KokkACC: Enhancing Kokkos with OpenACC

Pedro Valero-Lara, Seyong Lee, Marc Gonzalez-Tallada, Joel Denny, and Jeffrey S. Vetter
Oak Ridge National Laboratory (ORNL)
{valerolarap},{lees2},{ gonzaleztalm},{dennyje},{vetter} @ornl.gov

Abstract—Template metaprogramming is gaining popularity
as a high-level solution for achieving performance portability on
heterogeneous computing resources. Kokkos is a representative
approach that offers programmers high-level abstractions for
generic programming while most of the device-specific code
generation and optimizations are delegated to the compiler
through template specializations. For this, Kokkos provides a
set of device-specific code specializations in multiple back ends,
such as CUDA and HIP. Unlike CUDA or HIP, OpenACC
is a high-level and directive-based programming model. This
descriptive model allows developers to insert hints (pragmas)
into their code that help the compiler to parallelize the code. The
compiler is responsible for the transformation of the code, which
is completely transparent to the programmer. This paper presents
an OpenACC back end for Kokkos: KokkACC. As an alternative
to KokKkos’s existing device-specific back ends, KokkACC is
a multi-architecture back end providing a high-productivity
programming environment enabled by OpenACC’s high-level and
descriptive programming model. Moreover, we have observed
competitive performance; in some cases, KokkACC is faster
(up to 9x) than NVIDIA’s CUDA back end and much faster
than OpenMP’s GPU offloading back end. This work also
includes implementation details and a detailed performance study
conducted with a set of mini-benchmarks (AXPY and DOT
product) and three mini-apps (LULESH, miniFE and SNAP, a
LAMMPS proxy mini-app).

Index Terms—OpenACC, C++ Metaprogramming, Kokkos,
CUDA, OpenMP Target, Parallel Programming Models

[. INTRODUCTION

Template metaprogramming (TMP) languages, such as C++,
allow for generic programming, in which programmers focus
on the general structure of an application while target-specific
code specialization can be handled by the compiler (i.e.,
different alternative specializations of a template class). In this
way, different binaries can be built from the same TMP source
code. This technique can be used effectively for performance
portability. RAJA [1] and Kokkos [2] are two of the most
important examples of C++ TMP-based libraries that enable
performance portability.

Kokkos is an open-source, performance-portable C++ tem-
plate metaprogramming library that aims to be architecture
agnostic to enable programmers to move past the low-level
details of vendor or target-specific programming models and
the varying characteristics of the targeted hardware architec-
tures. Like other TMP approaches, Kokkos also offers device-
specific code generation and optimizations through template
specialization. For this, Kokkos provides multiple device-
specific back ends that are implemented as template libraries
on top of some popular high-performance computing (HPC)

programming models (e.g., CUDA, HIP, OpenMP, HPX) that
are aligned with developments in the C++ standard. However,
maintaining and optimizing multiple device-specific back ends
for each current and future device type will be complex and
error-prone endeavors. To alleviate these problems, this paper
presents an OpenACC-based alternative back-end implemen-
tation for Kokkos: KokkACC.

OpenACC [3] is a high-level, directive-based programming
model which supports C, C++, and Fortran. It was developed
to allow programmers to interact with heterogeneous high-
performance computing architectures without the effort that is
required to fully understand all the low-level programming de-
tails and underlying hardware features [4]. This programming
model allows developers to insert hints into their code that help
the compiler interpret how to parallelize the code. In this way,
the compiler is responsible for the transformation of the code,
which is completely transparent to the programmer. OpenACC
defines a mechanism to offload programs to an accelerator in
a heterogeneous system [5]. Because OpenACC is a directive-
based programming model, the code can be compiled serially,
ignoring the directives and still produce correct results, allow-
ing a single code to be portable across different platforms [6].
This simple model allows non-expert programmers to easily
develop code that benefits from accelerators [7]. Currently,
OpenACC compilers support several platforms such as x86
multicore CPUs, accelerators (GPUs, FPGAs), OpenPOWER
processors, KNLs, and ARM processors.

The motivations/objectives behind this effort include the
following:

1) Improved programming productivity to efficiently main-
tain Kokkos back ends.

e The OpenACC back end is simpler to implement
and maintain compared with other device-specific
back ends (i.e., CUDA, HIP) [8].

o Both Kokkos and OpenACC models aim to be
architecture agnostic, which makes the models very
similar and facilitates the implementation of Kokkos
features within the OpenACC programming model.

2) Better support for heterogeneous devices. OpenACC can
target different types of devices, so one single back end
can be used to target different hardware architectures.

o The OpenACC back end will complement the ex-
isting OpenMP target back end by providing an
alternative, directive-based solution to address the
varying levels of language support and maturity
across existing directive compilers and different

target devices (see Section IV).

3) Existing Kokkos applications are easier to optimize
by using OpenACC features [9], [10] and tools that
complement Kokkos.

4) Porting OpenACC applications to Kokkos are simplified
by allowing incremental code changes.

To the best of our knowledge, the work described here is
the first to use OpenACC as a Kokkos back end. Indeed,
KokkACC is being integrated into the upstream Kokkos repos-
itory right now, and it is expected to be fully integrated in the
upcoming Kokkos releases. Here are the main contributions of
this work:

1) A novel, portable, and efficient Kokkos back end based
on the OpenACC programming model.

2) A detailed performance analysis using state-of-the-
art mini-benchmarks (e.g., AXPY and DOT product)
and mini-apps (e.g., LULESH, miniFE and SNAP-
LAMMPS).

3) Demonstration of performance portability by achieving
competitive or better performance of the tested appli-
cations with the proposed OpenACC back end when
compared with the existing CUDA and OpenMP target
back ends.

4) A detailed analysis about what a descriptive model (Ope-
nACC) can offer against vendor-specific prescriptive
models (CUDA) for TMP solutions, like Kokkos.

The rest of this paper is organized as follows: Section 2
covers the necessary background in meta-programming for
the case of the Kokkos framework. Section 3 describes the
implementation of the OpenACC back end for Kokkos. Section
4 evaluates the implementation, and Section 5 includes some
important references and related works. Finally, Section 6
concludes the paper.

II. BACKGROUND

The Kokkos programming model builds on two major
components: data structures and parallel execution constructs.

A. Memory Management

The Kokkos memory model follows the general acceler-
ator memory model adopted by most existing accelerator
programming models (e.g., CUDA, OpenMP, OpenACC) in
which the host and accelerator devices have separate memory
spaces that may or may not be shared. The View construct
is the fundamental data structure used to represent user data
in Kokkos programming. It provides abstractions on three
core concepts of the Kokkos memory model: Memory Space,
Memory Layout, and Memory Trait. View is a logical structure
that represents an array of zero or more dimensions.

As shown in Figure 1, a programmer can create a View
object by setting the type of entries and the number of dimen-
sions in the construct—for which the memory space, memory
layout, and memory trait are optional—which can then be
determined implicitly by the compiler or determined explicitly
by the programmer. To copy data from one View to another,

Kokkos provides memory transfer APIs such as deep_copy.
For advanced programming, such as intermixing the high-level
Kokkos codes with low-level, device-specific codes, Kokkos
also provides low-level device memory management APIs
such as kokkos_malloc and kokkos_free.

