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Abstract—Cas-OFFinder is a popular application written in
OpenCL for searching potential off-target sites in parallel on a
GPU. In this work, we describe our experience of migrating the
application from OpenCL to SYCL. Evaluating the performance
of the OpenCL and SYCL application using human genome
sequences shows that the SYCL program could achieve
performance portability on the target GPUs. Exploring the
optimizations of the hotspot kernel in SYCL may further improve
the performance of the application by 9% to 23%.
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I. INTRODUCTION

Open Computing Language (OpenCL) [1, 2] is an open
standard supported by major graphics hardware and personal
computer vendors interested in offloading compute intensive
workloads (kernels) to heterogeneous computing devices such
as graphics processing units (GPUs) for acceleration. OpenCL
promotes portability, allowing a program to execute on a variety
of computing platforms with the support of OpenCL compilers.
However, writing an OpenCL program tends to be error-prone
and time-consuming compared to other popular programming
models [3, 4]. SYCL is a programming model that builds on the
underlying concepts, portability, and efficiency of OpenCL
while adding much of the ease of use and flexibility of single-
source C++ [5, 6]. SYCL attempts to gain the simplicity of
writing a single program and to enable compilers to statically
type-check the correctness of the program. When migrating a
program from OpenCL to SYCL, it is desirable that the program
could still achieve reasonable performance on various platforms.
Hence, it is worthwhile to investigate performance and
portability we may obtain with SYCL.

In this paper, we choose a bioinformatics application that
searches in parallel for potential off-target sites in genome
sequences as a case study on performance and portability of
SYCL. We convert the application from OpenCL to SYCL and
explain the migration paths. Then, we evaluate the performance
of the OpenCL and SYCL applications on AMD GPUs and
explore optimization techniques for improving the performance
of the hotspot kernel in the SYCL program. The experimental
results show that the SYCL application could achieve
performance portability on the GPUs. Furthermore, exploring
the kernel optimizations can further improve the performance of
the SYCL program by 9% to 23%. While the application in our
case study covers only a subset of the features in the SYCL
specification [7], the experiences migrating OpenCL to SYCL
in our case study can be applied to other applications.
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We have described the motivation and scope of our work.
The remainder of the paper is organized as follows. Section II
summarizes the bioinformatics application in OpenCL and
contrasts the OpenCL and SYCL programming from an
application aspect. Section III describes the SYCL application
in detail by explaining the migration paths between OpenCL and
SYCL. Section IV presents the experimental results including
performance evaluation, profiling, and optimization. Section V
is a summary of related work. Section VI concludes the paper.

II. BACKGROUND

A. Summary of Cas-OFFinder

Cas-OFFinder is a fast and versatile algorithm that searches
for potential off-target sites of Cas9 RNA-guided endonucleases
[8, 9]. The application implements the algorithm with OpenCL
for exploiting data parallelism on GPUs. In the application, the
OpenCL host program reads genome sequence data in single- or
multi-sequence data format, parses the data files with an open-
source parser library, and divides the genome data into chunks
that can fit the memory of a heterogenous device. Then, these
chunks are fed into a “search” kernel to select specific sites that
include a protospacer-adjacent motif (PAM) sequence [10]. To
search and select these specific sites efficiently, the OpenCL
kernel performs parallel search over the sites in a chunk. After
the kernel is complete, the OpenCL host program collects the
information of the specific sites that contain PAM sequences and
sends these sequences to a “compare” kernel in OpenCL. The
kernel counts the number of mismatched bases in parallel. After
the kernel is complete, the host program selects potential off-
target sites that contain mismatched bases under a given
threshold, and saves the results (chromosome number, position,
direction, the number of mismatched bases and potential off-
target DNA sequence with mismatched bases) in a file for
analysis. The interaction between the OpenCL host and kernel
programs continues until all chunks are processed. As
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Fig. 1. Abstract memory model
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mentioned in [11], Cas-OFFinder is one of the most popular
tools for searching potential off-target sites, with no limit to the
number of mismatches, PAM types, etc. It can also predict off-
target sites with deletions or insertions.

