Author Proof

®

Check for
updates

OpenACC Unified Programming
Environment for Multi-hybrid
Acceleration with GPU and FPGA

Taisuke Boku!2(®) Ryuta Tsunashima?, Ryohei Kobayashi'2,
Norihisa Fujita!2, Seyong Lee?, Jeffrey S. Vetter®, Hitoshi Murai,
Masahiro Nakao*, Miwako Tsuji*, and Mitsuhisa Sato*

! Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
{taisuke,rkobayashi,fujita}@ccs.tsukuba.ac.jp
2 Degree Programs in Systems and Information Engineering, University of Tsukuba,
Tsukuba, Japan
tsunashima@hpcs.cs.tsukuba.ac. jp
3 Oak Ridge National Laboratory, Oak Ridge, USA
{lees2,vetter}@ornl.gov
4 RIKEN Center for Computational Science, Kobe, Japan
{h-murai,masahiro.nakao,miwako.tsuji,msato}@riken.jp
https://www.ccs.tsukuba.ac.jp/

Abstract. Accelerated computing in HPC such as with GPU, plays a
central role in HPC nowadays. However, in some complicated applica-
tions with partially different performance behavior is hard to solve with a
single type of accelerator where GPU is not the perfect solution in these
cases. We are developing a framework and transpiler allowing the users
to program the codes with a single notation of OpenACC to be compiled
for multi-hybrid accelerators, named MHOAT (Multi-Hybrid OpenACC
Translator) for HPC applications. MHOAT parses the original code with
directives to identify the target accelerating devices, currently supporting
NVIDIA GPU and Intel FPGA, dispatching these specific partial codes
to background compilers such as NVIDIA HPC SDK for GPU and Ope-
nARC research compiler for FPGA, then assembles binaries for the final
object with FPGA bitstream file. In this paper, we present the concept,
design, implementation, and performance evaluation of a practical astro-
physics simulation code where we successfully enhanced the performance
up to 10 times faster than the GPU-only solution.

Keywords: GPU - FPGA - Programming framework - OpenACC -
MHOAT

1 Introduction

GPU is the main player as a powerful accelerator on supercomputers, especially
for ultra-large scale systems to achieve a high performance/power ratio. Over
half of the world’s top-10 machines in TOP500 List are equipped with GPUs.
However, GPU is not a perfect accelerating device in such cases with:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Bienz et al. (Eds.): ISC High Performance 2023 Workshops, LNCS 13999, pp. 1-13, 2023.
https://doi.org/10.1007/978-3-031-40843-4_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40843-4_49&domain=pdf
https://doi.org/10.1007/978-3-031-40843-4_49

2 T. Boku et al.

— poor degree of uniform parallelization lower than core count
— frequent conditional branches
— frequent internode communication, etc.

On the other hand, FPGA (Field Programmable Gate Array) becomes attrac-
tive as another candidate for accelerator [6,14,15]. The advantages of introducing
FPGAs in HPC applications are:

— true codesigning system to be specialized for the target application

— pipelined parallel execution not in SIMD-manner

— high-end FPGAs are equipped with their own high-speed optical links for
parallel FPGA environment

— relatively low power consumption compared with GPU

However, in most traditional research to employ FPGA in HPC applications,
it is shown that the absolute performance of FPGA implementation is lower
than GPU. Therefore, we should employ FPGA in problems where some parts
of the entire computation are unsuitable for GPU. Even if a small fraction of the
application cannot be improved, it makes the limit of performance even with a
high performance of GPU according to the Amdahl’s Law.

We have been researching the coupling of GPU and FPGA together toward
highly efficient accelerated computing under the concept of CHARM (Coopera-
tive Heterogeneous Acceleration with Reconfigurable Multidevices) [4,8] where
both devices compensate with each other by different performance characteris-
tics (Fig. 1). In this concept, we name such a computing framework with multiple
types of accelerators as multi-hybrid computing.

muIti-physics/muIti-scaIe Basic cluster with GPiJs (by InfiniBand)

complicated problem [\

invoke GPU/FPGA kernsls
data transfer via PCle
invoked from FPGA)

FPGA
' =t i PCle comp.