B. Parallel Data Execution

Kokkos has two primary data-parallel constructs: paral-
lel_for and parallel_reduce. Additionally, there are three dif-
ferent execution policies that can be used for these constructs:
single range (SR), multidimensional range (MD), and hierar-
chical parallelism (HR).

Figure 1 depicts examples of the parallel_for Kokkos con-
structs using SR. This example computes a simple AXPY
operation. Parallel Kokkos constructs are composed of three
main components: (1) a string used for identification for
debugging and profiling, (2) the number of iterations of the
for-loop, which is implicitly converted into RangePolicy, and
(3) a C++ lambda expression that acts like a function and
can be used as an additional data type. The lambda stores
information about the computation for use in every iteration
of the loop.

Kokkos::View<doublex> X ("X", N);

Kokkos::View<doublex*> Y ("Y", N);

Kokkos::parallel for("axpy_init", N,
KOKKOS_LAMBDA (int n) {

X(n) = InitValue; Y(n) = InitValue;

)i

Kokkos::parallel_for("axpy_computation", N,
KOKKOS_LAMBDA (int n) {

double alpha = ALPHA; Y(n) += alpha * X(n);

o

Fig. 1. The parallel_for SR construct in the Kokkos API.

The MD approach is very similar to the SR one (see
Figure 2). The main difference is the use of MDRangePolicy.
Using MDRangePolicy, we can use more than one single
parameter regarding the number of iterations. This can be seen
like a set of nested for-loop. This approach is usually used for
multidimensional arrays.

Kokkos::View<doublexx> X ("X", M , N);

Kokkos::View<doublex*> Y ("Y", M , N);

typedef Kokkos::MDRangePolicy< Kokkos::Rank<2> >
mdrange_policy;

Kokkos::parallel for("axpy_init",
mdrange_policy({0, 0}, {M, N}),
KOKKOS_LAMBDA (int m, int n) {

X(m, n) = InitValue; Y(m, n) = InitValue;
b}

Kokkos::parallel_for("axpy_computation",

mdrange_policy({0, 0}, {M, N}),

KOKKOS_LAMBDA (int m, int n) {
double alpha = ALPHA; Y(m, n) += alpha * X(m, n);
b

Fig. 2. The parallel_for MD range construct in the Kokkos APIL.

Finally, the HR approach (see Figure 3) is completely
different from the other execution policies. It requires using
TeamPolicy. This approach can exploit up to three different
levels of parallelism, which are similar to the concepts of
gang, worker, and vector level parallelism used by OpenACC.
Although much more complicated to use, this approach allows

developers to have a higher control on the management of the
parallelism and potentially improve performance.

Kokkos::V

iew<doublex*> X ("X", M , N);
Kokkos::View<doublexx> Y ("Y", M , N);

typedef Kokkos::TeamPolicy<> team_policy;
typedef Kokkos::TeamPolicy<>::member_type member_type;
Kokkos::parallel for("axpy_init",

team_policy(M, Kokkos::AUTO),

KOKKOS_LAMBDA (const member_type &teamMember) {
const int i = teamMember.league_rank();
Kokkos::parallel_ for (

Kokkos::TeamThreadRange (teamMember, N),

[&] (const int j) |
X (i, j) = Initvalue; Y (i, j) = InitValue;
by

P

Kokkos::parallel for("axpy_computation",

team_policy(M, Kokkos::AUTO),

KOKKOS_LAMBDA (const member_type &teamMember) {
const int i = teamMember.league_rank();
Kokkos::parallel for (

Kokkos::TeamThreadRange (teamMember, N),

[&] (const int j) {

double alpha = ALPHA; Y (i, j) += alpha * X(i, Jj);
by

P

Fig. 3. The parallel_for HR construct in the Kokkos API.

The parallel_reduce constructs are identical to the paral-
lel_for constructs except they use one extra parameter to store
the result of the reduction. Figure 4 shows examples of the
different parallel_reduce constructs.

Kokkos::parallel_reduce("dotproduct_computation", N,
KOKKOS_LAMBDA (int n, double &tmp) {
tmp += X(n) * Y(n);
}, result);
Kokkos::parallel reduce("dotproduct_computation",
mdrange_policy({0, 0}, {M, N}),
KOKKOS_LAMBDA (int m, int n, double &tmp) {
tmp += X(m, n) * Y(m, n);
}, result);
Kokkos::parallel_reduce("dotproduct_comp",
team_policy(M, Kokkos::AUTO),
KOKKOS_LAMBDA (const member_type &teamMember,
float &update) {
const int m = teamMember.league_rank();
float tmp = 0.0;
Kokkos::parallel_reduce (
Kokkos::TeamThreadRange (teamMember, N),
[&] (const int n,
float &innerUpdate) {
innerUpdate += X(m, n) % Y(m, n);
b, tmp)
if (teamMember.team_rank () ==)
update += tmp;
}, result);

Fig. 4. The different parallel_reduce parallelism constructs in the Kokkos
APIL.

C. Atomic Operations

The Kokkos framework supports several atomic operations,
which are offered to programmers as run-time primitives.
Arithmetic operations (e.g., +, —, -, +) are supported with
different data types (e.g., integer, floating point numbers using
32/64 bits). Logical operators (e.g., or, and, xor) are supported
along with min/max and bit-wise operations. In general, each
Kokkos back end includes an implementation of all these
atomic primitives according to the existing support in the target
architecture.

III. KokkoS OPENACC BACK END

Although there is a clear connection between the parallel
constructs of Kokkos and the OpenACC specification, the
implementation presents some complications. Every Kokkos
template class must follow a very specific template pattern and
must be re-implemented by using OpenACC pragmas. Every-
thing must be compatible with the OpenACC compiler. One
of the biggest complications for implementing the OpenACC
back end involves handling complex template specializations
deployed in a complex hierarchy; the existing Kokkos im-
plementations rely heavily on various template specializations
to optimize the performance on specific targets and patterns,
some of which are allowed only for specific cases. Therefore, it
is a nontrivial task to identify which parts of the hierarchical
implementations of the Kokkos programming model are the
ideal targets for optimization.

A. Memory Management

The Kokkos library’s core architecture is designed in a hi-
erarchical and modular manner using the C++ object-oriented
programming paradigm. Therefore, when implementing the
Kokkos memory model in the new OpenACC back end, we
could reuse most of the high-level structures in the exist-
ing Kokkos memory management implementations, includ-
ing various interfaces to the View data structures and the
dynamic reference counting mechanism for automatic lifes-
pan management of View objects. Implementing the Kokkos
memory model in the OpenACC back end mostly boils
down to implementing low-level device memory management
operations, such as allocating device memory, transferring
data between the host and device memories, and so on.
Thanks to the similarities between the Kokkos and OpenACC
memory models, most of the basic memory management
operations have one-to-one mapping between the Kokkos
and OpenACC constructs (e.g., Kokkos::malloc can be im-
plemented using acc_malloc; deep_copy can be implemented
using acc_memcpy_to_device, acc_memcpy_from_device, and
acc_memcpy_device primitives).