B. Abstract memory model

Figure 1 shows an abstract view of a memory hierarchy in
which a kernel typically executes. To hide memory access
latency and obtain high arithmetic throughput, a kernel is
typically executed in multiple instances. Each instance is
considered as a work-item for a single element of work. These
instances are organized into work-groups that can be indexed in
one, two, or three dimensions. The total number of work-items
in a work-group is work-group size. Work-groups execute on a
compute unit that comprises private memories, processing units
and memory interfaces. A device global memory can be
accessed by all work-items in work-groups. A constant memory
may be utilized to store constant values across work-items in
work-groups. A shared local memory enables low-latency
communication between work-items within a work-group. A
building block for communication is a barrier function. A
barrier, which synchronizes execution of work-items in a work-
group, ensures that all work-items have finished an operation
before using the result of that operation. It also ensures that
results of memory operations performed before a barrier can be
seen by other work-items after the barrier.

C. Contrast OpenCL and SYCL programming

In Table I, we contrast the general steps of writing an
OpenCL program and those of a SYCL program. The first three
steps in OpenCL are reduced to an instance of the SYCL device
selector class. A selector searches a device of a user’s provided
preference (e.g., GPU) at runtime. The SYCL queue class
encapsulates a command queue for offloading kernels to a
device. A kernel function in SYCL, which is invoked as a
lambda function, is submitted to execution via a command
queue. Hence, steps 6 to 10 in OpenCL are reduced to the
definition and execution of of a lambda expression and via a
SYCL queue. Data transfers between a host and a device may be
realized by the SYCL accessor objects and memory copy
commands, and the event handling can be handled by the SYCL
event class. An OpenCL program needs to release the allocated
sources of queue, program, kernel, and memory objects
explicitly. In SYCL, they can be handled by the SYCL runtime
which implicitly calls destructors.

TABLE I. PROGRAMMING STEPS IN OPENCL AND SYCL

Step OpenCL program SYCL program
1 Platform query
2 Device query of a platform Device selector class
3 Create context for devices
4 Create command queue for context Queue class
5 Create memory objects Buffer class
6 Create program object
7 Build a program .
3 Create kemel(s) Lambda expressions
9 Set kernel arguments
10 Enqueue a kernel object for execution Submit a SYCL kernel
to a queue
11 Transfer data from device to host Implicit via accessors
12 Event handling Event class
13 Release resources Implicit via destructors

The total numbers of logical programming steps are 13 and
8 for the OpenCL and SYCL programs, respectively. Hence,
SYCL could improve programming productivity with
abstractions, relieving a programmer from the burden of
managing device, program, kernel, and memory objects in
OpenCL.

III. EXPERIENCES MIGRATING OPENCL TO SYCL

While there exists a comprehensive guide on migrating
OpenCL to SYCL codebase from a vendor, this section gives a
detailed explanation of the migration paths between OpenCL
and SYCL in the application.

A. Memory management

Two abstractions are commonly used for managing memory
in SYCL: unified shared memory and buffer. The former is a
pointer-based approach that allows for easier integration with
existing C/C++ programs. To migrate the OpenCL program, we
get started with SYCL buffers for data management in our study.
A SYCL buffer defines a data structure of one, two or three
dimensions that can be accessed by a kernel. The underlying
data type of a buffer must be trivially copyable as defined by
C++. A SYCL buffer is considered as a high-level data
abstraction for data management because properties of a buffer
can be queried to determine whether and where device data is
read from or written back to host memory. However, accessing
the underlying data in a buffer requires an SYCL accessor
object. Such object indicates where and how data is accessed.

Table II contrasts the memory management using OpenCL
and SYCL buffers. For clarity, we will omit the SYCL
namespace in the following examples. In OpenCL, a memory
object is allocated by creating a memory buffer with a context
(ctx), access flags (flags), buffer size in bytes (BS), an optional
pointer to a host memory (h), and error status (err). In SYCL, a
buffer is instantiated with the specifications of the data type (T),
dimension (D), and word size (WS) of the underlying data. The
initial content of the buffer is not specified. The constructed
SYCL buffer will use a default allocator when allocating
memory on a host. A SYCL buffer can also be constructed by
passing a host pointer. The buffer is initialized with the data
pointed to by a host pointer (“h”). The ownership of the memory
is given to the buffer for the duration of its lifetime. An OpenCL
memory object is released explicitly with the OpenCL function
“clReleaseMemODbject()”. In contrast, the SYCL runtime will
deallocate any storage required for the buffer when it is no
longer in use. This may improve programming productivity
since programmers are relieved of releasing memory objects
manually in a complex program. However, understanding the
implications of buffer destruction is required. Before the buffer
is destroyed, the runtime will wait until all work on the buffer
have completed, and then copy, if needed, the buffer content
back to the host memory. The failure of constructing a SYCL
buffer is reported as runtime exception.