Application oriented o
FPGA-FPGA communicatiom——]

100Gbps direct optical link

Cooperative computing with GPU and FPGA [Yy Y—

Fig. 1. Concept of CHARM

In previous works, we have researched the programming method and frame-
work to apply the CHARM concept and developed the first practical application
code. In [5], we presented an astrophysical application that implies heavy compu-
tation part where GPU acceleration does not work well, and we ported that part
to Intel Arrial0 FPGA to achieve up to 10 times faster performance with the

Author Proof

OpenACC Unified Programming Environment 3

programming of OpenCL High Level Synthesis (HLS). Then in [8] we success-
fully combined that OpenCL code for FPGA and CUDA code for GPU to assign
two devices appropriately where each one achieves higher performance than the
other. In the latter work, we found that it is possible to combine partial binary
modules compiled by CUDA compiler for NVIDIA GPU and OpenCL compiler
for Intel FPGA (Intel FPGA SDK for OpenCL [1]) without any conflict on sym-
bols and modules. The overall performance of the entire code improves up to
17 times faster than GPU-only code. This multi-hybrid code was also ported to
Intel oneAPI [3] environment for more sophisticated device controlling and data
management without any performance loss, as reported in [7].

However, these works are complicated for general HPC users, requiring a
mixture of CUDA and OpenCL programming. To solve this problem, we have
been developing a comprehensive framework for a single language solution to
offload appropriate code parts to multi-hybrid devices based on OpenACC. We
initially considered using OpenCL both for GPU and FPGA as the basic notation
of accelerator offloading since both devices support this language framework.
However, OpenCL is still relatively low for application users and too complicated
to mix in multi-hybrid accelerator programming by them. Therefore, we decided
to use OpenACC as the higher level of the basic framework.

2 MHOAT - Single Language Coding for CHARM

The language processing environment we developed is named MHOAT (Multi-
Hybrid OpenACC Translator) to hire several backend compilers for GPU and
FPGA to allow users to code simply in OpenACC with a small directive expan-
sion. The preliminary work was reported in [13] with the prototype implementa-
tion on tiny sample codes. In this paper, we report a practical example of actual
code compiled by MHOAT and its functionality enhancement of MHOAT itself.
We also apply a programming method to increase spatial parallelism to improve
the performance of FPGA.

As described in the previous section, we have confirmed that CHARM pro-
gramming is possible and practical with GPU and FPGA to apply CUDA and
OpenCL for each device, respectively. However, both languages are relatively in
low level for general HPC users, although CUDA is popular for NVIDIA GPU,
and it is ideal for them to program with higher level and easy-to-understand
language such as OpenMP. As a language for accelerators, OpenACC inher-
its many concepts and ideas from OpenMP, and it is relatively easy to port
OpenMP codes to OpenACC toward easy GPU acceleration for general users.
Although the language is available only for NVIDIA GPUs, these GPU fami-
lies dominate the market, and many applications have been developed. If a user
can program only with OpenACC both for GPU and FPGA, it is ideal for the
CHARM programming framework.

Since creating a single compiler to cover every type of accelerating device is
challenging, we need several backend compilers for all supported devices and a
top-level language processing system to analyze the program modules assigned

Author Proof

4 T. Boku et al.

to appropriate devices based on user definition. Therefore, in the basic compila-
tion framework of multi-hybrid OpenACC programming, we need the following
process flow as shown in Fig. 2.