B. Parallel Data Execution

Figure 5 illustrates an example implementation of the
Kokkos template class for the OpenACC back end’s paral-
lel_for SR construct. The implementations are intended to
be as simple as possible. The Policy object corresponds to
the second parameter of the parallel_for SR construct (see
Section II). The a_functor object is the lambda passed as
the third argument of the Kokkos construct, which acts like a
function and must be copied to GPU memory explicitly. Then,
the parallelization is carried out by using #pragma acc parallel
loop gang vector. The parameters of the functor (lambda) must
be consistent with the Kokkos specification.

The Kokkos template class implementation for the Ope-
nACC back end’s parallel_for MD construct is similar to
the SR counterpart (see Figure 6). The main differences
correspond to the use of multiple indexes and nested for-
loops. For simplicity, we show the implementation details that

template <class FunctorType, class... Traits>
class ParallelFor< FunctorType,
Kokkos::RangePolicy<Traits...>,
Kokkos: :Experimental::0penACC > {
private:
using Policy = Kokkos::RangePolicy<Traits...>;
using WorkTag = typename Policy::work_tag;
using WorkRange = typename Policy::WorkRange;
using Member = typename Policy::member_type;

const FunctorType m_functor;
const Policy m_policy;
public:
inline void execute () const
{ execute_impl<WorkTag>(); }
template <class TagType>
inline void execute_impl () const {
OpenACCExec::verify_is_process(
"Kokkos: :Experimental::0OpenACC_parallel_for");
OpenACCExec::verify_initialized(
"Kokkos: :Experimental::0OpenACC_parallel_for");
const auto begin = m_policy.begin();
const auto end = m_policy.end();
if (end <= begin) return;
const FunctorType a_functor (m_functor);
#pragma acc parallel loop gang vector
copyin (a_functor)
for (auto i = begin; i < end; i++) { a_functor(i); }

Fig. 5. OpenACC implementation of parallel_for SR.

correspond to the MD construct implementation for a nesting
level of two (Rank = 2 in Figure 6). To map the behavior
defined by the Kokkos specification for MD operations, we
use OpenACC'’s collapse clause.

template <class TagType, int Rank>
inline typename std::enable_if<Rank == 2>::type
execute_functor (
const FunctorType& functor,
const Policy& policy) const {
const FunctorType a_functor (functor);
int beginl = policy.m_lower([0];
int endl = policy.m_upper[0];
int begin2 = policy.m_lower([1l];
int end2 = policy.m_upper[1l];
#pragma acc parallel loop gang vector
collapse(2) copyin(a_functor)
for (auto i0 = beginl; i0 < endl; i0++) {
for (auto il = begin2; il < end2; il++) {
a_functor (i0, il);

11}
Fig. 6. OpenACC implementation of parallel_for MD range.

The OpenACC implementation of the Kokkos template class
for the parallel_for HR construct can be seen in Figure 7. For
simplicity, we show the implementation of the two-level nested
lambda case. The top-level implementation is similar to the SR
implementation, but it uses Kokkos::TeamPolicy instead of the
number of iterations (i.e., RangePolicy), which is then passed
as an argument to the HR specification. Also, a corresponding
team policy must be created in each iteration of this level and
passed as an argument to the functor (second-level lambda).
The second level is implemented in a separate function, which
must be decorated with #pragma acc routine worker. At this
level, we compute an OpenACC-decorated for-loop using the
same parallelism level indicated in the function decoration
(i.e., worker).

Regarding the implementation of the parallel_reduce Ope-

template <class TagType>
inline void execute_impl() const {
OpenACCExec::verify_is_process(
"Kokkos: :Experimental: :0penACC_parallel_for");
OpenACCExec::verify_initialized(
"Kokkos: :Experimental: :0penACC_parallel_for");
auto league_size = m_policy.league_size();
auto team_size = m_policy.team_size();
auto vector_length = m_policy.impl_vector_length();
const FunctorType a_functor (m_functor);
#pragma acc parallel loop gang copyin(a_functor)
for (int 1 = 0; i < league_size; i++) {
int league_id = i;
typename Policy::member_type
team(league_id, league_size,
team_size, vector_length);
a_functor (team) ;
+}
#pragma acc routine worker
template <typename iType, class Lambda>
KOKKOS_INLINE_FUNCTION
void parallel_ for(
const Impl::TeamThreadRangeBoundariesStruct<
iType, Impl::OpenACCExecTeamMember>
& loop_boundaries, const Lambda& lambda) {
#pragma acc loop worker
for (iType j = loop_boundaries.start;
j < loop_boundaries.end;
J++) { lambda (j); }

Fig. 7. OpenACC implementation of parallel_for HR.

nACC classes, the main difference w.r.t. parallel_for imple-
mentations consists of adding the OpenACC clause reduction.
We can see the details in Figure 8.

const FunctorType a_functor (m_functor);
value_type tmp; ValueInit::init (a_functor, &tmp);

#pragma acc parallel loop gang vector
reduction (+:tmp) copyin(a_functor)

for (auto i = begin; i < end; i++)
a_functor (i, tmp);
«m_result_ptr = tmp;

Fig. 8. OpenACC implementation of parallel_reduce SR.

C. Atomic Operations

Table I lists the available atomic primitives supported within
the Kokkos API. The OpenACC back end implements those
using the atomic directive with the capture clause. For in-
stance, the fetch-add operation is implemented with the code
exposed in Figure 9. Notice the use of the routine directive
with a seq clause to inform the compiler that this subroutine
does not contain additional parallelism. The semantics of the
Kokkos atomic construct are directly mapped onto the body
of the OpenACC atomic directive.

\ Primitive [Types | Directive/Runtime |
compare-and-exchange |32, 64 | CUDA runtime

exchange, assign 32, 64 | OpenACC directive

add, sub, mul, div, mod | 32, 64 | OpenACC directive

min, max 32, 64 | OpenACC directive

and, or, xor 32, 64 | OpenACC directive

Ishift, rshift 32, 64 | OpenACC directive

TABLE T
ATOMIC PRIMITIVES WITHIN THE OPENACC BACK END.

IV. EVALUATION

The performance analysis of the OpenACC back-end im-
plementation is divided into two parts. First, we evaluate the

#pragma acc routine seq
inline unsigned int atomic_fetch_add(
volatile unsigned int xconst dest,
const unsigned int &val) {
unsigned int retval;
unsigned int *ptr = const_cast<unsigned int x> (dest);
#pragma acc atomic capture
{ retval = ptr([0]; ptr[0] += val; }
return retval;

}

Fig. 9. Implementation of fetch-add within the OpenACC Kokkos back end.

new back end on a set of mini-benchmarks by comparing the
performance against CUDA and OpenMP target back ends.
Second, we analyze the performance on an existing set of
important mini-applications that leverage the Kokkos frame-
work. All experiments used one NVIDIA Volta V100 GPU
from the Oak Ridge Leadership Computing Facility’s Sum-
mit supercomputer. We used the NVIDIA compilers NVCC
(V11.0.3) and NVHPC (V21.3) for the CUDA and OpenACC
back ends, respectively, and the LLVM compiler (V15.0.0git)
for the OpenMP target back end. We could not build the
OpenMP target back end of the Kokkos library using the IBM
XL (V16.1.1-10) compiler or the NVIDIA NVHPC compiler
owing to unsupported C++17 and OpenMP features.

