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Abstract—Template metaprogramming is gaining popularity
as a high-level solution for achieving performance portability on
heterogeneous computing resources. Kokkos is a representative
approach that offers programmers high-level abstractions for
generic programming while most of the device-specific code
generation and optimizations are delegated to the compiler
through template specializations. For this, Kokkos provides a
set of device-specific code specializations in multiple back ends,
such as CUDA and HIP. Unlike CUDA or HIP, OpenACC
is a high-level and directive-based programming model. This
descriptive model allows developers to insert hints (pragmas)
into their code that help the compiler to parallelize the code. The
compiler is responsible for the transformation of the code, which
is completely transparent to the programmer. This paper presents
an OpenACC back end for Kokkos: KokkACC. As an alternative
to Kokkos’s existing device-specific back ends, KokkACC is
a multi-architecture back end providing a high-productivity
programming environment enabled by OpenACC’s high-level and
descriptive programming model. Moreover, we have observed
competitive performance; in some cases, KokkACC is faster
(up to 9×) than NVIDIA’s CUDA back end and much faster
than OpenMP’s GPU offloading back end. This work also
includes implementation details and a detailed performance study
conducted with a set of mini-benchmarks (AXPY and DOT
product) and three mini-apps (LULESH, miniFE and SNAP, a
LAMMPS proxy mini-app).

Index Terms—OpenACC, C++ Metaprogramming, Kokkos,
CUDA, OpenMP Target, Parallel Programming Models
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I. INTRODUCTION

Template metaprogramming (TMP) languages, such as C++,

allow for generic programming, in which programmers focus

on the general structure of an application while target-specific

code specialization can be handled by the compiler (i.e.,

different alternative specializations of a template class). In this

way, different binaries can be built from the same TMP source

code. This technique can be used effectively for performance

portability. RAJA [1] and Kokkos [2] are two of the most

important examples of C++ TMP-based libraries that enable

performance portability.

Kokkos is an open-source, performance-portable C++ tem-

plate metaprogramming library that aims to be architecture

agnostic to enable programmers to move past the low-level

details of vendor or target-specific programming models and

the varying characteristics of the targeted hardware architec-

tures. Like other TMP approaches, Kokkos also offers device-

specific code generation and optimizations through template

specialization. For this, Kokkos provides multiple device-

specific back ends that are implemented as template libraries

on top of some popular high-performance computing (HPC)

programming models (e.g., CUDA, HIP, OpenMP, HPX) that

are aligned with developments in the C++ standard. However,

maintaining and optimizing multiple device-specific back ends

for each current and future device type will be complex and

error-prone endeavors. To alleviate these problems, this paper

presents an OpenACC-based alternative back-end implemen-

tation for Kokkos: KokkACC.

OpenACC [3] is a high-level, directive-based programming

model which supports C, C++, and Fortran. It was developed

to allow programmers to interact with heterogeneous high-

performance computing architectures without the effort that is

required to fully understand all the low-level programming de-

tails and underlying hardware features [4]. This programming

model allows developers to insert hints into their code that help

the compiler interpret how to parallelize the code. In this way,

the compiler is responsible for the transformation of the code,

which is completely transparent to the programmer. OpenACC

defines a mechanism to offload programs to an accelerator in

a heterogeneous system [5]. Because OpenACC is a directive-

based programming model, the code can be compiled serially,

ignoring the directives and still produce correct results, allow-

ing a single code to be portable across different platforms [6].

This simple model allows non-expert programmers to easily

develop code that benefits from accelerators [7]. Currently,

OpenACC compilers support several platforms such as x86

multicore CPUs, accelerators (GPUs, FPGAs), OpenPOWER

processors, KNLs, and ARM processors.

The motivations/objectives behind this effort include the

following:

1) Improved programming productivity to efficiently main-

tain Kokkos back ends.

• The OpenACC back end is simpler to implement

and maintain compared with other device-specific

back ends (i.e., CUDA, HIP) [8].

• Both Kokkos and OpenACC models aim to be

architecture agnostic, which makes the models very

similar and facilitates the implementation of Kokkos

features within the OpenACC programming model.

2) Better support for heterogeneous devices. OpenACC can

target different types of devices, so one single back end

can be used to target different hardware architectures.

• The OpenACC back end will complement the ex-

isting OpenMP target back end by providing an

alternative, directive-based solution to address the

varying levels of language support and maturity

across existing directive compilers and different



target devices (see Section IV).

3) Existing Kokkos applications are easier to optimize

by using OpenACC features [9], [10] and tools that

complement Kokkos.

4) Porting OpenACC applications to Kokkos are simplified

by allowing incremental code changes.

To the best of our knowledge, the work described here is

the first to use OpenACC as a Kokkos back end. Indeed,

KokkACC is being integrated into the upstream Kokkos repos-

itory right now, and it is expected to be fully integrated in the

upcoming Kokkos releases. Here are the main contributions of

this work:

1) A novel, portable, and efficient Kokkos back end based

on the OpenACC programming model.

2) A detailed performance analysis using state-of-the-

art mini-benchmarks (e.g., AXPY and DOT product)

and mini-apps (e.g., LULESH, miniFE and SNAP-

LAMMPS).

3) Demonstration of performance portability by achieving

competitive or better performance of the tested appli-

cations with the proposed OpenACC back end when

compared with the existing CUDA and OpenMP target

back ends.

4) A detailed analysis about what a descriptive model (Ope-

nACC) can offer against vendor-specific prescriptive

models (CUDA) for TMP solutions, like Kokkos.