TABLE II. MEMORY MANAGEMENT IN OPENCL AND SYCL

OpenCL
d = clCreateBuffer(ctx, flags, BS, NULL, err)
d = clCreateBuffer(ctx, flags, BS, h, err)

clReleaseMemObject(d)

SYCL
buffer<T, D>d (WS)
buffer<T, D> d (h, WS)
Handled by the SYCL
runtime




TABLE III. DATA MOVEMENT BETWEEN HOST (SRC) AND DEVICE (DST) IN
OPENCL AND SYCL

SYCL
q.submit([&] (handler &cgh) {
auto d = dst.get_access<sycl read>(
cgh, range, offset);

OpenCL
// read from a buffer object to host

clEnqueueReadBuffer(q, src,
blocking read, offset, cb, dst,
0,0,0)

cgh.copy(d, src);
})-wait();

q.submit([&] (handler &cgh) {
auto d = dst.get_access<sycl_write>(
cgh, range, offset);

// write to a buffer object from host

clEnqueueWriteBuffer(q, dst,
blocking write, offset, cb, src,
0,0, 0)

cgh.copy(sre, d);
})-wait();

B. Data movement between a host and a device

Table III contrasts a migration path from OpenCL to SYCL
for data transfers between a host and a device.
“clEnqueueReadBuffer()” and “clEnqueueWriteBuffer()”,
enqueue commands to read from a buffer object to host memory
and write to a buffer object from host memory in OpenCL,
respectively. Both commands accept an offset in bytes (offset)
and a data size in bytes (cb) being read from or written to. In
contrast, a SYCL ranged accessor is constructed with a range
starting at an offset from the beginning of the buffer. The “copy”
method of the SYCL command-group handler (cgh) moves data
between a device buffer and a host array through a buffer
accessor. “sycl read” and “sycl write” are short names for the
SYCL read and write access modes defined in the specification,
respectively. The OpenCL read and write commands accept a
parameter for blocking (synchronous) or non-blocking
(asynchronous) data movement. In SYCL, the “wait()”” method
is called to wait for the asynchronous operation associated with
the copy command to complete.

C. Coordinate indexing in ND-Range kernel

A kernel is typically offloaded to an accelerator to exploit its
capability in parallel computing. A SYCL kernel is executed in
a single-program-multiple-data manner where all work-items
execute the same kernel program or instance in a N-dimensional
range (ND-Range) [1]. Each work-item can query its location in
a group that contains it and invoke functionalities specific to
each group. The SYCL ND-Range covers the total execution
range, which is divided into work-groups whose size must
divide the ND-Range size in each dimension [5]. The SYCL
“nd_item” class encapsulates information related to a work-item
and a work-group [7]. Additionally, it contains barrier functions
that act as synchronization points and must be encountered by
all work-items in a work-group [1].

Table IV contrasts the coordinate index functions in a one-
dimensional space (N = 1) and the barrier synchronization of
memory operations to shared local memory [1] in the OpenCL
and SYCL programs. “item” is an instance of the SYCL

TABLE IV. COORDINATE INDEX AND BARRIER IN OPENCL AND SYCL

OpenCL
get _global id(0)
get_group id(0)

SYCL
item.get global id(0)
item.get group(0)

get local size(0) item.get local range(0)

barrier(CLK_LOCAL_MEM_FENCE) |item-barrier(

access::fence_space::local space)

TABLE V. ATOMIC INCREMENT FUNCTION IN OPENCL AND SYCL

#pragma OPENCL EXTENSION cl_khr global int32_base atomics : enable

OpenCL old_val = atomic_inc (var);

template<typename T>
T atomic_inc (T& val) {
atomic_ref<T, memory_order::relaxed, memory_scope::device,
access::address_space::global_space> obj (val);
return obj.fetch_add ((T)1);

SYCL

!

“nd_item” class. The names of the member functions are slightly
different from those of the OpenCL functions.