A. Mini-benchmarks

This study consists of a set of mini-benchmarks that com-
pute standard and well-known operations such as AXPY and
DOT product. These operations are widely used for bench-
marking and can be easily implemented using Kokkos (as
shown in Figures 1-4). We evaluate the two primary data-
parallel Kokkos constructs: parallel_for and parallel_reduce.
We also implement a set of AXPY mini-benchmarks to evalu-
ate the Kokkos parallel_for construct and a set of DOT product
mini-benchmarks to evaluate the parallel_reduce construct.
Finally, we evaluate the three different Kokkos execution
policies introduced earlie—SR, MD, and HR—along with
three different Kokkos back ends—CUDA, OpenMP target,
and OpenACC.

First, we analyze the performance of the SR constructs
(Figures 10 and 11 [left]). The performance of the CUDA and
OpenACC back ends are similar for both AXPY and DOT
product mini-benchmarks, with the CUDA back end being
slightly faster than OpenACC on smaller vector sizes, and
the OpenACC back end being faster than CUDA on bigger
vector sizes. By contrast, OpenMP’s target back end takes
roughly twice as long to run the AXPY (parallel_for) mini-
benchmark and roughly two orders of magnitude longer to run
the DOT product (parallel_reduce) benchmark when compared
with CUDA and OpenACC.

We see an important difference in performance among the
back ends when using the MD execution policy (Figures 10
and 11 [center]). In this case, the CUDA performance is
considerably lower than the performance achieved by the
OpenACC back end, which reaches a speedup of nearly 9x
on the biggest matrix size computed for the DOT product test.
For AXPY operations, the OpenMP target back end presents

better numbers compared with the CUDA back end, but it is
still slower than the OpenACC back end. The OpenMP target
back end turns out to be the slowest option for DOT product
test.

The CUDA and OpenACC back ends achieve similar perfor-
mance when using the HR execution policy (Figures 10 and
11 [right]) for AXPY operations, with OpenACC achieving
slightly higher performance on big matrices. The OpenMP
target back end is slower than the other back ends, and
the difference increases on bigger matrices. However, we
see a different trend on DOT product mini-benchmarks (i.e.,
parallel_reduce), where the execution time of the OpenMP
target and OpenACC back ends is about 25% higher than the
CUDA back end.

We used the NVIDIA Nsight system to conduct a more
precise performance analysis (see Table II). For this analysis,
we used the biggest matrix and vector sizes that we tested.
Using Nsight, we can evaluate each of the back ends in terms
of number of kernels computed, time consumed by each GPU
kernel, number of memory operations, hardware occupancy,
and active number of warps (blocks of GPU threads) per
streaming multiprocessor (SM). The performance numbers
shown in Figures 10 and 11 are confirmed by the numbers
provided by the Nsight tool. For instance, when comparing
the AXPY-SR performance of all back ends, we see that
although the initialization (axpy_init) is computed faster on
OpenACC, the performance of the axpy_comp kernel is similar
for the CUDA and OpenACC back ends, but the OpenACC
implementation achieved higher occupancy and more active
warps per SM. We also included the memory operations (i.e.,
memory transfers between CPU and GPU) and the throughput
of the different levels in the GPU memory hierarchy. To en-
hance Table II, we highlight the best performance numbers for
each mini-benchmark (green for CUDA, blue for OpenACC,
and red for OpenMP target). We can see that the CUDA back
end requires more memory operations than the other two back
ends, and the highest memory throughput is provided by the
OpenACC implementation.

Nsight analysis confirms important performance differences
between the tested back ends on MD mini-benchmarks (Fig-
ures 10 and 11 [center]): the CUDA and OpenMP target
implementations reach an occupancy of about 10% and 23%,
respectively, whereas the OpenACC occupancy reaches about
97%. Also, the number of active warps is much higher for
OpenACC than for CUDA or OpenMP target.

For DOT product mini-benchmarks, we see that OpenACC
requires two kernels to compute parallel_reduce, whereas the
CUDA and OpenMP target back ends only require one. How-
ever, this extra kernel does not have a significant impact on
performance. The number of active warps per SM, hardware
occupancy, and memory throughput reached by the OpenACC
implementation are all higher than the other back ends.

In general, and according to this performance study, the
OpenACC back end is very competitive and achieves sim-
ilar performance to the CUDA back end and even exceeds
CUDA’s performance in some cases. The OpenMP target

== 0 penACC (parallel_for)
=== CUDA (parallel_for)
== OpenMP Target (parallel_for)

3.50E-03 5.00E-04

3.00E.03 4.50E-04

4.00E-04
2.50E-03
3.50E-04

208603 3.00E-04

2.50E-04

Time (s)

1.50E-03

Time (s)

T 2.00E-04

1.50E-04

5.00E-04
1.00E-04

0.00E+00 5.00E-05

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

0.00E+00

100,
00

900,
800,
700,
600,
500,
400,

11,
17,
23,
59,
65
70
76,
82
88
94,

29
35,
41,

ize

<
@
sl
Q
o
%)

= O penACC (parallel_for)
=== CUDA (parallel_for)
= OpenMP Target (parallel_for)

Matrix Size (MxM)

O penACC (parallel_for)
=== CUDA (parallel_for)
O penMP Target (parallel_for)

3.00E-04

2.50E-04

2.00E-04

1.50E-04

Time (s)

1.00E-04

5.00E-05

0.00E+00

4,600
5,200

oo 99999
S 58888088
;;;;; > L= - NI B =

=)
1]
5]
P N
M:

"
atrix Size (MxM)

Fig. 10. SR (left), MD (center), HR (right) execution policy performance of parallel_for.

s O penACC (parallel_reduce)
=== CUDA (parallel_reduce)
O penlVIP Target (parallel_reduce

1.00E+00 1.00E+00

1.00E-01

1.00E-01

1.00E.02 1.00E-02

- log. scale

1.00E-03
1.00E-03

1.00E-04

Time (s) - log. scale

Time (s)

1.00E-04

1.00E-05
1.00E-05

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

1.00E-06

2,200
800
400

000,
900,
76,800,
82,700,
88,600,
94,500,
1,000
1,600

6,
11,
17,
23,
29,
35,
65,
70,

<
o
_&47
o 53
~N
B

Fig. 11.

implementation achieved the worst numbers except in a couple
of cases. However, we can find an exception to this trend,
and if we focus on the DOT-HR benchmark, we see that
the OpenACC and OpenMP target implementations reach an
occupancy and memory throughput lower than the CUDA
implementation, with the CUDA implementation being the
fastest one (Figure 10 and 11 [right]).

B. Mini-applications

We compare performance of the CUDA, OpenMP target,
and OpenACC Kokkos back ends on three mini-applications
from different domains: (1) LULESH [11], a molecular dy-
namics proxy application, (2) MiniFE, a finite element mini-
application [12], and (3) SNAP-test, a proxy application de-
rived from the molecular dynamics LAMMPS framework [13]
[14]. All sources of parallelism have been enabled using the
Kokkos parallel constructs.