OpenACC OpenACC Executable
Omni Compiler

(@ An OpenACC program) r
s]} LA i
E2X T MHoaT X
\m_) OpenARC

a.out ‘

g

Fig. 2. Basic flow of single OpenACC code to process by backend compilers

The essential job of the MHOAT process is to separate tasks described in
OpenACC pragma, such as kernels or loop to offload the target loop block to
the accelerators. Here, we introduce an original pragma extension named tar-
get_dev to identify which accelerator is the target of that part, as shown in
Fig.3. We use accomn pragma instead of acc to identify that feature is our
original extension (omn comes from our project name Omni for our compiler
development). Currently, two device families, GPU and FPGA, can be specified
as target devices.

#pragma accomn target_dev(GPU)
#pragma acc kernels
for(i=0; i<N; i++) // this loop is offloaded to GPU

#pragma accomn target_dev(FPGA)
#pragma acc kernels
for(i=0; i<M; i++) // this loop is offloaded to FPGA

Fig. 3. Extended directive accomn target_dev to target the accelerators

Then, MHOAT splits the source code into several files to be processed by the
backend compilers, as shown below.

— Reading the program file and parsing the OpenACC directives for offloading
to devices, especially with the specification of target accelerators,

— Separating the program fragments dispatched to the target backend compilers
according to the target devices, and

— Assembling partially compiled binary objects created by these compilers into
a final object file with several supportive run-time routines.

Author Proof

OpenACC Unified Programming Environment 5

Currently, there is no commercial compiler for OpenACC on FPGA, and
we only have HLS compilers by Intel or Xilinx for OpenCL, standard C, or
C++. One of the solutions for OpenACC compilation is OpenARC [10] by Oak
Ridge National Laboratory. It is a research compiler for multiple target devices,
including GPUs and FPGAs. However, the device handling and data manage-
ment policy is limited, and we like to extend more aggressive features on the
system, for example, implying the fast DMA transfer mechanism between GPU
and FPGA, which we originally developed. Therefore, we use the function of
OpenARC to translate OpenACC to OpenCL only for FPGA. For GPU compi-
lation, we can use the traditional compiler, NVIDIA SDK for HPC by PGI and
NVIDIA [2].

Based on this design, we developed a prototype of a meta compiler for multi-
hybrid OpenACC compilation, named MHOAT (Multi-Hybrid OpenACC Trans-
lator). Figure4 shows the entire construction of MHOAT. Here, two backend
compilers, NVIDIA SDK for HPC for NVIDIA GPU and OpenARC compiler
for Intel FPGA, are invoked in the process flow. We have confirmed that the
symbols and objects do not conflict between these compilers, so the binary of
x86 host CPU can be easily assembled. For the partial compilation of OpenACC
kernels dispatching to FPGA, the OpenARC compiler generates an OpenCL
source code as the target file. We compile it by Intel FPGA SDK for OpenCL
to create the target bitstream file (aocx file) to download to FPGA.

single program ———— Backend (existing compilers) =— = = = = |
=== I.. openacc- rObject Files y |
I ! 1
int main() { PGI Compiler |
~~~~~~~~~~ gpu.c | A gpuo |1
¥pragma accomn targetdev - @ (pgct+-c) \1 | Executable
oy HoooN ; ' %
~~~~~~~~~~ o |: : ~ OpenCL host 1 — — — —{ pgc++ a.out
A
T I i

' N—
fpga pgc++ - "'\ 1
~ .cpp c fpga.o | transfer
|

| | FPGA
— - X --———--——-——-i | binary
return @; | & run-
}

| time

Lo A A ———— L -
\/ I Intel FPGA SDK for OpenCL L 2y
1 OpenCL fpga ‘ fpga |1

I kernel . .a0co [(.aocx ||

I

Fig. 4. Compilation flow of MHOAT with NVIDIA and OpenARC backend compilers

The current version of MHOAT does not support device-to-device direct
data movement. Data handling should be treated as ordinary data directive in
OpenACC as the relationship between the host CPU and the accelerating device.
Therefore, when the data created by GPU is referred to on FPGA, it should first
be synchronized with CPU memory, then synchronized with CPU and FPGA
device memory. Introducing a feature to handle device-to-device data transfer is
our future work.

