range 
starting at an offset from the beginning of the buffer. The “copy” 
method of the SYCL command-group handler (cgh) moves data 
between a device buffer and a host array through a buffer 
accessor. “sycl_read” and “sycl_write” are short names for the 
SYCL read and write access modes defined in the specification, 
respectively. The OpenCL read and write commands accept a 
parameter for blocking (synchronous) or non-blocking 
(asynchronous) data movement. In SYCL, the “wait()” method 
is called to wait for the asynchronous operation associated with 
the copy command to complete.  

C. Coordinate indexing in ND-Range kernel 

A kernel is typically offloaded to an accelerator to exploit its 
capability in parallel computing. A SYCL kernel is executed in 
a single-program-multiple-data manner where all work-items 
execute the same kernel program or instance in a N-dimensional 
range (ND-Range) [1]. Each work-item can query its location in 
a group that contains it and invoke functionalities specific to 
each group. The SYCL ND-Range covers the total execution 
range, which is divided into work-groups whose size must 
divide the ND-Range size in each dimension [5]. The SYCL 
“nd_item” class encapsulates information related to a work-item 
and a work-group [7]. Additionally, it contains barrier functions 
that act as synchronization points and must be encountered by 
all work-items in a work-group [1]. 

Table IV contrasts the coordinate index functions in a one-
dimensional space (N = 1) and the barrier synchronization of 
memory operations to shared local memory [1] in the OpenCL 
and SYCL programs. “item” is an instance of the SYCL 

“nd_item” class. The names of the member functions are slightly 
different from those of the OpenCL functions. 

D. Atomic operation 

Atomic operations allow for concurrent memory accesses 
from work-items in work-groups to a memory location without 
introducing data race. Multiple updates to a memory location do 
not overlap, but the order of updates is not deterministic. 

Table V lists the OpenCL and SYCL atomic increment 
operation invoked in the compute kernels of the application. The 
OpenCL atomic function makes atomic increment on a variable 
in device global memory. The SYCL atomic reference class is 
instantiated with the type of the variable that it references, the 
memory order and scope, and the address space of the referenced 
object. The object is a reference to the value of the variable. 
While the expression of the SYCL atomic function is more 
verbose than the OpenCL function, the SYCL class builds on the 
OpenCL atomic access property and annotation [12] and extends 
it with a variety of atomic operations of both integer and 
floating-point types [7]. 

E. Kernel execution  

An OpenCL kernel is defined using the “__kernel” 
declaration specifier. An address space qualifier may be used in 
variable declarations to specify the region of memory that is 
used to allocate the object [1]. All arguments to a kernel 
function shall be in the “__private” address space by default. 

TABLE V.  ATOMIC INCREMENT FUNCTION IN OPENCL AND SYCL 

OpenCL 

 #pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable 

     

 old_val = atomic_inc (var);  
 

SYCL 

 template<typename T> 

 T atomic_inc (T& val) { 

     atomic_ref<T, memory_order::relaxed, memory_scope::device,           

                access::address_space::global_space> obj (val); 

     return obj.fetch_add ((T)1); 

 } 

 

TABLE VI. EXECUTING THE FINDER KERNEL IN OPENCL AND SYCL 

OpenCL 

kernel void finder (  __global char* chr, 

                                 __constant char* pat, 

                                   … 

                                 __local char* l_pat, 

                                 __local int* l_pat_index)  

{ // kernel body } 
 

clSetKernelArg(k, 0, …);  // first kernel argument 

clSetKernelArg(k, 1, …);  // second kernel argument 

… 

size_t gws[] = …; // global work size 

size_t lws[] = …; // local work size (work-group size) 

clEnqueueNDRangeKernel (q, k, 1, NULL, gws, lws, …); 

SYCL 

void finder (nd_item<1> &item, 
                    char* chr, char* pat, …  

                    char* l_pat, int* l_pat_index)  

{ // kernel body } 

 

range<1> gws (…); 

range<1> lws (…); 

q.submit([&](handler &h) { 
   h.parallel_for(nd_range<1>(gws, lws) [=] (nd_item<1> it) { 

      finder (it, …); // call the kernel function 

   }); 

}); 

 

 

TABLE IV. COORDINATE INDEX AND BARRIER IN OPENCL AND SYCL 

OpenCL SYCL 

 get_global_id(0)  item.get_global_id(0) 

 get_group_id(0)  item.get_group(0) 

 get_local_size(0)  item.get_local_range(0) 

 barrier(CLK_LOCAL_MEM_FENCE) 
 item.barrier( 

  access::fence_space::local_space) 