D. Atomic operation

Atomic operations allow for concurrent memory accesses
from work-items in work-groups to a memory location without
introducing data race. Multiple updates to a memory location do
not overlap, but the order of updates is not deterministic.

Table V lists the OpenCL and SYCL atomic increment
operation invoked in the compute kernels of the application. The
OpenCL atomic function makes atomic increment on a variable
in device global memory. The SYCL atomic reference class is
instantiated with the type of the variable that it references, the
memory order and scope, and the address space of the referenced
object. The object is a reference to the value of the variable.
While the expression of the SYCL atomic function is more
verbose than the OpenCL function, the SYCL class builds on the
OpenCL atomic access property and annotation [12] and extends
it with a variety of atomic operations of both integer and
floating-point types [7].

E. Kernel execution

113

An OpenCL kernel is defined using the “ kernel”
declaration specifier. An address space qualifier may be used in
variable declarations to specify the region of memory that is
used to allocate the object [1]. All arguments to a kernel

function shall be in the “ private” address space by default.

TABLE VI. EXECUTING THE FINDER KERNEL IN OPENCL AND SYCL

kernel void finder ( __global char* chr,
__constant char* pat,

__local char* 1_pat,
_ local int* 1_pat_index)
{ // kernel body }
OpenCL
pen clSetKernelArg(k, 0, ...); // first kernel argument
clSetKernelArg(k, 1, ...); // second kernel argument

size t gws[]=...;// global work size
size t1ws[]=...;// local work size (work-group size)
clEnqueueNDRangeKernel (q, k, 1, NULL, gws, lws, ...);

void finder (nd_item<1> &item,
char* chr, char* pat, ...
char* 1_pat, int* |_pat_index)
{ // kernel body }

range<1> gws (...);
range<1>lws (...);
q.submit([&](handler &h) {

h.parallel_for(nd_range<I>(gws, lws) [=] (nd_item<I> it) {
finder (it, ...); // call the kernel function
s
s

SYCL




Function arguments declared to be a pointer of a data type can
point to one of the following address spaces only: “ global”,
“ local” or “__constant”. In contrast, the address spaces of the
arguments of a SYCL kernel function declared to be pointers
are inferred from the access targets of the SYCL accessors.

Before an OpenCL kernel is executed, the kernel’s
arguments need to be set with “clSetKernelArg()” properly as
shown in Table VI. Then, “clEnqueueNDRangeKernel()”
enqueues an OpenCL kernel to be executed on a device by
specifying a command queue (q), a kernel object (k), dimension
of an ND-Range kernel (1), global work size (gws), local work
size (lws), and dependent events. Kernel launch is
asynchronous, so it will return immediately after the kernel is
enqueued in the command queue and likely before the kernel
has even started execution. “clWaitForEvents()” or “clFinish()”
is invoked to block execution on a host until the kernel
completes. In SYCL, the global and local work sizes are
specified using the SYCL range class [7]. The body of a C++
lambda function represents a kernel, and variables captured by
value will be passed to the kernel as arguments. The “submit”
method of a SYCL queue object is invoked to submit
asynchronously a kernel to be executed on a device associated
with the queue object. The “wait()” function waits for the event
of the asynchronous operation to complete.

Since the methods of executing the two OpenCL kernels are
similar, we will explain the migration process using the search
kernel (“finder”) as an example. The kernel argument “pat” in
the OpenCL kernel is specified with a constant memory address
space. In the SYCL program, a SYCL buffer is constructed
whose content can be accessed through an accessor specialized
with the “constant_buffer” access target. For the local memory
arrays “l pat” and “l pat index” accessed in the OpenCL
kernel, we define two SYCL accessors with the corresponding
types, dimensions, read and write access modes, and access
target before the kernel is submitted. “sycl read write” and
“sycl_lmem” are short names for the SYCL access mode and
target [7], respectively. They indicate where and how data is
accessed. Calling the function “finder” inside a lambda function
in SYCL is not required, but the approach attempts to minimize
code changes from OpenCL to SYCL.