Author Proof

6 T. Boku et al.

3 OpenACC Coding for High Performance on FPGA

While pipeline parallelism is the base of performance gain on FPGA, there is a
limit to the number of operations in the pipeline according to the target appli-
cation. It is required to enlarge the number of operations per clock by exploiting
spatial parallelism. A primary and efficient method is loop unrolling. However,
the applicability is limited, especially due to the memory bandwidth bottleneck
if high Byte/FLOP is required. To achieve a higher level of parallelization in
coarse grain, we introduce multiple kernels to apply domain decomposition, like
MPI programming on distributed memory architecture. That is a simple solution
to enhance the performance to exploit a large amount of computing elements in
the same manner as traditional HPC programs. The difference is how to connect
multiple computation kernels within an FPGA. Intel FPGA SDK for OpenCL
provides a feature named Channel to create a communication pipeline buffer
for any pair of contact points of two kernels. The user can define an arbitrary
number of Channels.

OpenARC provides a feature to program Intel Channel, which can be directly
transformed into OpenCL code with Channel function. However, the current ver-
sion of OpenARC supports only the default parameters on Channel attributes,
and we need more flexibility for performance tuning (described later).

In Intel FPGA SDK for OpenCL, it is recommended to use Single Work-Item
kernel to exploit pipeline parallelism rather than NDRange for spatial parallelism
used for GPU usually. To exploit high performance with pipelining, we imple-
ment multiple kernels (in this study, eight identical kernels), and connect them
by Channels. To program it, the code should be written as shown in Fig. 5.

void fpga(...) {

#pragma accomn target_dev(FPGA)
int channelil[1];
int channel2[1];

#pragma acc data copy(al:N], b[:N]) pipe(channell[:1], channel2[:1])
{
#pragma acc serial pipein(channell) pipeout(channel2) async(0)

for(i=0; i < N/2; i++)

#pragma acc serial pipein(channel2) pipeout(channell) async(1)
for(i=N/2; i < N; i++)

} // acc data end
#pragma acc wait

}

Fig. 5. Multiple kernels by Single Work-Item, connected by Channel

Author Proof

OpenACC Unified Programming Environment 7

Here, two kernels taking the first and latter half of data run asynchronously,
and data are copied through two Channels, channell and channel2. serial
pragma is specified, but actually, these loops are pipelined by the FPGA
compiler.

As described before, the overall performance of an FPGA is limited by the
number of actual operations per clock and the frequency. In several cases, the
compiler cannot estimate the behavior of the loop, especially on the dependency
between operations, and it makes very conservative solutions where setting the
pipeline pitch (single-stage latency) is too long. It is reflected in low clock fre-
quency to limit the performance. In HPC applications, a typical case is a sort of
reduction operation where a number of data are finally accumulated to finalize a
scalar number or vector. If the calculation is complicated with several elements,
it may happen more than expected.

Currently, we could not find a concrete solution to tell a reasonable estimation
of pipeline latency to the compiler, so the final solution is to go back to the old-
fashioned low-level description - Verilog HDL. It is similar to using asm construct
in C language to escape to assembler coding to solve the problem partially. In
our case of the target practical application shown in the next section, we could
not solve this problem and introduce a function written in Verilog HDL to avoid
too much long latency. However, we also did it in the previous works with CUDA
and OpenCL descriptions, so this is not a fundamental problem of OpenACC
coding. In our MHOAT solution, invoking functions written in Verilog HDL is
possible.

4 Practical Application Example - ARGOT

As the first target application, we implement ARGOT (Accelerated Radiative
transfer on Grids using Oct-Tree) [11] code developed in the Center for Com-
putational Sciences, University of Tsukuba. It is a fundamental astrophysics
simulation code to analyze how the first objects such as stars and galaxies were
created in the universe about 500,000 years after the Big Bang. That is quite
a short term in more than 13,000,000,000 years of its history. The most impor-
tant source of these objects’ creation is the radiation and the collection of tiny
dust clouds. Radiation spread from a baby star or spatially spread in the uni-
verse affects other small objects to make their growth. There are two kinds of
radiation calculated in the ARGOT code.