The rest of this paper is organized as follows: Section 2

covers the necessary background in meta-programming for

the case of the Kokkos framework. Section 3 describes the

implementation of the OpenACC back end for Kokkos. Section

4 evaluates the implementation, and Section 5 includes some

important references and related works. Finally, Section 6

concludes the paper.

II. BACKGROUND

The Kokkos programming model builds on two major

components: data structures and parallel execution constructs.

A. Memory Management

The Kokkos memory model follows the general acceler-

ator memory model adopted by most existing accelerator

programming models (e.g., CUDA, OpenMP, OpenACC) in

which the host and accelerator devices have separate memory

spaces that may or may not be shared. The View construct

is the fundamental data structure used to represent user data

in Kokkos programming. It provides abstractions on three

core concepts of the Kokkos memory model: Memory Space,

Memory Layout, and Memory Trait. View is a logical structure

that represents an array of zero or more dimensions.

As shown in Figure 1, a programmer can create a View
object by setting the type of entries and the number of dimen-

sions in the construct—for which the memory space, memory

layout, and memory trait are optional—which can then be

determined implicitly by the compiler or determined explicitly

by the programmer. To copy data from one View to another,

Kokkos provides memory transfer APIs such as deep copy.

For advanced programming, such as intermixing the high-level

Kokkos codes with low-level, device-specific codes, Kokkos

also provides low-level device memory management APIs

such as kokkos malloc and kokkos free.

B. Parallel Data Execution

Kokkos has two primary data-parallel constructs: paral-
lel for and parallel reduce. Additionally, there are three dif-

ferent execution policies that can be used for these constructs:

single range (SR), multidimensional range (MD), and hierar-

chical parallelism (HR).

Figure 1 depicts examples of the parallel for Kokkos con-

structs using SR. This example computes a simple AXPY

operation. Parallel Kokkos constructs are composed of three

main components: (1) a string used for identification for

debugging and profiling, (2) the number of iterations of the

for-loop, which is implicitly converted into RangePolicy, and

(3) a C++ lambda expression that acts like a function and

can be used as an additional data type. The lambda stores

information about the computation for use in every iteration

of the loop.

Kokkos::View<double*> X("X", N);
Kokkos::View<double*> Y("Y", N);
Kokkos::parallel_for( "axpy_init", N,

KOKKOS_LAMBDA ( int n ) {
X(n) = InitValue; Y(n) = InitValue;

} );
Kokkos::parallel_for( "axpy_computation", N,

KOKKOS_LAMBDA ( int n ) {
double alpha = ALPHA; Y(n) += alpha * X(n);

} );

Fig. 1. The parallel for SR construct in the Kokkos API.

The MD approach is very similar to the SR one (see

Figure 2). The main difference is the use of MDRangePolicy.

Using MDRangePolicy, we can use more than one single

parameter regarding the number of iterations. This can be seen

like a set of nested for-loop. This approach is usually used for

multidimensional arrays.

Kokkos::View<double**> X("X", M , N);
Kokkos::View<double**> Y("Y", M , N);
typedef Kokkos::MDRangePolicy< Kokkos::Rank<2> >

mdrange_policy;
Kokkos::parallel_for( "axpy_init",

mdrange_policy( {0, 0}, {M, N} ),
KOKKOS_LAMBDA ( int m, int n ) {

X(m, n) = InitValue; Y(m, n) = InitValue;
} );

Kokkos::parallel_for( "axpy_computation",
mdrange_policy( {0, 0}, {M, N} ),
KOKKOS_LAMBDA ( int m, int n ) {

double alpha = ALPHA; Y(m, n) += alpha * X(m, n);
} );

Fig. 2. The parallel for MD range construct in the Kokkos API.

Finally, the HR approach (see Figure 3) is completely

different from the other execution policies. It requires using

TeamPolicy. This approach can exploit up to three different

levels of parallelism, which are similar to the concepts of

gang, worker, and vector level parallelism used by OpenACC.

Although much more complicated to use, this approach allows



developers to have a higher control on the management of the

parallelism and potentially improve performance.

Kokkos::View<double**> X("X", M , N);
Kokkos::View<double**> Y("Y", M , N);
typedef Kokkos::TeamPolicy<> team_policy;
typedef Kokkos::TeamPolicy<>::member_type member_type;
Kokkos::parallel_for( "axpy_init",

team_policy( M, Kokkos::AUTO ),
KOKKOS_LAMBDA ( const member_type &teamMember ) {

const int i = teamMember.league_rank();
Kokkos::parallel_for(

Kokkos::TeamThreadRange( teamMember, N ),
[&] ( const int j ) {

X(i, j) = InitValue; Y(i, j) = InitValue;
} );

} );
Kokkos::parallel_for( "axpy_computation",

team_policy( M, Kokkos::AUTO ),
KOKKOS_LAMBDA ( const member_type &teamMember ) {

const int i = teamMember.league_rank();
Kokkos::parallel_for(

Kokkos::TeamThreadRange( teamMember, N ),
[&] ( const int j ) {
double alpha = ALPHA; Y(i, j) += alpha * X(i, j);
} );

} );

Fig. 3. The parallel for HR construct in the Kokkos API.

The parallel reduce constructs are identical to the paral-
lel for constructs except they use one extra parameter to store

the result of the reduction. Figure 4 shows examples of the

different parallel reduce constructs.