IV. EXPERIMENTS

A. Setup

We evaluate the performance of the OpenCL and SYCL
applications on three computing systems with recent AMD
GPUs. Major specifications of the Radeon VII (RVII), MI60,
and MI100 discrete GPUs are listed in Table VII. The SYCL
application currently executes on a single GPU device. The local
work size (work-group size) is 256 for launching both SYCL
kernels, whereas the sizes in the OpenCL program are
determined by an OpenCL runtime. We build and execute the
OpenCL application with the OpenCL support in the ROCm

TABLE VII. MAJOR SPECIFICATIONS OF THE GPUS (BW: BANDWIDTH)

4.5.2 [13]. The SYCL compiler is built from the SYCL branch
of the Intel LLVM repository (04-08-2022) [14], and the version
of the compiler frontend (Clang) is 15.0.0. The compiler
optimization option is “-O3” for both applications. The host
compilers are the GNU C compilers, versions 9.2 and above).

The datasets for our evaluation are the most recent
assemblies of human genome, commonly nicknamed “hg38”
and “hgl9”, from the UCSC genome sequences library [15].
“hg38” corrects thousands of small sequencing artifacts that
cause false genetic variations, insertions, and deletions to be
called when using “hg19” [16]. The input file, which contains
the desired pattern, query sequences, and maximum mismatch
number, is the same as the example listed in [17]. We run each
executable four times and report the minimum elapsed time in
seconds. The elapsed time excludes the setup of OpenCL and
SYCL environments, reading the input file from a file system,
or writing the headers to the output file.

B. Evaluation and Optimization

Table VIII lists the elapsed time in seconds of the OpenCL
and SYCL applications on the GPUs for the two datasets.
Comparing the execution time of the two applications shows that
the performance speedup of the SYCL application over the
OpenCL application across the GPUs ranges from 1 to 1.19.

While it is promising that performance portability of the
SYCL application could be achieved on the target devices, we
find that the “compare” kernel is a hotspot that accounts for
approximately 98% of the total kernel execution time and 50%
to 80% of the elapsed time on the GPUs. Hence, we will explore
the kernel optimization for performance improvement.

Listing 1 shows the hotspot kernel that counts the number of
mismatched bases in parallel. From line 0 (LO0) to L8, the first
thread in each work-group fetches the pattern (comp) and its
index (comp_index) arrays sequentially from device global
memory to shared local memory for data reuse. The lengths of
both arrays are “plen x 2, which can accommodate two patterns
from which one is selected based on the value of a flag. When
the flag’s value is 0 or 1 (L9), a local mismatch counter is reset
to zero (L10). Then, each character in the first pattern is read at
the indirect address “1_comp_index[j]” and compared against a
set of values in the reference character at the address “loci[i] +
1 comp_index[j]”. When a mismatch occurs (L14), the counter
is incremented by one (L15). The pattern comparisons will
finish early when a mismatch threshold is reached (L16). When
the mismatch count is not greater than the threshold (L19), the
mismatch statistics, including the count, direction, and location,
are stored at appropriate locations in device global memory.
These locations can be computed in parallel using an atomic
increment operation (L20 — L23). When the value of the flag is
0 or 2 (L26), each character of the second pattern is read at the
address with an offset of “plen” and compared against a set of
values of the reference character (L31). Since the comparison
logics (L32 — L42) are almost the same as those for the first
pattern, we will omit the explanation.

TABLE VIII. ELAPSED TIME OF THE OPENCL AND SYCL APPLICATIONS

Device Global GPU Memory Cores L2 Peak
memory clock clock Cache BW Elapsed time (s) hg19 hg38
(GB) (MHz) (MHz) (MB) | (GBf) Device OCL | SYCL | speedup | OCL | SYCL | speedup
RVII 16 1800 1000 3840 8 1024 RVII 54 48 1.12 71 61 1.16
MI60 32 1800 1000 4096 8 1024 MI60 51 50 1.02 63 63 1.00
MI100 32 1502 1200 7680 8 1228 MI100 49 41 1.19 61 58 1.05




void comparer (
nd_item<l> &item,
const unsigned int locicnts,
const char* chr,
const unsigned int* loci,
unsigned int* mm_loci,
const char* comp,
const int* comp_index,
unsigned int patternlen,
unsigned short threshold,
const char* flag,
unsigned short* mm_count,
char* direction,
unsigned int* entrycount,
char* 1_comp,
int* 1_comp_index) {
0 int i = item.get_global id(0);
1 unsigned int 1i = i - item.get_group(0) * item.get local range(0);
2 if (11 == 0) {
3 for (k = 0; k < plen*2; k++) { // plen is pattern length
4 1_comp(k] = comp(k];
5 1 comp_index (k] = comp_index[k];
6 }
7}
8 item.barrier (access::fence space::local_space);
9 if (flag[i] == 0 || flag[i] == 1) {
10 lmm_count = 0;
11 for (3=0; j<plen; j++) (
12 k = 1_comp_index[j1;