— Radiation spread from each Point Source (object) as shown in the left hand
of Fig. 6. It can be calculated similarly to the gravity calculation where tree-
code is applied like ordinary computation in astrophysics. This computing is
named the ARGOT method.

— Radiation spread from long distance objects to be treated as potentially exist-
ing ones to go across the space field as shown in the right hand of Fig. 6. The
calculation is similar to Ray-Tracing, where many light arrows cross the field
and hit objects. This computing is named the ART (Authentic Radiation
Transfer) method [12].

Author Proof

8 T. Boku et al.

4x4 domain decomposition /‘ f f ’

target 1

0 {
A\

tamﬁtz / /‘ ‘1/
N)
/ B
/ <

—a

- \ / N o]

/ ™ /
RS rinsiy,
| source 1 source 2 'I' / / /

Fig. 6. Two methods of radiation transfer: ARGOT (left) and ART (right) methods

Remind that ARGOT code is for the entire application program while
ARGOT method is a part of the computation in the code. So that ARGOT
code mainly consists of ARGOT method and ART method computations as well
as other additional physical phenomena.

Through the past work [5], we found the GPU acceleration does not work
effectively on ART method calculation while it is suitable for ARGOT method
like tree-code on GPUs. There are two main reasons. 1) Memory access pattern in
ART method is almost random where the HBM memory of GPU does not work
effectively, and 2) each radiation arrow to pass the target space is too short for
the SIMD operation of the GPU core. Both features are critical to GPU perfor-
mance, so GPU cannot improve ART method calculation. The serious problem
is that approximately 90% of the computation cost on the GPU-only version of
ARGOT code is consumed for ART method. That means we cannot accelerate
the entire ARGOT code with GPUs only. We implemented the ART method
part to Intel Arial0 FPGA, and achieved about ten times faster performance
than GPU (NVIDIA P100). That is an excellent achievement of FPGA applied
to HPC applications. Since GPUs are still applicable for ARGOT method much
better than FPGA, we decided to apply the CHARM concept to the ARGOT
code, as shown in Fig. 7.

5 Performance Evaluation

5.1 ARGOT Code Implementation for MHOAT

There are several versions of ARGOT code for CPU (with OpenMP) and GPU
(with CUDA and OpenACC). All of them are parallelized by MPI for large scale
computing in domain decomposition manner. However, this paper evaluates only
a single node without MPI.

As described in the previous section, we applied a multi-kernel solution for
domain decomposition within an FPGA on ART method calculation to exploit
the coarse grain parallelism. Eight kernels are running in parallel and connected
by Intel Channel with each other. We define a long macro description to imple-
ment a kernel and use it eight times to duplicate them so that the effort for the

Author Proof

OpenACC Unified Programming Environment 9

— ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree) code —

ART method

for RT from matters
spatially spreading out

O “ {)’ ()

Point Source Diffuse Photon
GPU acceleration FPGA FPGA FPGA FPGA acceleration

ARGOT method

for radiative transfer (RT)
from point source

Fig. 7. ARGOT method and ART method mapping to GPU and FPGA in CHARM
concept for ARGOT code

multi-kernel solution is easy. For inter-kernel communication, we need to apply a
much deeper pipeline buffer on Channel communication than the default param-
eter set. However current version of the OpenARC compiler has no feature for
optional Channel parameter settings. Therefore, we modify this part of OpenCL
code generated from OpenACC by OpenARC compiler with a sort of ‘patch
script’ after compilation.