Kokkos::parallel_reduce( "dotproduct_computation", N,
KOKKOS_LAMBDA ( int n, double &tmp ) {

tmp += X(n) * Y(n);
}, result );

Kokkos::parallel_reduce( "dotproduct_computation",
mdrange_policy( {0, 0}, {M, N}),
KOKKOS_LAMBDA ( int m, int n, double &tmp ) {

tmp += X(m, n) * Y(m, n);
}, result );

Kokkos::parallel_reduce( "dotproduct_comp",
team_policy( M, Kokkos::AUTO ),
KOKKOS_LAMBDA ( const member_type &teamMember,

float &update ){
const int m = teamMember.league_rank();
float tmp = 0.0;
Kokkos::parallel_reduce(

Kokkos::TeamThreadRange ( teamMember, N ),
[&] ( const int n,

float &innerUpdate ) {
innerUpdate += X(m, n) * Y(m, n);

}, tmp );
if ( teamMember.team_rank() == 0 )

update += tmp;
}, result );

Fig. 4. The different parallel reduce parallelism constructs in the Kokkos
API.

C. Atomic Operations

The Kokkos framework supports several atomic operations,

which are offered to programmers as run-time primitives.

Arithmetic operations (e.g., +, −, ·, ÷) are supported with

different data types (e.g., integer, floating point numbers using

32/64 bits). Logical operators (e.g., or, and, xor) are supported

along with min/max and bit-wise operations. In general, each

Kokkos back end includes an implementation of all these

atomic primitives according to the existing support in the target

architecture.

III. KOKKOS OPENACC BACK END

Although there is a clear connection between the parallel

constructs of Kokkos and the OpenACC specification, the

implementation presents some complications. Every Kokkos

template class must follow a very specific template pattern and

must be re-implemented by using OpenACC pragmas. Every-

thing must be compatible with the OpenACC compiler. One

of the biggest complications for implementing the OpenACC

back end involves handling complex template specializations

deployed in a complex hierarchy; the existing Kokkos im-

plementations rely heavily on various template specializations

to optimize the performance on specific targets and patterns,

some of which are allowed only for specific cases. Therefore, it

is a nontrivial task to identify which parts of the hierarchical

implementations of the Kokkos programming model are the

ideal targets for optimization.

A. Memory Management

The Kokkos library’s core architecture is designed in a hi-

erarchical and modular manner using the C++ object-oriented

programming paradigm. Therefore, when implementing the

Kokkos memory model in the new OpenACC back end, we

could reuse most of the high-level structures in the exist-

ing Kokkos memory management implementations, includ-

ing various interfaces to the View data structures and the

dynamic reference counting mechanism for automatic lifes-

pan management of View objects. Implementing the Kokkos

memory model in the OpenACC back end mostly boils

down to implementing low-level device memory management

operations, such as allocating device memory, transferring

data between the host and device memories, and so on.

Thanks to the similarities between the Kokkos and OpenACC

memory models, most of the basic memory management

operations have one-to-one mapping between the Kokkos

and OpenACC constructs (e.g., Kokkos::malloc can be im-

plemented using acc malloc; deep copy can be implemented

using acc memcpy to device, acc memcpy from device, and

acc memcpy device primitives).

B. Parallel Data Execution

Figure 5 illustrates an example implementation of the

Kokkos template class for the OpenACC back end’s paral-
lel for SR construct. The implementations are intended to

be as simple as possible. The Policy object corresponds to

the second parameter of the parallel for SR construct (see

Section II). The a functor object is the lambda passed as

the third argument of the Kokkos construct, which acts like a

function and must be copied to GPU memory explicitly. Then,

the parallelization is carried out by using #pragma acc parallel
loop gang vector. The parameters of the functor (lambda) must

be consistent with the Kokkos specification.

The Kokkos template class implementation for the Ope-

nACC back end’s parallel for MD construct is similar to

the SR counterpart (see Figure 6). The main differences

correspond to the use of multiple indexes and nested for-

loops. For simplicity, we show the implementation details that



template <class FunctorType, class... Traits>
class ParallelFor< FunctorType,

Kokkos::RangePolicy<Traits...>,
Kokkos::Experimental::OpenACC > {

private:
using Policy = Kokkos::RangePolicy<Traits...>;
using WorkTag = typename Policy::work_tag;
using WorkRange = typename Policy::WorkRange;
using Member = typename Policy::member_type;
const FunctorType m_functor;
const Policy m_policy;
public:
inline void execute() const
{ execute_impl<WorkTag>(); }
template <class TagType>
inline void execute_impl() const {
OpenACCExec::verify_is_process(

"Kokkos::Experimental::OpenACC parallel_for");
OpenACCExec::verify_initialized(

"Kokkos::Experimental::OpenACC parallel_for");
const auto begin = m_policy.begin();
const auto end = m_policy.end();
if (end <= begin) return;
const FunctorType a_functor(m_functor);
#pragma acc parallel loop gang vector

copyin(a_functor)
for (auto i = begin; i < end; i++) { a_functor(i); }

}
...

};

Fig. 5. OpenACC implementation of parallel for SR.

correspond to the MD construct implementation for a nesting

level of two (Rank = 2 in Figure 6). To map the behavior

defined by the Kokkos specification for MD operations, we

use OpenACC’s collapse clause.

template <class TagType, int Rank>
inline typename std::enable_if<Rank == 2>::type
execute_functor(
const FunctorType& functor,
const Policy& policy ) const {
const FunctorType a_functor(functor);
int begin1 = policy.m_lower[0];
int end1 = policy.m_upper[0];
int begin2 = policy.m_lower[1];
int end2 = policy.m_upper[1];
#pragma acc parallel loop gang vector

collapse(2) copyin(a_functor)
for (auto i0 = begin1; i0 < end1; i0++) {
for (auto i1 = begin2; i1 < end2; i1++) {
a_functor(i0, i1);

}}}

Fig. 6. OpenACC implementation of parallel for MD range.