14 " ]+k] 'C' || chr(loci[i]+k] == 'T")) ||
Y' && (chrlloci[i]+k] == 'A' || chrlloci[i]+k] == 'G")) II|
'K' && (chr[loci[i]+k] == 'A' || chrlloci[i]+k] == 'C")) ||
'M' && (chr[loci[i]+k] 'G' || chr[loci[i]+k] == 'T')) ||
'W' && (chr[loci[i]+k] == 'C' || chr[loci[i]+k] == 'G")) ||
'S' && (chr[loci[i]+k] A' || chrlloci[i]+k] == 'T")) ||
'H' && (chr[loci[il+k] == 'G")) ||
'B' && (chr(loci[i]+k] == 'A')) ||
'V' && (chr(loci[i]+k] == 'T')) ||
'D' && (chr[locil[i]+k] == 'C")) ||
'A' && (chr[loci[i]+k] != 'A")) ||
(chr(loci[i]+k] != 'G")) ||
(chr(loci[i]+k] != 'C")) ||
(chr[locil[il+k] != 'T"))) {
15 1mm_count++;
16 if (lmm_count > threshold) break;
17 } // 114
18 } // L1l
19 if (Ilmm_count <= threshold) {
20 old = atomic_inc (entrycount[0]);
21 mm_count [0ld] = lmm_count;
22 directionfold] = '+';
23 mm_loci[old] = locilil;
24} // L19
25} // L9
26 if (flag[i] == 0 flag[i] == 2) {
27  lmm_count = 0;
28 for (j=0; j<plen; j++) {
29 k = 1_comp_index[plen + 3j;
30 if (k == -1) break;
31 if ((1_comp[k+plen] == 'R' && (chr[loci[il+k] == 'C' || chrlloci[il+k] == 'T')) ||
.« (1_comp[k+plen] == 'T' && (chr[loci[il+k] != 'T')))
32 lmm_count++;
33 if (lmm_count > threshold) break;
34 } // 131
35 ) // 128
36 if (lmm_count <= threshold) {
37 old = atomic_inc(entrycount[0]);
38 mm_count[old] = lmm_count;
39 direction[old] = '-';
40 mm_locifold] = locilil;
41 } // L36
42} // 126

Listing 1. Source of the “comparer” kernel in SYCL. The kernel counts the
number of mismatched bases in parallel. It accounts for approximately 98%
of the total kernel execution time. The entire Boolean conditions on Line 31
are similar to those on Line 14.

We explore the optimizations (optl — opt4) of the baseline
hotspot kernel as follows. (1) We insert the “__restrict” keyword
[18] in each pointer argument of the kernel function to prevent
the compiler from creating unnecessary memory dependencies
between non-conflicting memory load and store operations. (2)
For each work-item, the base index of the reference character
(loci[i]) and the value of the flag (flag[i]) are read from device
global memory and stored in GPU registers first before they are
used repeatedly for pattern comparisons. This may reduce the
costly global memory accesses when a compiler fails to optimize
the repeated memory accesses. (3) It is more efficient to fetch
the pattern and its index arrays from device global memory to
shared local memory when more work-items in a work-group
participate in data fetching. (4) Fetching a pattern character from
shared local memory (I_comp[k]) to a GPU register before it is
accessed repeatedly for mismatch comparison may reduce the
number of accesses to a shared local memory.

Figure 2 shows the kernel execution time in seconds with
respect to the cumulative changes described in the last paragraph
for the two datasets on the GPUs. Compared to the performance
of the baseline kernel (base), removing pointer aliasing,
registering the data read from global memory, and parallel data

Comparison of kernel execution time in seconds
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Fig. 2. Kernel execution time with respect to the proposed optimizations
(optl- opt4) for the two datasets on the AMD GPUs.

fetching from global memory to shared local memory are
effective in performance improvement. For the “hg38” dataset,
they reduce the time of the baseline kernel by 22.9%, 21.1%, and
21.7% on the three GPUs, respectively. For the “hg19” dataset,
they reduce the kernel time by 27.8%, 23.4%, and 23.1% on the
three GPUs, respectively. On the other hand, Table IX shows
that the performance speedup from the kernel optimizations
(opt3) ranges from 1.09 to 1.23 on the GPUs.