1) miniFE mini-application: This mini-application is di-
vided into two major phases: initialization and computation.
Although the initialization is computed once at the very begin-
ning of the execution, the computation phase is computed as
many times as the number of iterations (200). For this analysis,
we use the largest input size that fits into the device memory
(i.e, a mesh of 1,024 x 128 x 128 elements). This application
uses both parallel_reduce and parallel_for constructs with the
SR policy.

Nsight analysis confirms that the CUDA and OpenACC
back ends use different memory management API primitives.
For instance, the CUDA back end spends 52% of the time in
cudaMemcpy and 13% in cudaMalloc, whereas the OpenACC

=0 penACC (parallel_reduce)
=== CUDA (parallel_reduce)
= O penMP Target (parallel_reduce)

<
atrix Size (MxM)

=0 penACC (parallel_reduce)
e CUDA (parallel_reduce)
1.40£-03 =====QpenMP Target (parallel_reduce)

1.60E-03

1.20E-03

1.00E-03

8.00E-04

Time (s)

6.00E-04

4.00E-04

2.00E-04

0.00E+00

SR (left), MD (center), HR (right) execution policy performance of parallel_reduce

1000.00 HEEEEE OpenACC

2.00
. CUDA
I OpenMP Target
esotrss OpenMP Target/OpenACC
. «+4@++ CUDA/OpenACC 1.50
73100.00 ."---.A----A-"-Au--‘-‘
A R i a
L!:Ja A '.”_._,,...-0-. %
- '...- 1.00 9
z o’ &
o
£ 10.00
=
I 0.50
100 Bl . I 0.00
8 16 32 64 128 256 512 1024

Size (size x 128 x 128)

Fig. 12. MiniFE application: overall performance. Y-axis: execution time (s)
in logarithmic scale. X-axis: dimension input size used for the application;
total input size corresponds to size x 128 x 128.

back end spends 39% of the time in cuMemAlloc_v2 and 10%
in cuMemcpyHtoDAsync_v2. This indicates that the OpenACC
back end/compiler (NVHPC) is able to generate a more
optimized result than the CUDA back end/compiler (NVCC)
in this case. This confirms that different back ends/compilers
generate very different output codes with important impacts
on performance.

Figure 12 shows the overall execution time for the MiniFE
application when using the CUDA, OpenMP target, and Ope-
nACC back ends. The general trend is that both CUDA and
OpenACC back ends perform similarly, with performance
factors ranging from 0.84x (CUDA faster than OpenACC)
to 1.29x (OpenACC faster than CUDA). Smaller input sizes
clearly present factors close to 1x, whereas OpenACC is
faster with medium and large input sizes. In particular, for

‘ —Mini-benchmarks—

—AXPY—
—Kokkos execution policy— | CUDA [OpenACC [OpenMP target
| SR [Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps [Time/Occup. [Inst/BS/Warps |
axpy_init 1,286,228/8.18 1/128/5.23 922,648/94.83 1/128/60.69 2,717,105/22.59 1/128/14.46
axpy_comp 1,445,109/87.72 1/128/56.14 1,468,756/97.51 1/128/62.41 3,764,011/21.57 1/128/13.81
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/axpy_init 13,471/8 69/24/37/13 7,359/4 97/34/52/23 9,538/5 69/24/37/13
DtH/axpy_comp 12,225/6 92/32/24/12 4,322/2 92/32/24/13 8,927/4 92/32/24/12
Memset 4,023/2 - 0/- - 0/- -
\ MD | Time/Occup. | Inst/BS/Warps | Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps |
axpy_init 5,142,724/3.55 1/32/2.27 922,583/94.77 1/128/60.65 3,800,173/22.08 1/128/14.13
axpy_comp 5,141,252/10.07 1/32/6.45 1,520,085/97.09 1/128/62.14 2,817,873/22.82 1/128/14.61
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/axpy_init 13,477/8 34/12/18/9 7,296/4 97/34/52/40 8,926/5 29/10/37/59
DtH/axpy_comp 13,282/6 52/18/13/9 431772 91/32/24/25 7,805/4 33/11/28/45
Memset 7,819/4 0/- 0/-
| HR [Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps [Time/Occup. [Inst/BS/Warps |
axpy_init 916,152/94.95 1/128/60.77 909,530/72.64 1/256/46.49 1,046,552/95.10 1/256/60.86
axpy_comp 1,690,036/96.88 1/128/62.01 1,562,549/95.99 1/256/61.44 1,912,053/97.01 1/256/62.09
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/axpy_init 13,345/8 96/34/52/6 7,456/4 86/30/69/41 11,937/7 83/29/44/17
DtH/axpy_comp 12,255/6 79/29/34/5 4,545/2 85/30/35/22 12,606/6 69/24/21/10
Memset 4,088/2 0/- 0/-
—DOT product—
—Kokkos execution policy— | CUDA [OpenACC [OpenMP target
\ SR | Time/Occup. | Inst/BS/Warps | Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps |
dot_init 1,086,199/8.57 1/128/5.49 927 ,511/94.71 17128/60.62 271745512157 1/128/13 81
dot_comp 1,199,189/40.02 1/256/25.61 920,312/97.62 1/128/62.3 133,444,166/24.93 1/128/15.96
91,164/12.43 2/256/7.95
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot_init 13,375/8 69/24/37/13 6,976/4 98/34/52/24 11,136/6 34/12/40/59
DtH/dot_comp 12,226/6 73/25/20/5 6,943/3 97/34/26/22 10,399/5 0.6/0.7/1.8/2.7
Memset 3,991/2 1,344/1 0.3/0.1/6.9/0 0/-
MD [Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps [Time/Occup. [Inst/BS/Warps |
dot_init 5,119,158/3.49 1/32/2.23 917,207/94.74 1/128/60.63 3,170,832/22.08 1/128/14.13
dot_comp 9,121,816/40.0 1/256/25.60 981,304/97.18 1/128/62.20 10,3469,313/24.90 1/128/15.94
Memset 89,723/12.43 2/256/7.95
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot_init 13,631/8 34/12/18/9 7,357/4 98/34/52/40 10,881/6 29/10/37/59
DtH/dot_comp 13,407/6 19/5/917 6,465/3 95/33/25/42 9,954/5 0.8/0.9/2.3/3.6
Memset 8,724/4 1,376/1 0.3/0.1/6/0 0/-
HR [Time/Occup. [Inst/BS/Warps | Time/Occup. | Inst/BS/Warps [Time/Occup. [Inst/BS/Warps |
dot_init 917,848/95.01 1/128/60.81 910,710/72.61 1/256/46.47 1,060,792/94.97 1/256/60.78
dot_comp 1,057,367/96.88 1/128/62.01 1,382,709/74.00 1/256/47.36 1,463,991/48.03 1/256/30.74
15,484/12.07 2/256/7.72
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot_init 10,780/8 96/34/51/6 6,144/4 85/30/69/41 12,642/6 85/29/45/18
DtH/dot_comp 10,463/6 85/30/25/11 5,184/3 82/28/20/12 11,837/7 61/21/20/28
Memset 2,809/2 990/1 0.2/0.2/6.2/0 0/-
TABLE I