 
 

TABLE III. DATA MOVEMENT BETWEEN HOST (SRC) AND DEVICE (DST) IN 

OPENCL AND SYCL 

OpenCL SYCL 
// read from a buffer object to host 
 
clEnqueueReadBuffer(q, src,  
   blocking_read, offset, cb, dst, 
   0, 0, 0) 

q.submit([&] (handler &cgh) { 
   auto d = dst.get_access<sycl_read>( 
                                 cgh, range, offset); 
   cgh.copy(d, src); 
}).wait(); 

// write to a buffer object from host 
 
clEnqueueWriteBuffer(q, dst,  
   blocking_write, offset, cb, src, 
   0, 0, 0) 
 

q.submit([&] (handler &cgh) { 
   auto d = dst.get_access<sycl_write>( 
                                  cgh, range, offset); 
   cgh.copy(src, d); 
}).wait(); 

 



Function arguments declared to be a pointer of a data type can 
point to one of the following address spaces only: “__global”, 
“__local” or “__constant”. In contrast, the address spaces of the 
arguments of a SYCL kernel function declared to be pointers 
are inferred from the access targets of the SYCL accessors. 

Before an OpenCL kernel is executed, the kernel’s 
arguments need to be set with “clSetKernelArg()” properly as 
shown in Table VI. Then, “clEnqueueNDRangeKernel()” 
enqueues an OpenCL kernel to be executed on a device by 
specifying a command queue (q), a kernel object (k), dimension 
of an ND-Range kernel (1), global work size (gws), local work 
size (lws), and dependent events. Kernel launch is 
asynchronous, so it will return immediately after the kernel is 
enqueued in the command queue and likely before the kernel 
has even started execution. “clWaitForEvents()” or “clFinish()” 
is invoked to block execution on a host until the kernel 
completes. In SYCL, the global and local work sizes are 
specified using the SYCL range class [7]. The body of a C++ 
lambda function represents a kernel, and variables captured by 
value will be passed to the kernel as arguments. The “submit” 
method of a SYCL queue object is invoked to submit 
asynchronously a kernel to be executed on a device associated 
with the queue object. The “wait()” function waits for the event 
of the asynchronous operation to complete. 

Since the methods of executing the two OpenCL kernels are 
similar, we will explain the migration process using the search 
kernel (“finder”) as an example. The kernel argument “pat” in 
the OpenCL kernel is specified with a constant memory address 
space. In the SYCL program, a SYCL buffer is constructed 
whose content can be accessed through an accessor specialized 
with the “constant_buffer” access target. For the local memory 
arrays “l_pat” and “l_pat_index” accessed in the OpenCL 
kernel, we define two SYCL accessors with the corresponding 
types, dimensions, read and write access modes, and access 
target before the kernel is submitted. “sycl_read_write” and 
“sycl_lmem” are short names for the SYCL access mode and 
target [7], respectively. They indicate where and how data is 
accessed. Calling the function “finder” inside a lambda function 
in SYCL is not required, but the approach attempts to minimize 
code changes from OpenCL to SYCL.  

IV. EXPERIMENTS 

A. Setup  

We evaluate the performance of the OpenCL and SYCL 
applications on three computing systems with recent AMD 
GPUs. Major specifications of the Radeon VII (RVII), MI60, 
and MI100 discrete GPUs are listed in Table VII. The SYCL 
application currently executes on a single GPU device. The local 
work size (work-group size) is 256 for launching both SYCL 
kernels, whereas the sizes in the OpenCL program are 
determined by an OpenCL runtime. We build and execute the 
OpenCL application with the OpenCL support in the ROCm 

4.5.2 [13]. The SYCL compiler is built from the SYCL branch 
of the Intel LLVM repository (04-08-2022) [14], and the version 
of the compiler frontend (Clang) is 15.0.0. The compiler 
optimization option is “-O3” for both applications. The host 
compilers are the GNU C compilers, versions 9.2 and above). 

The datasets for our evaluation are the most recent 
assemblies of human genome, commonly nicknamed “hg38” 
and “hg19”, from the UCSC genome sequences library [15]. 
“hg38” corrects thousands of small sequencing artifacts that 
cause false genetic variations, insertions, and deletions to be 
called when using “hg19” [16]. The input file, which contains 
the desired pattern, query sequences, and maximum mismatch 
number, is the same as the example listed in [17]. We run each 
executable four times and report the minimum elapsed time in 
seconds. The elapsed time excludes the setup of OpenCL and 
SYCL environments, reading the input file from a file system, 
or writing the headers to the output file. 