The OpenACC implementation of the Kokkos template class

for the parallel for HR construct can be seen in Figure 7. For

simplicity, we show the implementation of the two-level nested

lambda case. The top-level implementation is similar to the SR

implementation, but it uses Kokkos::TeamPolicy instead of the

number of iterations (i.e., RangePolicy), which is then passed

as an argument to the HR specification. Also, a corresponding

team policy must be created in each iteration of this level and

passed as an argument to the functor (second-level lambda).

The second level is implemented in a separate function, which

must be decorated with #pragma acc routine worker. At this

level, we compute an OpenACC-decorated for-loop using the

same parallelism level indicated in the function decoration

(i.e., worker).

Regarding the implementation of the parallel reduce Ope-

template <class TagType>
inline void execute_impl() const {
OpenACCExec::verify_is_process(

"Kokkos::Experimental::OpenACC parallel_for");
OpenACCExec::verify_initialized(

"Kokkos::Experimental::OpenACC parallel_for");
auto league_size = m_policy.league_size();
auto team_size = m_policy.team_size();
auto vector_length = m_policy.impl_vector_length();
const FunctorType a_functor(m_functor);
#pragma acc parallel loop gang copyin(a_functor)
for ( int i = 0; i < league_size; i++ ) {
int league_id = i;
typename Policy::member_type
team( league_id, league_size,

team_size, vector_length );
a_functor(team);

}}
#pragma acc routine worker
template <typename iType, class Lambda>
KOKKOS_INLINE_FUNCTION
void parallel_for(

const Impl::TeamThreadRangeBoundariesStruct<
iType, Impl::OpenACCExecTeamMember>
& loop_boundaries, const Lambda& lambda) {

#pragma acc loop worker
for (iType j = loop_boundaries.start;

j < loop_boundaries.end;
j++) { lambda(j); }

}

Fig. 7. OpenACC implementation of parallel for HR.

nACC classes, the main difference w.r.t. parallel for imple-

mentations consists of adding the OpenACC clause reduction.

We can see the details in Figure 8.

const FunctorType a_functor(m_functor);
value_type tmp; ValueInit::init(a_functor, &tmp);
...
#pragma acc parallel loop gang vector

reduction(+:tmp) copyin(a_functor)
for (auto i = begin; i < end; i++)
a_functor(i, tmp);

*m_result_ptr = tmp;

Fig. 8. OpenACC implementation of parallel reduce SR.

C. Atomic Operations
Table I lists the available atomic primitives supported within

the Kokkos API. The OpenACC back end implements those

using the atomic directive with the capture clause. For in-

stance, the fetch-add operation is implemented with the code

exposed in Figure 9. Notice the use of the routine directive

with a seq clause to inform the compiler that this subroutine

does not contain additional parallelism. The semantics of the

Kokkos atomic construct are directly mapped onto the body

of the OpenACC atomic directive.

Primitive Types Directive/Runtime

compare-and-exchange 32, 64 CUDA runtime
exchange, assign 32, 64 OpenACC directive

add, sub, mul, div, mod 32, 64 OpenACC directive
min, max 32, 64 OpenACC directive

and, or, xor 32, 64 OpenACC directive
lshift, rshift 32, 64 OpenACC directive

TABLE I
ATOMIC PRIMITIVES WITHIN THE OPENACC BACK END.

IV. EVALUATION

The performance analysis of the OpenACC back-end im-

plementation is divided into two parts. First, we evaluate the



#pragma acc routine seq
inline unsigned int atomic_fetch_add(

volatile unsigned int *const dest,
const unsigned int &val ) {

unsigned int retval;
unsigned int *ptr = const_cast<unsigned int *>(dest);
#pragma acc atomic capture
{ retval = ptr[0]; ptr[0] += val; }
return retval;

}

Fig. 9. Implementation of fetch-add within the OpenACC Kokkos back end.

new back end on a set of mini-benchmarks by comparing the

performance against CUDA and OpenMP target back ends.

Second, we analyze the performance on an existing set of

important mini-applications that leverage the Kokkos frame-

work. All experiments used one NVIDIA Volta V100 GPU

from the Oak Ridge Leadership Computing Facility’s Sum-

mit supercomputer. We used the NVIDIA compilers NVCC

(V11.0.3) and NVHPC (V21.3) for the CUDA and OpenACC

back ends, respectively, and the LLVM compiler (V15.0.0git)

for the OpenMP target back end. We could not build the

OpenMP target back end of the Kokkos library using the IBM

XL (V16.1.1-10) compiler or the NVIDIA NVHPC compiler

owing to unsupported C++17 and OpenMP features.

A. Mini-benchmarks

This study consists of a set of mini-benchmarks that com-

pute standard and well-known operations such as AXPY and

DOT product. These operations are widely used for bench-

marking and can be easily implemented using Kokkos (as

shown in Figures 1–4). We evaluate the two primary data-

parallel Kokkos constructs: parallel for and parallel reduce.

We also implement a set of AXPY mini-benchmarks to evalu-

ate the Kokkos parallel for construct and a set of DOT product

mini-benchmarks to evaluate the parallel reduce construct.

Finally, we evaluate the three different Kokkos execution

policies introduced earlier—SR, MD, and HR—along with

three different Kokkos back ends—CUDA, OpenMP target,

and OpenACC.

First, we analyze the performance of the SR constructs

(Figures 10 and 11 [left]). The performance of the CUDA and

OpenACC back ends are similar for both AXPY and DOT

product mini-benchmarks, with the CUDA back end being

slightly faster than OpenACC on smaller vector sizes, and

the OpenACC back end being faster than CUDA on bigger

vector sizes. By contrast, OpenMP’s target back end takes

roughly twice as long to run the AXPY (parallel for) mini-

benchmark and roughly two orders of magnitude longer to run

the DOT product (parallel reduce) benchmark when compared

with CUDA and OpenACC.