PERFORMANCE EVALUATION OF THE AXPY (TOP HALF) AND DOT PRODUCT (BOTTOM HALF) MINI-BENCHMARKS. ALL THREE KOKKOS EXECUTION

POLICIES (I.E., SR, MD, AND HR) ARE EVALUATED. WE EVALUATE THE EXECUTION TIME (NS) AND THE HARDWARE OCCUPANCY (%) OF EACH
KERNEL AS WELL AS THE THREAD BLOCK SIZE (BS) AND ACTIVE WARPS PER SM (WARPS). ADDITIONALLY, WE EVALUATE TIME (NS) CONSUMED BY
THE MEMORY OPERATIONS AND THE NUMBER OF MEMORY TRANSFERS PERFORMED BY EACH OF THE IMPLEMENTATIONS (INST.). FINALLY, WE

INCLUDE THE THROUGHPUT (BANDWIDTH % REACHED) OF EACH LEVEL OF THE GPU’S MEMORY HIERARCHY.

an input size of 1,024 x 128 x 128 elements OpenACC is
1.29x faster than the CUDA implementation. For OpenMP
target, the trends are similar but always show worse executions
times compared with OpenACC and CUDA. In particular, the
performance factor between OpenMP target and OpenACC is
about 1.5x for most of the input sizes.

2) Lulesh mini-application: All kernels are based on the
parallel_for and parallel_reduce constructs using the SR pol-
icy. Comparing the OpenACC and CUDA back ends (per-

formance factor equal to CUDA time divided by OpenACC
time), both perform similarly with performance factors rang-
ing from 0.96x (CUDA faster than OpenACC) to 1.01x
(OpenACC faster than CUDA). The OpenMP target back end
executes slower than CUDA and OpenACC back ends. While
OpenACC roughly matches the CUDA performance (i.e., the
speedup factor is close to 1x for most of the kernels), the
OpenMP target shows a significant slowdown, especially in the
range of kernels that have the largest amount of computation.

R OpenACC
. CUDA

I OpenMP Target
ek ee OpenMP Target/OpenACC
ee4@++ CUDA/OpenACC

100

ceecpesse

=
Q
<}

10

10

Speedup - log. scale

0.1

50 75 100 125 150 175 200 225
Size

Fig. 13. LULESH: overall performance. Y-axis: execution time (s); logarith-
mic scale. X-axis: input problem size; total input size corresponds to Size X
Size x Size.

= CUDA
«+e--CUDA/OpenACC

I OpenACC
I OpenMP Target

Time - log sclae (sec)
=

Speedup - log scale

-

REF2 REF4 REF8

Fig. 14. SNAP: overall performance. Y-axis: execution time (s); logarithmic
scale. X-axis: input problem size (REFx= (atoms, ghost atoms, neighbors,
twojmax); REF2 = (2, 33, 8, 2); REF4 = (2, 33, 8, 4) ; REF8 = (2000, 2941,
26, 8)).

This finding aligns with the results we saw in the mini-
benchmark analysis (Figures 10 and 11 [left]). In general,
one main observation justifying the different behaviours at
application-level is that all back ends instantiate Kokkos con-
structs with different code. For example, for the CUDA back
end, memory management API statistics show that time within
runtime execution is distributed as 24% for cudaMalloc, and
5.6% for cudaMemcpy. However, for the OpenACC back-end,
this distribution changes drastically; 3.6% for cuMemAlloc_v2
and about 0.3% and 1% for cuMemcpyDtoHAsync_v2 and
cuMemcpyHtoDAsync_v2 respectively.

Figure 13 shows the overall performance numbers for
different problem sizes, which range from 50 to 225 elements
in each of the 3 dimensions of the input set. Input sizes greater
than 225 elements per dimension exceed the total amount
of the device’s allocatable memory. For smaller input sizes,
OpenACC provides slightly better performance than CUDA;
however, for larger input sizes (e.g., 200, 225) OpenACC is
8% slower than CUDA for 200 elements and 13% slower for
225 elements (this is equivalent to the behavior illustrated
in Figure 10 [left]). In contrast to the OpenACC case, the
OpenMP target back end shows essential slowdown levels.

3) SNAP-LAMMPS mini-application: All kernels are based
on the parallel_for and parallel_reduce constructs using the
SR policy. The input of the application is parameterized by
several factors that determine the actual input size (e.g., num-
ber of atoms being simulated, number of neighbors for atoms,
etc.). Comparing the OpenACC and CUDA back ends (per-
formance factor equal to CUDA time divided by OpenACC

time), both perform similarly (see Figure 14) with performance
factors ranging from 0.95x (CUDA faster than OpenACC) to
1.10x (OpenACC faster than CUDA). The OpenMP target
back end executes slower than CUDA and OpenACC back
ends. Using the OpenMP target back end we get several
warnings during compilation, indicating the possibility of not
being able to map actual lambda code to the device. This is
related to the actual maturity of the OpenMP offload support.
In this mini-application, there are four dominating kernels. In
some of these kernels, the performance of the OpenACC back
end can be up to 34% faster than CUDA back end. In other
kernels the performance of the CUDA back end is about 35%
faster than the OpenACC back end. In conclusion, OpenACC
roughly matches the CUDA performance and the OpenMP-
target back end executes slower than CUDA and OpenACC
back ends.

C. Directive-based high-level solutions vs device-specific low-
level solutions

It is important to highlight that each back end/compiler (i.e.,
CUDA/NVCC, OpenACC/NVHPC, OpenMP target/LLVM)
generates different parallel code for each Kokkos construct.
Therefore, the code compiled for each mini-benchmark and
mini-application is completely different. Examples of this can
be seen in Table II, where, depending on the back end,
a different number of CUDA function calls/kernels and/or
CUDA block size is used. This can also be seen in the
Lulesh mini-application subsection, where different functions
are used for memory management. All these differences have
an important impact on performance.

It is not easy to evaluate the set of optimizations applied
by each implementation/compiler to explain why a kernel
executes faster with one particular back end. Notably, the
CUDA version is based on hand-coded run-time calls with no
kernel-specific optimizations. In contrast, the OpenACC and
OpenMP target versions rely on the compiler optimizations
applied on a per-kernel basis. Also, while, the performance of
the CUDA back end depends more on the developers’ skill
and the quality of their implementations, the performance of
the other back ends involved in this analysis, OpenACC and
OpenMP target, depends more on the quality of the compiler
to apply the optimizations. One or the other approach has its
own pros and cons. However, for TMP solutions, where the
computation to be done is not known in advance and is passed
as an argument in the form of a C++ lambda, the directive-
based high-level solutions, like OpenACC and OpenMP target,
are well positioned when the desired capacity is provided by
the compiler.

V. RELATED WORK

The Kokkos team continues to develop new and important
features and optimizations that target performance portability
among different architectures, including memory manage-
ment [15], [16] and vectorization [17]. Kokkos can be success-
fully integrated or combined with other programming models
such as MPI [18], [19] and SYCL [20], among others [21].