We attempt to better understand the performance
implications of our optimizations through the resource usage of
these kernels at the level of instruction-set architecture [19].
Table X lists the total instruction length in bytes of each kernel
after it is compiled into assembly instructions, the number of
scalar (S) and vector (V) general-purpose registers (GPRs)
utilized by each kernel, and occupancy for each kernel.
Occupancy is a measure of parallel work that a GPU could
perform at a given time on a compute unit. Removing pointer
aliasing reduces the code length by approximately 3.5%.
Registering the global memory reads further reduces the code
length by approximately 7.6%. Parallel data fetching from
device global memory to shared local memory further reduces
the code length by approximately 18.5%. In the meantime, the
number of vector GPRs decrease from 64 to 57 and the number
of scalar GPRs from 22 to 10. While registering the shared local
memory read can further reduce the code length by
approximately 17%, it increases the usage of scalar registers
from 57 to 82. While the pressure of register usage causes
occupancy to decrease only from 10 to 9, the kernel execution
time almost doubles on the GPUs as shown in Figure 2. The
results show that occupancy has a significant impact on the

TABLE IX. ELAPSED TIME OF THE OPTIMIZED SYCL APPLICATION

Elapsed time (s) hg19 hg38

Device base | opt | speedup | base | opt | speedup
RVII 48 39 1.23 61 52 1.17
MI60 50 42 1.19 63 57 1.11
MIL100 41 36 1.14 58 53 1.09

TABLE X. RESOURCE USAGE AND OCCUPANCY OF THE KERNELS

Metrics base optl opt2 opt3 opt4
Code length | 6064 5852 5408 4408 3660
#SGPRs 64 64 64 57 82
#VGPRs 22 22 22 10 10
Occupancy 10 10 10 10 9




performance of the kernel; there is a performance trade-off
between register usage and occupancy on the GPUs.

V. RELATED WORK

In [9], the authors introduced the OpenCL implementation
of Cas-OFFinder and evaluated its performance on an Intel i7
3770K CPU and an AMD Radeon HD7878 GPU. The OpenCL
program sees significant speedup of the searching process using
the GPU. FlashFry [20], a tool written in Scala for characterizing
large numbers of target sequences, ran approximately two to
three orders of magnitude faster than Cas-OFFinder on an Intel
Xeon CPU. The authors of Cas-OFFinder optimized the
OpenCL kernels with a 2-bit sequence format, shared local
memory and atomic operations, and parallel computing with
OpenMP in the host program. These optimizations can reduce
memory access latency and increase data parallelism, improving
the performance of the application by a factor of 30
approximately [21]. The current OpenCL and SYCL kernels
include these optimizations. In [22], the authors proposed an
architecture-specific method for finding potential guided RNA
off-target. The theoretical speedup reported by the method was
significant compared to other CPU and GPU implementations.
Their study was focused on a specialized hardware architecture
that is a good fit for the application. We focus on the
development and improvement of the application with
heterogeneous programming models on general-purpose
accelerators. In [23], the authors proposed a fast off-target
detection tool that could improve query speed and reduce
memory usage with the method of FM index in off-target
searching. They evaluated the implementation on an Intel Xeon
CPU. Further work will be needed to understand the
performance of the proposed method on a GPU.

VI. CONCLUSION

SYCL is a single-source C++ programming layer that
extends the concepts, portability, and efficiency of OpenCL. In
this paper, we choose a popular off-target detection application
in bioinformatics for studying performance and portability of
SYCL. We explain the experience of migrating the application
from OpenCL to SYCL and evaluate the performance of the
SYCL applications on AMD GPUs. The experimental results
show that the SYCL program can achieve comparable or higher
performance compared to the OpenCL program on the GPUs.
Exploring the optimizations of SYCL kernels show that
eliminating pointer aliasing, registering repeatedly data accesses
from device global memory, and fetching data from global
device memory to shared local memory by all work-items in a
work-group are effective in performance improvement. We
hope that our results and experiences are valuable to migrating
applications from OpenCL to SYCL.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their comments and
suggestions, and Ada Sedova from Oak Ridge National
Laboratory (ORNL) for the direction to the application. The
research used resources at the Experimental Computing Lab at
ORNL. This research was supported by the US Department of
Energy Advanced Scientific Computing Research program
under Contract No. DE-AC05-000R22725.