Since the memory access pattern of ART method is almost random, we allo-
cate all temporal data for target space in BRAM (Block RAM), which is a kind
of SRAM implemented with the same calculation logic circuit. However, since
the capacity of BRAM is limited to just 28 MByte, we keep all the data in
DDR DRAM outside of FPGA, and transfer them according to the calculation
progress. It means that we use BRAM as an addressable cache. That is another
coding technique to enhance the FPGA performance.

As described before, the current MHOAT does not support the device-to-
device data synchronization feature. However, in the ARGOT code, the data
amount transferred between GPU and FPGA is negligible, with less than 1% of
execution time, and it does not impact the performance.

5.2 Performance Evaluation

The target platform consists of two sockets of Intel Xeon E5-2690 v4 as host
CPUs, NVIDIA Tesla V100 (32 GiB HBM2, PCle Gen3x16), and Intel Stratix10
GX2800 FPGA (BittWare 520N card, PCle Gen3x16).

Figure 8 shows the overall performance comparison of the MHOAT solution
on ARGOT code compared with GPU-only code in OpenACC, GPU-only code
in CUDA, and GPU + FPGA code with CUDA + OpenCL. That is the case with
32 x 32 x 32 grid, a relatively small size problem of ARGOT code where the GPU
performance bottlenecks by ART method calculation. The floating point opera-
tion is in single precision. Each bar implies the computation time for ARGOT
method (GPU), ART method (GPU or FPGA), and Others (miscellaneous tasks
mainly working on CPU with OpenMP).

10 T. Boku et al.

0.8
0.7 — B ARGOT method
0.6 - B ART method
0.5 Others
2o4
0.3
0.2
o1 ——
0
OpenAcCC CUDA CUDA+OpenCL MHOAT
(GPU only) (GPUonly) (GPU+FPGA) (GPU+FPGA)

Fig. 8. ARGOT code execution time (1 step) with four styles of programming

At first, we confirmed that the performance gain by CHARM programming is
significantly higher than GPU-only cases, and MHOAT achieves the best perfor-
mance. The ART method calculation performance on GPU is poor because the
excellence of GPU architecture does not fit, so the ART method part dominates
the computation time. For the GPU-only cases on ART method, the efficiency
of OpenACC is slightly higher than CUDA, and it still shows the CUDA coding
with detailed tuning is better than OpenACC. On the other hand, the ARGOT
method calculation on GPU is improved in OpenACC. We have yet to analyze
the reason, but it has a good effect on the MHOAT solution.

Table 1. Breakdown of execution time (sec./step)

OpenACC | CUDA CUDA+OpenCL | MHOAT

(GPU-only) | (GPU-only) | (CHARM) (CHARM)
ARGOT method | 0.033 0.074 0.071 0.026
ART method 0.686 0.559 0.028 0.026
Others 0.023 0.015 0.014 0.023
Total 0.742 0.649 0.113 0.075

Table1 shows the detailed execution time for each computation part in
all cases. In the main computation for ARGOT method and ART method,
the MHOAT solution is the best. However, the miscellaneous tasks take a
long time on MHOAT. In total, MHOAT still keeps the advantage over the
CUDA+OpenCL coding. When we see the two bars in the right hand, it is
clearly saying that the CHARM solution dramatically improves the performance
of this application. Especially by MHOAT, 1) ART method on FPGA has no
performance difference between OpenCL and OpenACC thanks to an efficient
compilation on OpenARC, and 2) ARGOT method calculated on GPU is better
in MHOAT because that performance is better in OpenACC than CUDA as

Author Proof

OpenACC Unified Programming Environment 11

shown in two bars in the left hand. In conclusion, these results show the excel-
lence of the MHOAT solution where the performance of ARGOT code execution
is 9.9 times faster than OpenACC with GPU-only.