We see an important difference in performance among the

back ends when using the MD execution policy (Figures 10

and 11 [center]). In this case, the CUDA performance is

considerably lower than the performance achieved by the

OpenACC back end, which reaches a speedup of nearly 9×
on the biggest matrix size computed for the DOT product test.

For AXPY operations, the OpenMP target back end presents

better numbers compared with the CUDA back end, but it is

still slower than the OpenACC back end. The OpenMP target

back end turns out to be the slowest option for DOT product

test.

The CUDA and OpenACC back ends achieve similar perfor-

mance when using the HR execution policy (Figures 10 and

11 [right]) for AXPY operations, with OpenACC achieving

slightly higher performance on big matrices. The OpenMP

target back end is slower than the other back ends, and

the difference increases on bigger matrices. However, we

see a different trend on DOT product mini-benchmarks (i.e.,

parallel reduce), where the execution time of the OpenMP

target and OpenACC back ends is about 25% higher than the

CUDA back end.

We used the NVIDIA Nsight system to conduct a more

precise performance analysis (see Table II). For this analysis,

we used the biggest matrix and vector sizes that we tested.

Using Nsight, we can evaluate each of the back ends in terms

of number of kernels computed, time consumed by each GPU

kernel, number of memory operations, hardware occupancy,

and active number of warps (blocks of GPU threads) per

streaming multiprocessor (SM). The performance numbers

shown in Figures 10 and 11 are confirmed by the numbers

provided by the Nsight tool. For instance, when comparing

the AXPY-SR performance of all back ends, we see that

although the initialization (axpy init) is computed faster on

OpenACC, the performance of the axpy comp kernel is similar

for the CUDA and OpenACC back ends, but the OpenACC

implementation achieved higher occupancy and more active

warps per SM. We also included the memory operations (i.e.,

memory transfers between CPU and GPU) and the throughput

of the different levels in the GPU memory hierarchy. To en-

hance Table II, we highlight the best performance numbers for

each mini-benchmark (green for CUDA, blue for OpenACC,

and red for OpenMP target). We can see that the CUDA back

end requires more memory operations than the other two back

ends, and the highest memory throughput is provided by the

OpenACC implementation.

Nsight analysis confirms important performance differences

between the tested back ends on MD mini-benchmarks (Fig-

ures 10 and 11 [center]): the CUDA and OpenMP target

implementations reach an occupancy of about 10% and 23%,

respectively, whereas the OpenACC occupancy reaches about

97%. Also, the number of active warps is much higher for

OpenACC than for CUDA or OpenMP target.

For DOT product mini-benchmarks, we see that OpenACC

requires two kernels to compute parallel reduce, whereas the

CUDA and OpenMP target back ends only require one. How-

ever, this extra kernel does not have a significant impact on

performance. The number of active warps per SM, hardware

occupancy, and memory throughput reached by the OpenACC

implementation are all higher than the other back ends.

In general, and according to this performance study, the

OpenACC back end is very competitive and achieves sim-

ilar performance to the CUDA back end and even exceeds

CUDA’s performance in some cases. The OpenMP target



Fig. 10. SR (left), MD (center), HR (right) execution policy performance of parallel for.( ), (( g ) p y p p f

Fig. 11. SR (left), MD (center), HR (right) execution policy performance of parallel reduce

implementation achieved the worst numbers except in a couple

of cases. However, we can find an exception to this trend,

and if we focus on the DOT-HR benchmark, we see that

the OpenACC and OpenMP target implementations reach an

occupancy and memory throughput lower than the CUDA

implementation, with the CUDA implementation being the

fastest one (Figure 10 and 11 [right]).

B. Mini-applications

We compare performance of the CUDA, OpenMP target,

and OpenACC Kokkos back ends on three mini-applications

from different domains: (1) LULESH [11], a molecular dy-

namics proxy application, (2) MiniFE, a finite element mini-

application [12], and (3) SNAP-test, a proxy application de-

rived from the molecular dynamics LAMMPS framework [13]

[14]. All sources of parallelism have been enabled using the

Kokkos parallel constructs.

1) miniFE mini-application: This mini-application is di-

vided into two major phases: initialization and computation.

Although the initialization is computed once at the very begin-

ning of the execution, the computation phase is computed as

many times as the number of iterations (200). For this analysis,

we use the largest input size that fits into the device memory

(i.e, a mesh of 1,024 × 128 × 128 elements). This application

uses both parallel reduce and parallel for constructs with the

SR policy.

Nsight analysis confirms that the CUDA and OpenACC

back ends use different memory management API primitives.

For instance, the CUDA back end spends 52% of the time in

cudaMemcpy and 13% in cudaMalloc, whereas the OpenACC

Fig. 12. MiniFE application: overall performance. Y-axis: execution time (s)
in logarithmic scale. X-axis: dimension input size used for the application;
total input size corresponds to size × 128 × 128.

back end spends 39% of the time in cuMemAlloc v2 and 10%

in cuMemcpyHtoDAsync v2. This indicates that the OpenACC

back end/compiler (NVHPC) is able to generate a more

optimized result than the CUDA back end/compiler (NVCC)

in this case. This confirms that different back ends/compilers

generate very different output codes with important impacts

on performance.