Kokkos can also achieve competitive performance compared
with other programming models [22]. Owing to these qualities,
multiple applications are already using Kokkos [23]-[26].
OpenACC is the de facto standard for directive based pro-
gramming models on accelerators. One example that summa-
rizes the advantages of using OpenACC is the the work of [8],
which evaluates the use of OpenACC, OpenCL and CUDA in
terms of performance, productivity, and portability. This work
concludes that OpenACC is a robust programming model for
accelerators while improving programmer productivity.

VI. CONCLUSIONS

This paper presents KokkACC, which is an OpenACC back
end for the Kokkos C++ template metaprogramming library.
This work demonstrates the potential benefits of having a high-
level and a descriptive programming model such as OpenACC
as an alternative to the existing device-specific Kokkos back
ends (e.g., CUDA and HIP). Even though device-specific back
ends can exploit device-specific features to achieve better
performance, the device-specific optimizations can be applied
to only a specific type of device, are hard-coded in the back
end, and cannot be adjusted for different computing patterns.
On the other hand, the descriptive nature of the OpenACC back
end allows the compiler to perform advanced optimizations for
different computing patterns and device types. The evaluation
results also show that the OpenACC back end can complement
the existing OpenMP target back end by offering an alterna-
tive directive-based approach to solve the practical problems
that exist in directive-based, high-level programming, such as
varying levels of language support and inconsistent maturity
across existing directive compilers and different target devices.

This work focuses on the core constructs required to im-
plement the Kokkos execution and memory models. Imple-
menting the core constructs revealed several limits in the
current OpenACC model, such as a lack of custom reductions
and constructs for device-specific features. Future work will
include adding support for other advanced Kokkos constructs,
including Kokkos containers and task parallelism, and ex-
ploring possible extensions to support Kokkos features not
supported by the current OpenACC standard.

ACKNOWLEDGMENTS

This research used resources of the Experimental Comput-
ing Laboratory and the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which are
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-000R22725. This
research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration. This manuscript has been
authored by UT-Battelle, LLC under Contract No. DE-ACO05-
000R22725 with the U.S. Department of Energy. The pub-
lisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid up,
irrevocable, world-wide license to publish or reproduce the

published form of the manuscript, or allow others to do so,
for U.S. Government purposes. The DOE will provide public
access to these results in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-
plan).

REFERENCES

[1] D. Beckingsale, R. D. Hornung, T. Scogland, and A. Vargas,
“Performance portable C++ programming with RAJA,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
455-456. [Online]. Available: https://doi.org/10.1145/3293883.3302577
C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-
Grandié, J. Madsen, N. A. Awar, M. Gligoric, G. Shipman, and
G. Womeldorff, “The kokkos ecosystem: Comprehensive performance
portability for high performance computing,” Comput. Sci. Eng.,
vol. 23, no. 5, pp. 10-18, 2021. [Online]. Available: https:
//doi.org/10.1109/MCSE.2021.3098509

OpenACC, “OpenACC: Directives for Accelerators,” [Online]. Avail-
able: http://www.openacc.org, 2011.

S. Chandrasekaran and G. Juckeland, OpenACC for Programmers:

Concepts and Strategies, 1st ed. Addison-Wesley Professional, 2017.

C. Bonati, E. Calore, S. Coscetti, M. D’elia, M. Mesiti, F. Negro, S. F.
Schifano, and R. Tripiccione, “Development of scientific software for
HPC architectures using OpenACC: The case of LQCD,” in IEEE/ACM
1st International Workshop on Software Engineering for High Perfor-
mance Computing in Science, 2015, pp. 9-15.

R. Dietrich, G. Juckeland, and M. Wolfe, “OpenACC programs exam-
ined: A performance analysis approach,” in 44th International Confer-
ence on Parallel Processing, 2015, pp. 310-319.

C. Chen, C. Yang, T. Tang, Q. Wu, and P. Zhang, “OpenACC to
Intel Offload: Automatic translation and optimization,” in Computer
Engineering and Technology, 2013, pp. 111-120.

[8] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale, A. C.
Mallinson, and S. A. Jarvis, “Achieving portability and performance
through openacc,” in Proceedings of the First Workshop on Accelerator
Programming using Directives, WACCPD ’14, New Orleans, Louisiana,
USA, November 16-21, 2014, S. Chandrasekaran, F. S. Foertter, and
O. R. Hernandez, Eds. IEEE Computer Society, 2014, pp. 19-26.
[Online]. Available: https://doi.org/10.1109/WACCPD.2014.10

[9] L. Toledo, P. Valero-Lara, J. S. Vetter, and A. J. Pefia, “Static graphs for
coding productivity in openacc,” in 28th IEEE International Conference
on High Performance Computing, Data, and Analytics, HiPC 2021,
Bengaluru, India, December 17-20, 2021. 1EEE, 2021, pp. 364-369.
[Online]. Available: https://doi.org/10.1109/HiPC53243.2021.00050

[10] K. Matsumura, S. G. de Gonzalo, and A. J. Peiia, “JACC:
an openacc runtime framework with kernel-level and multi-gpu
parallelization,” in 28th IEEE International Conference on High
Performance Computing, Data, and Analytics, HiPC 2021, Bengaluru,
India, December 17-20, 2021. IEEE, 2021, pp. 182-191. [Online].
Available: https://doi.org/10.1109/HiPC53243.2021.00032

[11] I Karlin, J. McGraw, E. Gallardo, J. Keasler, E. A. Le6n, and B. Still,
“Abstract: Memory and parallelism exploration using the LULESH
proxy application,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, Salt Lake City, UT, USA,
November 10-16, 2012. TEEE Computer Society, 2012, pp. 1427-1428.
[Online]. Available: https://doi.org/10.1109/SC.Companion.2012.234

[12] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” https:
//github.com/Mantevo/, 2022, online accessed 20-April-2022.

[13] “ECP Proxy Applications,” https://proxyapps.exascaleproject.org/app/
snap/, 2022, online accessed 27-July-2022.

[14] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comp.
Phys. Comm., vol. 271, p. 108171, 2022.

[2

—

3

[4

[5

[6

—

[7

[15] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” J. Parallel Distributed Comput., vol. 74, no. 12, pp. 3202—
3216, 2014.

[16] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore performance-portability: Kokkos multidimensional array li-
brary,” Sci. Program., vol. 20, no. 2, pp. 89-114, 2012.

[17] D. Sahasrabudhe, E. T. Phipps, S. Rajamanickam, and M. Berzins, “A
portable SIMD primitive using kokkos for heterogeneous architectures,”
in Accelerator Programming Using Directives - 6th International Work-
shop, WACCPD 2019, Denver, CO, USA, November 18, 2019, Revised
Selected Papers, ser. Lecture Notes in Computer Science, S. Wienke and
S. Bhalachandra, Eds., vol. 12017. Springer, 2019, pp. 140-163.

[18] G. Hansen, P. G. Xavier, S. P. Mish, T. E. Voth, M. W. Heinstein, and
M. W. Glass, “An MPI+X implementation of contact global search using
kokkos,” Eng. Comput., vol. 32, no. 2, pp. 295-311, 2016.