B. Evaluation and Optimization 

Table VIII lists the elapsed time in seconds of the OpenCL 
and SYCL applications on the GPUs for the two datasets. 
Comparing the execution time of the two applications shows that 
the performance speedup of the SYCL application over the 
OpenCL application across the GPUs ranges from 1 to 1.19.  

While it is promising that performance portability of the 
SYCL application could be achieved on the target devices, we 
find that the “compare” kernel is a hotspot that accounts for 
approximately 98% of the total kernel execution time and 50% 
to 80% of the elapsed time on the GPUs. Hence, we will explore 
the kernel optimization for performance improvement. 

Listing 1 shows the hotspot kernel that counts the number of 
mismatched bases in parallel. From line 0 (L0) to L8, the first 
thread in each work-group fetches the pattern (comp) and its 
index (comp_index) arrays sequentially from device global 
memory to shared local memory for data reuse. The lengths of 
both arrays are “plen × 2”, which can accommodate two patterns 
from which one is selected based on the value of a flag. When 
the flag’s value is 0 or 1 (L9), a local mismatch counter is reset 
to zero (L10). Then, each character in the first pattern is read at 
the indirect address “l_comp_index[j]” and compared against a 
set of values in the reference character at the address “loci[i] + 
l_comp_index[j]”. When a mismatch occurs (L14), the counter 
is incremented by one (L15). The pattern comparisons will 
finish early when a mismatch threshold is reached (L16). When 
the mismatch count is not greater than the threshold (L19), the 
mismatch statistics, including the count, direction, and location, 
are stored at appropriate locations in device global memory. 
These locations can be computed in parallel using an atomic 
increment operation (L20 – L23). When the value of the flag is 
0 or 2 (L26), each character of the second pattern is read at the 
address with an offset of “plen” and compared against a set of 
values of the reference character (L31). Since the comparison 
logics (L32 – L42) are almost the same as those for the first 
pattern, we will omit the explanation. 

TABLE VII.  MAJOR SPECIFICATIONS OF THE GPUS (BW: BANDWIDTH) 

Device  Global 

memory 

(GB) 

GPU 

clock 

(MHz) 

Memory 

clock 

(MHz) 

Cores L2 

Cache 

(MB) 

Peak 

BW 

(GB/s) 

RVII 16 1800 1000 3840 8 1024 

MI60 32 1800 1000 4096 8 1024 

MI100 32 1502 1200 7680 8 1228 

 

TABLE VIII.  ELAPSED TIME OF THE OPENCL AND SYCL APPLICATIONS 

Elapsed time (s)  hg19 hg38 

Device OCL SYCL speedup OCL SYCL speedup 

RVII  54 48 1.12 71 61 1.16 

MI60 51 50 1.02 63 63 1.00 

MI100 49 41 1.19 61 58 1.05 

 



We explore the optimizations (opt1 – opt4) of the baseline 
hotspot kernel as follows. (1) We insert the “__restrict” keyword 
[18] in each pointer argument of the kernel function to prevent 
the compiler from creating unnecessary memory dependencies 
between non-conflicting memory load and store operations. (2) 
For each work-item, the base index of the reference character 
(loci[i]) and the value of the flag (flag[i]) are read from device 
global memory and stored in GPU registers first before they are 
used repeatedly for pattern comparisons. This may reduce the 
costly global memory accesses when a compiler fails to optimize 
the repeated memory accesses. (3) It is more efficient to fetch 
the pattern and its index arrays from device global memory to 
shared local memory when more work-items in a work-group 
participate in data fetching. (4) Fetching a pattern character from 
shared local memory (l_comp[k]) to a GPU register before it is 
accessed repeatedly for mismatch comparison may reduce the 
number of accesses to a shared local memory. 

Figure 2 shows the kernel execution time in seconds with 
respect to the cumulative changes described in the last paragraph 
for the two datasets on the GPUs. Compared to the performance 
of the baseline kernel (base), removing pointer aliasing, 
registering the data read from global memory, and parallel data 

fetching from global memory to shared local memory are 
effective in performance improvement. For the “hg38” dataset, 
they reduce the time of the baseline kernel by 22.9%, 21.1%, and 
21.7% on the three GPUs, respectively. For the “hg19” dataset, 
they reduce the kernel time by 27.8%, 23.4%, and 23.1% on the 
three GPUs, respectively. On the other hand, Table IX shows 
that the performance speedup from the kernel optimizations 
(opt3) ranges from 1.09 to 1.23 on the GPUs. 