Figure 12 shows the overall execution time for the MiniFE

application when using the CUDA, OpenMP target, and Ope-

nACC back ends. The general trend is that both CUDA and

OpenACC back ends perform similarly, with performance

factors ranging from 0.84× (CUDA faster than OpenACC)

to 1.29× (OpenACC faster than CUDA). Smaller input sizes

clearly present factors close to 1×, whereas OpenACC is

faster with medium and large input sizes. In particular, for



—Mini-benchmarks—
—AXPY—

–Kokkos execution policy– CUDA OpenACC OpenMP target

SR Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
axpy init 1,286,228/8.18 1/128/5.23 922,648/94.83 1/128/60.69 2,717,105/22.59 1/128/14.46

axpy comp 1,445,109/87.72 1/128/56.14 1,468,756/97.51 1/128/62.41 3,764,011/21.57 1/128/13.81
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM

HtD/axpy init 13,471/8 69/24/37/13 7,359/4 97/34/52/23 9,538/5 69/24/37/13
DtH/axpy comp 12,225/6 92/32/24/12 4,322/2 92/32/24/13 8,927/4 92/32/24/12

Memset 4,023/2 - 0/- - 0/- -

MD Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
axpy init 5,142,724/3.55 1/32/2.27 922,583/94.77 1/128/60.65 3,800,173/22.08 1/128/14.13

axpy comp 5,141,252/10.07 1/32/6.45 1,520,085/97.09 1/128/62.14 2,817,873/22.82 1/128/14.61
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM

HtD/axpy init 13,477/8 34/12/18/9 7,296/4 97/34/52/40 8,926/5 29/10/37/59
DtH/axpy comp 13,282/6 52/18/13/9 4,317/2 91/32/24/25 7,805/4 33/11/28/45

Memset 7,819/4 0/- 0/-

HR Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
axpy init 916,152/94.95 1/128/60.77 909,530/72.64 1/256/46.49 1,046,552/95.10 1/256/60.86

axpy comp 1,690,036/96.88 1/128/62.01 1,562,549/95.99 1/256/61.44 1,912,053/97.01 1/256/62.09
Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM

HtD/axpy init 13,345/8 96/34/52/6 7,456/4 86/30/69/41 11,937/7 83/29/44/17
DtH/axpy comp 12,255/6 79/29/34/5 4,545/2 85/30/35/22 12,606/6 69/24/21/10

Memset 4,088/2 0/- 0/-

—DOT product—
–Kokkos execution policy– CUDA OpenACC OpenMP target

SR Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
dot init 1,286,199/8.57 1/128/5.49 927,511/94.71 1/128/60.62 2,717,455/21.57 1/128/13.81

dot comp 1,199,189/40.02 1/256/25.61 920,312/97.62 1/128/62.3 133,444,166/24.93 1/128/15.96
91,164/12.43 2/256/7.95

Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot init 13,375/8 69/24/37/13 6,976/4 98/34/52/24 11,136/6 34/12/40/59

DtH/dot comp 12,226/6 73/25/20/5 6,943/3 97/34/26/22 10,399/5 0.6/0.7/1.8/2.7
Memset 3,991/2 1,344/1 0.3/0.1/6.9/0 0/-

MD Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
dot init 5,119,158/3.49 1/32/2.23 917,207/94.74 1/128/60.63 3,170,832/22.08 1/128/14.13

dot comp 9,121,816/40.0 1/256/25.60 981,304/97.18 1/128/62.20 10,3469,313/24.90 1/128/15.94
Memset 89,723/12.43 2/256/7.95

Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot init 13,631/8 34/12/18/9 7,357/4 98/34/52/40 10,881/6 29/10/37/59

DtH/dot comp 13,407/6 19/5/9/7 6,465/3 95/33/25/42 9,954/5 0.8/0.9/2.3/3.6
Memset 8,724/4 1,376/1 0.3/0.1/6/0 0/-

HR Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps Time/Occup. Inst./BS/Warps
dot init 917,848/95.01 1/128/60.81 910,710/72.61 1/256/46.47 1,060,792/94.97 1/256/60.78

dot comp 1,057,367/96.88 1/128/62.01 1,382,709/74.00 1/256/47.36 1,463,991/48.03 1/256/30.74
15,484/12.07 2/256/7.72

Memory operations Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM Time/Inst. RAM/L2/L1/SM
HtD/dot init 10,780/8 96/34/51/6 6,144/4 85/30/69/41 12,642/6 85/29/45/18

DtH/dot comp 10,463/6 85/30/25/11 5,184/3 82/28/20/12 11,837/7 61/21/20/28
Memset 2,809/2 990/1 0.2/0.2/6.2/0 0/-

TABLE II
PERFORMANCE EVALUATION OF THE AXPY (TOP HALF) AND DOT PRODUCT (BOTTOM HALF) MINI-BENCHMARKS. ALL THREE KOKKOS EXECUTION

POLICIES (I.E., SR, MD, AND HR) ARE EVALUATED. WE EVALUATE THE EXECUTION TIME (NS) AND THE HARDWARE OCCUPANCY (%) OF EACH

KERNEL AS WELL AS THE THREAD BLOCK SIZE (BS) AND ACTIVE WARPS PER SM (WARPS). ADDITIONALLY, WE EVALUATE TIME (NS) CONSUMED BY

THE MEMORY OPERATIONS AND THE NUMBER OF MEMORY TRANSFERS PERFORMED BY EACH OF THE IMPLEMENTATIONS (INST.). FINALLY, WE

INCLUDE THE THROUGHPUT (BANDWIDTH % REACHED) OF EACH LEVEL OF THE GPU’S MEMORY HIERARCHY.

an input size of 1,024 × 128 × 128 elements OpenACC is

1.29× faster than the CUDA implementation. For OpenMP

target, the trends are similar but always show worse executions

times compared with OpenACC and CUDA. In particular, the

performance factor between OpenMP target and OpenACC is

about 1.5× for most of the input sizes.