(1]

(2]

[3]

(4]

[3]

(6]
[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

Munshi, A., Gaster, B., Mattson, T.G. and Ginsburg, D., 2011. OpenCL
programming guide. Pearson Education.

Kaeli, D., Mistry, P., Schaa, D. and Zhang, D.P., 2015. Heterogeneous
computing with OpenCL 2.0. Morgan Kaufmann.

Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G. and Namyst, R.,
2015, September. Automatic OpenCL code generation for multi-device
heterogeneous architectures. In 2015 44th International Conference on
Parallel Processing (pp. 959-968). IEEE.

Steuwer, M. and Gorlatch, S., 2014. SkelCL: a high-level extension of
OpenCL for multi-GPU systems. The Journal of Supercomputing, 69(1),
pp.25-33.

Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J. and
Tian, X., 2021. Data Parallel C++: Mastering DPC++ for Programming
of Heterogeneous Systems using C++ and SYCL. Springer Nature.

Stroustrup, B., 2013. The C++ Programming Language. Pearson
Education.

SYCL 2020 Specification (revision 4).
[https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-
2020.html.

Zhang, F., Wen, Y. and Guo, X., 2014. CRISPR/Cas9 for genome editing:
progress, implications and challenges. Human molecular genetics,
23(R1), pp.R40-R46.

Bae, S., Park, J. and Kim, J.S., 2014. Cas-OFFinder: a fast and versatile
algorithm that searches for potential off-target sites of Cas9 RNA-guided
endonucleases. Bioinformatics, 30(10), pp.1473-1475.

Shah, S.A., Erdmann, S., Mojica, F.J. and Garrett, R.A., 2013.
Protospacer recognition motifs: mixed identities and functional diversity.
RNA biology, 10(5), pp.891-899.

Liu, G., Zhang, Y. and Zhang, T., 2020. Computational approaches for
effective CRISPR guide RNA design and evaluation. Computational and
structural biotechnology journal, 18, pp.35-44.

Sorensen, T., Donaldson, A.F., Batty, M., Gopalakrishnan, G. and
Rakamari¢, Z., 2016, October. Portable inter-workgroup barrier
synchronisation for GPUs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (pp. 39-58).

ROCm Open Ecosystem, 2021. AMD. [online] Available:
https://www.amd.com/en/graphics/servers-solutions-rocm

Intel  staging area  for  llvm.org.  [online]  Available:
https://github.com/intel/llvm

UCSC genome sequences library. [online] Available:
http://hgdownload.soe.ucsc.edu/downloads.html.
Human-genome-reference-builds, GATK technical documentation

Glossary, 2022

An ultra fast and versatile algorithm that searches for potential off-target
sites of CRISPR/Cas-derived RNA-guided endonucleases., 2021. [online]
Available: https://github.com/snugel/cas-offinder

Wen-mei, W.H., 2015. Heterogeneous System Architecture: A new
compute platform infrastructure. Morgan Kaufmann.

AMD Instinct MI100 Instruction Set Architecture [online]
Available:https://developer.amd.com/wpcontent/resources/CDNA1_Sha
der ISA 14December2020.pdf

McKenna, A., Shendure, J. FlashFry: a fast and flexible tool for large-
scale CRISPR target design. BMC Biol 16, 74 (2018

Park, J., Bae, S. and Kim, J.S., 2015. Cas-Designer: a web-based tool for
choice of CRISPR-Cas9 target sites. Bioinformatics, 31(24), pp.4014-
4016.

Bo, C., Dang, V., Sadredini, E. and Skadron, K., 2018, February.
Searching for potential gRNA off-target sites for CRISPR/Cas9 using
automata processing across different platforms. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA) (pp. 737-748). IEEE.

Cui, Y., Liao, X., Peng, S., Tang, T., Huang, C. and Yang, C., 2020.
OffScan: a universal and fast CRISPR off-target sites detection tool.
BMC genomics, 21(1), pp.1-6.