[19] S. Khuvis, K. Tomko, J. M. Hashmi, and D. K. Panda, “Exploring
hybrid mpi+kokkos tasks programming model,” in 3rd IEEE/ACM
Annual Parallel Applications Workshop: Alternatives To MPI+X, PAW-
ATM@SC 2020, Atlanta, GA, USA, November 12, 2020. 1EEE, 2020,
pp. 66-73.

[20] B. Jo6, T. Kurth, M. A. Clark, J. Kim, C. R. Trott, D. Ibanez,
D. Sunderland, and J. Deslippe, “Performance portability of a wilson
dslash stencil operator mini-app using kokkos and SYCL,” in 2019
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC, P3HPC@SC 2019, Denver, CO, USA, November
22, 2019. 1IEEE, 2019, pp. 14-25.

[21] M. M. Wolf, H. C. Edwards, and S. L. Olivier, “Kokkos/qthreads task-
parallel approach to linear algebra based graph analytics,” in 2016
IEEE High Performance Extreme Computing Conference, HPEC 2016,
Waltham, MA, USA, September 13-15, 2016. 1EEE, 2016, pp. 1-7.

[22] J. Eichstddt, M. Vymazal, D. Moxey, and J. Peir6, “A comparison of the
shared-memory parallel programming models OpenMP, OpenACC and
Kokkos in the context of implicit solvers for high-order FEM,” Comput.
Phys. Commun., vol. 255, p. 107245, 2020.

[23] K. Teranishi, D. M. Dunlavy, J. M. Myers, and R. F. Barrett, “Sparten:
Leveraging kokkos for on-node parallelism in a second-order method
for fitting canonical polyadic tensor models to poisson data,” in 2020
IEEE High Performance Extreme Computing Conference, HPEC 2020,
Waltham, MA, USA, September 22-24, 2020. 1EEE, 2020, pp. 1-7.

[24] R. Halver, J. H. Meinke, and G. Sutmann, “Kokkos implementation of
an ewald coulomb solver and analysis of performance portability,” J.
Parallel Distributed Comput., vol. 138, pp. 48-54, 2020.

[25] S. Rajamanickam, S. Acer, L. Berger-Vergiat, V. Q. Dang, N. D.
Ellingwood, E. Harvey, B. Kelley, C. R. Trott, J. Wilke, and
1. Yamazaki, “Kokkos kernels: Performance portable sparse/dense linear
algebra and graph kernels,” CoRR, vol. abs/2103.11991, 2021. [Online].
Available: https://arxiv.org/abs/2103.11991

[26] J. A. Ellis and S. Rajamanickam, “Scalable inference for sparse deep
neural networks using kokkos kernels,” in 2019 IEEE High Performance
Extreme Computing Conference, HPEC 2019, Waltham, MA, USA,
September 24-26, 2019. 1EEE, 2019, pp. 1-7.

APPENDIX A
ARTIFACT DESCRIPTION FOR REPRODUCIBILITY

We have evaluated this work on one node of the ORNL’s
supercomputer SUMMIT!, using one NVIDIA Volta V100
GPU. The reader may request access to this system?. However,
to reproduce the results shown in this work, it is not really nec-
essary to have access to this system. To help to reproduce our
results, we provide a detailed description about the software
stack used (see Table III).

We are in the middle of a process to include KokkACC
within the Kokkos library® (expected in the Kokkos 4.0
release) as the new OpenACC back end. In the meantime,

Uhttps://www.olcf.ornl.gov/summit/

Zhttps://www.olcf.ornl.gov/for-users/documents-forms/olcf-account-
application/

3https://github.com/kokkos

System ORNL’s SUMMIT
GPU Architecture NVIDIA (Volta) V100
Kokkos version 3.6.99
Kokkos back end CUDA [OpenACC [OpenMP Target
‘ [Kokkos flags |

KOKKOS_DEVICES=

Cuda [OpenACC [OpenMPTarget
KOKKOS_ARCH="Volta70”

Compiler NVCC 11.0.3 NVHPC 21.3 LLVM v15.0.0git
Compiler flags -Xcudafe -acc -fopenmp
-std=c++14 -O3 -expt-extended-lambda -fopenmp-targets=

-arch=sm_70 nvptx64
TABLE III

SUMMARY OF THE SOFTWARE STACK USED.

the readers can access the code implemented via the Kokkos
public ORNL repository*. All the codes used for the Evalua-
tion section are accessible via a public GitHub repository>. In
that repository, we can see two main folders; mini-benchmarks
and mini-apps. In the mini-benchmarks folder, we can find
multiple folders. The ones that were used for the performance
analysis are: openacc-parallel-reduce-single (AXPY and DOT
product using SR Kokkos policy), openacc-parallel-reduce-md
(AXPY and DOT product using MD range Kokkos policy) and
openacc-parallel-reduce-team (AXPY and DOT product using
HR range Kokkos policy). We also provide the makefiles for
the compilation. Regarding mini-applications, in the mini-apps
folder, we can find three folders, one per mini-application. The
code used in the analysis can be found in the lulesh, miniFE
and TestSNAP folders. For instance, the code and the different
makefiles used in each of the mini-applications can be found
in the following paths:
o Lulesh: lulesh/lulesh-2.0/kokkos-no-uvm/
¢ MiniFe: miniFE/kokkos/src
o TestSNAP: TestSNAP/src
There are two ways to reproduce the tests carried out in this
study. The binaries to be run can be created by using the
Makefiles found in each of the test folders. For instance:
1) In the mini-benchmarks folder in KokkACC-test repos-
itory:
cd openacc-parallel-reduce-single/
2) Change Kokkos path in Makefile:
KOKKOS_PATH = $(KOKKOS_ROOT)
3) Compile code via:
make —j KOKKOS_DEVICES=0penACC
The other way consists of using CMake. In this case, it is
necessary to build and install the Kokkos library first, and then
compile your test program using CMake. Here is an example
of how to build and install the Kokkos library using CMake:
1) export KOKKOS_INSTALL_ROOT=$ (KOKKOS_ROOT)
2) cd $ (KOKKOS_ROOT)
3) mkdir build
4) cd build
5) cmake -DCMAKE_CXX_COMPILER=nvc++
—DCMAKE_CXX_STANDARD=17
—-DCMAKE_INSTALL_PREFIX=$ (KOKKOS_ROOT)

“https://github.com/ORNL/kokkos-ornl/tree/openacc
Shttps://github.com/pedrovalerolara/Kokk ACC-tests

-DKokkos_ENABLE_COMPILER_WARNINGS=O0ON
—-DKokkos_ENABLE_OPENACC=0N
6) make —7j
7) make install
For instance, these are then the steps to compile and run the
Lulesh test case:
1) In mini-apps folder in KokkACC-test repository:
cd lulesh/lulesh-2.0/kokkos—-no—uvm
2) mkdir build
3) cd build
4) cmake ../ -DKokkos_ROOT=${KOKKOS_ROOT}
—DCMAKE_CXX_COMPILER=nvc++
5) make -j
6) ./lulesh_kokkos