2) Lulesh mini-application: All kernels are based on the

parallel for and parallel reduce constructs using the SR pol-

icy. Comparing the OpenACC and CUDA back ends (per-

formance factor equal to CUDA time divided by OpenACC

time), both perform similarly with performance factors rang-

ing from 0.96× (CUDA faster than OpenACC) to 1.01×
(OpenACC faster than CUDA). The OpenMP target back end

executes slower than CUDA and OpenACC back ends. While

OpenACC roughly matches the CUDA performance (i.e., the

speedup factor is close to 1× for most of the kernels), the

OpenMP target shows a significant slowdown, especially in the

range of kernels that have the largest amount of computation.



Fig. 13. LULESH: overall performance. Y-axis: execution time (s); logarith-
mic scale. X-axis: input problem size; total input size corresponds to Size ×
Size × Size.

Fig. 14. SNAP: overall performance. Y-axis: execution time (s); logarithmic
scale. X-axis: input problem size ( REFx= (atoms, ghost atoms, neighbors,
twojmax); REF2 = (2, 33, 8, 2); REF4 = (2, 33, 8, 4) ; REF8 = (2000, 2941,
26, 8) ).

This finding aligns with the results we saw in the mini-

benchmark analysis (Figures 10 and 11 [left]). In general,

one main observation justifying the different behaviours at

application-level is that all back ends instantiate Kokkos con-

structs with different code. For example, for the CUDA back

end, memory management API statistics show that time within

runtime execution is distributed as 24% for cudaMalloc, and

5.6% for cudaMemcpy. However, for the OpenACC back-end,

this distribution changes drastically; 3.6% for cuMemAlloc v2
and about 0.3% and 1% for cuMemcpyDtoHAsync v2 and

cuMemcpyHtoDAsync v2 respectively.

Figure 13 shows the overall performance numbers for

different problem sizes, which range from 50 to 225 elements

in each of the 3 dimensions of the input set. Input sizes greater

than 225 elements per dimension exceed the total amount

of the device’s allocatable memory. For smaller input sizes,

OpenACC provides slightly better performance than CUDA;

however, for larger input sizes (e.g., 200, 225) OpenACC is

8% slower than CUDA for 200 elements and 13% slower for

225 elements (this is equivalent to the behavior illustrated

in Figure 10 [left]). In contrast to the OpenACC case, the

OpenMP target back end shows essential slowdown levels.

3) SNAP-LAMMPS mini-application: All kernels are based

on the parallel for and parallel reduce constructs using the

SR policy. The input of the application is parameterized by

several factors that determine the actual input size (e.g., num-

ber of atoms being simulated, number of neighbors for atoms,

etc.). Comparing the OpenACC and CUDA back ends (per-

formance factor equal to CUDA time divided by OpenACC

time), both perform similarly (see Figure 14) with performance

factors ranging from 0.95x (CUDA faster than OpenACC) to

1.10x (OpenACC faster than CUDA). The OpenMP target

back end executes slower than CUDA and OpenACC back

ends. Using the OpenMP target back end we get several

warnings during compilation, indicating the possibility of not

being able to map actual lambda code to the device. This is

related to the actual maturity of the OpenMP offload support.

In this mini-application, there are four dominating kernels. In

some of these kernels, the performance of the OpenACC back

end can be up to 34% faster than CUDA back end. In other

kernels the performance of the CUDA back end is about 35%

faster than the OpenACC back end. In conclusion, OpenACC

roughly matches the CUDA performance and the OpenMP-

target back end executes slower than CUDA and OpenACC

back ends.

C. Directive-based high-level solutions vs device-specific low-
level solutions

It is important to highlight that each back end/compiler (i.e.,

CUDA/NVCC, OpenACC/NVHPC, OpenMP target/LLVM)

generates different parallel code for each Kokkos construct.

Therefore, the code compiled for each mini-benchmark and

mini-application is completely different. Examples of this can

be seen in Table II, where, depending on the back end,

a different number of CUDA function calls/kernels and/or

CUDA block size is used. This can also be seen in the

Lulesh mini-application subsection, where different functions

are used for memory management. All these differences have

an important impact on performance.

It is not easy to evaluate the set of optimizations applied

by each implementation/compiler to explain why a kernel

executes faster with one particular back end. Notably, the

CUDA version is based on hand-coded run-time calls with no

kernel-specific optimizations. In contrast, the OpenACC and

OpenMP target versions rely on the compiler optimizations

applied on a per-kernel basis. Also, while, the performance of

the CUDA back end depends more on the developers’ skill

and the quality of their implementations, the performance of

the other back ends involved in this analysis, OpenACC and

OpenMP target, depends more on the quality of the compiler

to apply the optimizations. One or the other approach has its

own pros and cons. However, for TMP solutions, where the

computation to be done is not known in advance and is passed

as an argument in the form of a C++ lambda, the directive-

based high-level solutions, like OpenACC and OpenMP target,

are well positioned when the desired capacity is provided by

the compiler.

V. RELATED WORK

The Kokkos team continues to develop new and important

features and optimizations that target performance portability

among different architectures, including memory manage-

ment [15], [16] and vectorization [17]. Kokkos can be success-

fully integrated or combined with other programming models

such as MPI [18], [19] and SYCL [20], among others [21].



Kokkos can also achieve competitive performance compared

with other programming models [22]. Owing to these qualities,

multiple applications are already using Kokkos [23]–[26].

OpenACC is the de facto standard for directive based pro-

gramming models on accelerators. One example that summa-

rizes the advantages of using OpenACC is the the work of [8],

which evaluates the use of OpenACC, OpenCL and CUDA in

terms of performance, productivity, and portability. This work

concludes that OpenACC is a robust programming model for

accelerators while improving programmer productivity.