We attempt to better understand the performance 
implications of our optimizations through the resource usage of 
these kernels at the level of instruction-set architecture [19]. 
Table X lists the total instruction length in bytes of each kernel 
after it is compiled into assembly instructions, the number of 
scalar (S) and vector (V) general-purpose registers (GPRs) 
utilized by each kernel, and occupancy for each kernel. 
Occupancy is a measure of parallel work that a GPU could 
perform at a given time on a compute unit. Removing pointer 
aliasing reduces the code length by approximately 3.5%. 
Registering the global memory reads further reduces the code 
length by approximately 7.6%. Parallel data fetching from 
device global memory to shared local memory further reduces 
the code length by approximately 18.5%. In the meantime, the 
number of vector GPRs decrease from 64 to 57 and the number 
of scalar GPRs from 22 to 10. While registering the shared local 
memory read can further reduce the code length by 
approximately 17%, it increases the usage of scalar registers 
from 57 to 82. While the pressure of register usage causes 
occupancy to decrease only from 10 to 9, the kernel execution 
time almost doubles on the GPUs as shown in Figure 2. The 
results show that occupancy has a significant impact on the 

 

Fig. 2. Kernel execution time with respect to the proposed optimizations 

(opt1- opt4) for the two datasets on the AMD GPUs. 
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TABLE X.   RESOURCE USAGE AND OCCUPANCY OF THE KERNELS 

Metrics base opt1 opt2 opt3 opt4 

Code length 6064 5852 5408 4408 3660 

#SGPRs 64 64 64 57 82 

#VGPRs 22 22 22 10 10 

Occupancy 10 10 10 10 9 

 

void comparer( 

  nd_item<1> &item, 

  const unsigned int locicnts, 

  const char* chr, 

  const unsigned int* loci, 

  unsigned int* mm_loci, 

  const char* comp, 

  const int* comp_index, 

  unsigned int patternlen, 

  unsigned short threshold, 

  const char* flag, 

  unsigned short* mm_count, 

  char* direction, 

  unsigned int* entrycount, 

  char* l_comp, 

  int* l_comp_index) { 

0 int i = item.get_global_id(0); 

1 unsigned int li = i - item.get_group(0) * item.get_local_range(0); 

2 if (li == 0) { 

3   for (k = 0; k < plen*2; k++) { // plen is pattern length 

4     l_comp[k] = comp[k]; 

5     l_comp_index[k] = comp_index[k]; 

6   } 

7 } 

8 item.barrier(access::fence_space::local_space); 

9 if (flag[i] == 0 || flag[i] == 1) { 

10  lmm_count = 0; 

11  for (j=0; j<plen; j++) {  

12    k = l_comp_index[j]; 

13    if (k == -1) break; 

14    if ((l_comp[k] == 'R' && (chr[loci[i]+k] == 'C' || chr[loci[i]+k] == 'T')) || 

          (l_comp[k] == 'Y' && (chr[loci[i]+k] == 'A' || chr[loci[i]+k] == 'G')) || 

    (l_comp[k] == 'K' && (chr[loci[i]+k] == 'A' || chr[loci[i]+k] == 'C')) || 

    (l_comp[k] == 'M' && (chr[loci[i]+k] == 'G' || chr[loci[i]+k] == 'T')) || 

    (l_comp[k] == 'W' && (chr[loci[i]+k] == 'C' || chr[loci[i]+k] == 'G')) || 

    (l_comp[k] == 'S' && (chr[loci[i]+k] == 'A' || chr[loci[i]+k] == 'T')) || 

          (l_comp[k] == 'H' && (chr[loci[i]+k] == 'G')) || 

          (l_comp[k] == 'B' && (chr[loci[i]+k] == 'A')) || 

          (l_comp[k] == 'V' && (chr[loci[i]+k] == 'T')) || 

          (l_comp[k] == 'D' && (chr[loci[i]+k] == 'C')) || 

          (l_comp[k] == 'A' && (chr[loci[i]+k] != 'A')) || 

          (l_comp[k] == 'G' && (chr[loci[i]+k] != 'G')) || 

          (l_comp[k] == 'C' && (chr[loci[i]+k] != 'C')) || 

          (l_comp[k] == 'T' && (chr[loci[i]+k] != 'T'))) { 

15      lmm_count++; 