VI. CONCLUSIONS

This paper presents KokkACC, which is an OpenACC back

end for the Kokkos C++ template metaprogramming library.

This work demonstrates the potential benefits of having a high-

level and a descriptive programming model such as OpenACC

as an alternative to the existing device-specific Kokkos back

ends (e.g., CUDA and HIP). Even though device-specific back

ends can exploit device-specific features to achieve better

performance, the device-specific optimizations can be applied

to only a specific type of device, are hard-coded in the back

end, and cannot be adjusted for different computing patterns.

On the other hand, the descriptive nature of the OpenACC back

end allows the compiler to perform advanced optimizations for

different computing patterns and device types. The evaluation

results also show that the OpenACC back end can complement

the existing OpenMP target back end by offering an alterna-

tive directive-based approach to solve the practical problems

that exist in directive-based, high-level programming, such as

varying levels of language support and inconsistent maturity

across existing directive compilers and different target devices.

This work focuses on the core constructs required to im-

plement the Kokkos execution and memory models. Imple-

menting the core constructs revealed several limits in the

current OpenACC model, such as a lack of custom reductions

and constructs for device-specific features. Future work will

include adding support for other advanced Kokkos constructs,

including Kokkos containers and task parallelism, and ex-

ploring possible extensions to support Kokkos features not

supported by the current OpenACC standard.
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APPENDIX A

ARTIFACT DESCRIPTION FOR REPRODUCIBILITY

We have evaluated this work on one node of the ORNL’s

supercomputer SUMMIT1, using one NVIDIA Volta V100

GPU. The reader may request access to this system2. However,

to reproduce the results shown in this work, it is not really nec-

essary to have access to this system. To help to reproduce our

results, we provide a detailed description about the software

stack used (see Table III).

We are in the middle of a process to include KokkACC

within the Kokkos library3 (expected in the Kokkos 4.0

release) as the new OpenACC back end. In the meantime,

1https://www.olcf.ornl.gov/summit/
2https://www.olcf.ornl.gov/for-users/documents-forms/olcf-account-

application/
3https://github.com/kokkos

System ORNL’s SUMMIT
GPU Architecture NVIDIA (Volta) V100

Kokkos version 3.6.99

Kokkos back end CUDA OpenACC OpenMP Target

Kokkos flags

KOKKOS DEVICES=

Cuda OpenACC OpenMPTarget

KOKKOS ARCH=“Volta70”

Compiler NVCC 11.0.3 NVHPC 21.3 LLVM v15.0.0git

Compiler flags -Xcudafe -acc -fopenmp
-std=c++14 -O3 -expt-extended-lambda -fopenmp-targets=

-arch=sm 70 nvptx64

TABLE III
SUMMARY OF THE SOFTWARE STACK USED.

the readers can access the code implemented via the Kokkos

public ORNL repository4. All the codes used for the Evalua-

tion section are accessible via a public GitHub repository5. In

that repository, we can see two main folders; mini-benchmarks

and mini-apps. In the mini-benchmarks folder, we can find

multiple folders. The ones that were used for the performance

analysis are: openacc-parallel-reduce-single (AXPY and DOT

product using SR Kokkos policy), openacc-parallel-reduce-md

(AXPY and DOT product using MD range Kokkos policy) and

openacc-parallel-reduce-team (AXPY and DOT product using

HR range Kokkos policy). We also provide the makefiles for

the compilation. Regarding mini-applications, in the mini-apps

folder, we can find three folders, one per mini-application. The

code used in the analysis can be found in the lulesh, miniFE

and TestSNAP folders. For instance, the code and the different

makefiles used in each of the mini-applications can be found

in the following paths:

• Lulesh: lulesh/lulesh-2.0/kokkos-no-uvm/

• MiniFe: miniFE/kokkos/src

• TestSNAP: TestSNAP/src

There are two ways to reproduce the tests carried out in this

study. The binaries to be run can be created by using the

Makefiles found in each of the test folders. For instance:

1) In the mini-benchmarks folder in KokkACC-test repos-

itory:

cd openacc-parallel-reduce-single/

2) Change Kokkos path in Makefile:

KOKKOS_PATH = $(KOKKOS_ROOT)

3) Compile code via:

make -j KOKKOS_DEVICES=OpenACC

The other way consists of using CMake. In this case, it is

necessary to build and install the Kokkos library first, and then

compile your test program using CMake. Here is an example

of how to build and install the Kokkos library using CMake:

1) export KOKKOS_INSTALL_ROOT=$(KOKKOS_ROOT)
2) cd $(KOKKOS_ROOT)
3) mkdir build
4) cd build
5) cmake -DCMAKE_CXX_COMPILER=nvc++

-DCMAKE_CXX_STANDARD=17
-DCMAKE_INSTALL_PREFIX=$(KOKKOS_ROOT)

4https://github.com/ORNL/kokkos-ornl/tree/openacc
5https://github.com/pedrovalerolara/KokkACC-tests



-DKokkos_ENABLE_COMPILER_WARNINGS=ON
-DKokkos_ENABLE_OPENACC=ON ...

6) make -j
7) make install

For instance, these are then the steps to compile and run the

Lulesh test case:

1) In mini-apps folder in KokkACC-test repository:

cd lulesh/lulesh-2.0/kokkos-no-uvm

2) mkdir build
3) cd build
4) cmake ../ -DKokkos_ROOT=${KOKKOS_ROOT}

-DCMAKE_CXX_COMPILER=nvc++
5) make -j
6) ./lulesh_kokkos