16      if (lmm_count > threshold) break; 

17    } // L14 

18  } // L11 

19  if (lmm_count <= threshold) { 

20    old = atomic_inc(entrycount[0]); 

21    mm_count[old] = lmm_count; 

22    direction[old] = '+'; 

23    mm_loci[old] = loci[i]; 

24  } // L19 

25 } // L9 

26 if (flag[i] == 0 || flag[i] == 2) { 

27   lmm_count = 0; 

28   for (j=0; j<plen; j++) { 

29     k = l_comp_index[plen + j]; 

30     if (k == -1) break; 

31     if ((l_comp[k+plen] == 'R' && (chr[loci[i]+k] == 'C' || chr[loci[i]+k] == 'T')) || 

           … … (l_comp[k+plen] == 'T' && (chr[loci[i]+k] != 'T'))) { 

32       lmm_count++; 

33       if (lmm_count > threshold) break; 

34     } // L31 

35   } // L28 

36   if (lmm_count <= threshold) { 

37     old = atomic_inc(entrycount[0]); 

38     mm_count[old] = lmm_count; 

39     direction[old] = '-'; 

40     mm_loci[old] = loci[i]; 

41   } // L36 

42 } // L26 

 

Listing 1. Source of the “comparer” kernel in SYCL. The kernel counts the 

number of mismatched bases in parallel. It accounts for approximately 98% 
of the total kernel execution time. The entire Boolean conditions on Line 31 

are similar to those on Line 14. 

TABLE IX.  ELAPSED TIME OF THE OPTIMIZED SYCL APPLICATION 

Elapsed time (s) hg19 hg38 

Device base opt speedup base opt speedup 

RVII  48 39 1.23 61 52 1.17 

MI60 50 42 1.19 63 57 1.11 

MI100 41 36 1.14 58 53 1.09 

 



performance of the kernel; there is a performance trade-off 
between register usage and occupancy on the GPUs.  

V. RELATED WORK 

In [9], the authors introduced the OpenCL implementation 
of Cas-OFFinder and evaluated its performance on an Intel i7 
3770K CPU and an AMD Radeon HD7878 GPU. The OpenCL 
program sees significant speedup of the searching process using 
the GPU. FlashFry [20], a tool written in Scala for characterizing 
large numbers of target sequences, ran approximately two to 
three orders of magnitude faster than Cas-OFFinder on an Intel 
Xeon CPU. The authors of Cas-OFFinder optimized the 
OpenCL kernels with a 2-bit sequence format, shared local 
memory and atomic operations, and parallel computing with 
OpenMP in the host program. These optimizations can reduce 
memory access latency and increase data parallelism, improving 
the performance of the application by a factor of 30 
approximately [21]. The current OpenCL and SYCL kernels 
include these optimizations. In [22], the authors proposed an 
architecture-specific method for finding potential guided RNA 
off-target. The theoretical speedup reported by the method was 
significant compared to other CPU and GPU implementations. 
Their study was focused on a specialized hardware architecture 
that is a good fit for the application. We focus on the 
development and improvement of the application with 
heterogeneous programming models on general-purpose 
accelerators. In [ 23 ], the authors proposed a fast off-target 
detection tool that could improve query speed and reduce 
memory usage with the method of FM index in off-target 
searching. They evaluated the implementation on an Intel Xeon 
CPU. Further work will be needed to understand the 
performance of the proposed method on a GPU. 

VI. CONCLUSION 

SYCL is a single-source C++ programming layer that 
extends the concepts, portability, and efficiency of OpenCL. In 
this paper, we choose a popular off-target detection application 
in bioinformatics for studying performance and portability of 
SYCL. We explain the experience of migrating the application 
from OpenCL to SYCL and evaluate the performance of the 
SYCL applications on AMD GPUs. The experimental results 
show that the SYCL program can achieve comparable or higher 
performance compared to the OpenCL program on the GPUs. 
Exploring the optimizations of SYCL kernels show that 
eliminating pointer aliasing, registering repeatedly data accesses 
from device global memory, and fetching data from global 
device memory to shared local memory by all work-items in a 
work-group are effective in performance improvement. We 
hope that our results and experiences are valuable to migrating 
applications from OpenCL to SYCL. 
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