Table 2. Source Line Of Count (SLOC) for ART method on OpenCL and OpenACC

OpenCL host | OpenCL kernel | OpenACC
SLOC | 263 945 900

Finally, we examined the source code line counts. The difference between the
naive CUDA+OpenCL coding and MHOAT OpenACC coding for multi-hybrid
computing is shown in Table 2. Here, SLOC (Source Line Of Code) for OpenCL
is 1208 lines, with 263 for the host (CPU) and 945 for the kernel (FPGA). On
the other hand, OpenACC in MHOAT counts just 900 lines. Simply the source
line count is reduced to 75%. Moreover, the user has to understand OpenACC
notation only for easy programming, even for CHARM.

6 Discussion

The concept of CHARM is to provide multi-hetero accelerating environment
on supercomputers where a single kind of accelerator, such as GPU, does not
effectively work partially in the code, while other parts have no performance
problem. That problematic parts bottleneck the total execution performance
according to the Amdahl’s Law. On multi-physics applications especially, that is
a practical problem. Thus, a different kind of accelerator, such as FPGA, could
support and compensate these parts. If the entire code can be accelerated only
by GPU, there is no problem, and GPUs have been used for such cases so far.

MHOAT requires users to specify the computation parts to offload to GPU
or FPGA. On the other hand, Intel oneAPI allows any computation part to
offload to GPU and FPGA. This is because one API assumes offloading any kernel
dynamically for load balancing over multiple devices. However, running the same
kernel code on both is impractical because the performance characteristics are
wholly different depending on the devices. In our concept, a user must choose
the devices how to run each kernel according to its computation behavior. The
performance result of ARGOT code clearly proves it. Therefore, it is unnecessary
to compile all loops (kernels) for FPGA, and perform it only for them to run on
that device.

Another issue is the footprint of the logic circuit of an FPGA device. Since it
is critically limited, there is only room to compile some of the loops for FPGA
in a complicated code. In this viewpoint, we should limit the kernels on FPGA
to only the necessary ones. In conclusion, explicitly limiting the target kernels
for FPGA is a necessary and sufficient condition in the CHARM concept.

Author Proof

12 T. Boku et al.

7 Conclusions

In this paper, we described our concept of CHARM, where multi-hybrid het-
erogeneous computing is a powerful solution for multi-physics simulations such
as complicated astrophysics ones. While GPU is the most powerful and efficient
solution as a representative accelerating computing device, it is imperfect. On
the other hand, FPGA is relatively weak on HPC applications compared with
GPU, but the performance characteristics and architecture behavior are almost
opposite from GPUs. Thus, we combine both devices to compensate for each
other in performance. We developed MHOAT for a single notation programming
framework with OpenACC to support easy programming. In the first practical
application of astrophysics, we achieved approximately ten times higher perfor-
mance on MHOAT-coded astrophysical simulation driven by GPU+FPGA than
traditional GPU-only solution with OpenACC.

Our future works imply the node-parallel extension of ARGOT code with
MPI. It is easy to work because the original OpenACC version of ARGOT
code is already written for MPI, and nothing by MHOAT inhibits it. We have
already done with parallelized CHARM code with CUDA+OpenCL [9] where
we showed a good performance improvement with a parallel environment with
GPU+FPGA. The current version of OpenARC used in MHOAT needs several
enhancements, such as more flexible Channel usage, automatic spatial paral-
lelism improvement such as loop unrolling, etc. Our final goal for ARGOT on
CHARM is to run the program on the full scale of our CHARM-base cluster
Cygnus [4].

Acknowledgements. This work is supported by JSPS KAKENHI (Grant Number
21H04869). The Cygnus utilization is supported by the MCRP 2022 Program by the
Center for Computational Sciences, University of Tsukuba.

References

1. Intel FPGA SDK for OpenCL. https://www.intel.com/content/www /us/en/
software/programmable/sdk-for-opencl/overview.html

2. Nvidia HPC SDK: A comprehensive suite of compilers, libraries and tools for HPC.
https://developer.nvidia.com /hpc-sdk

3. oneAPIL: A new era of accelerated computing. https://www.intel.com/content/
www /us/en/developer/tools/oneapi/overview.html#gs.smg356

4. Boku, T., Fujita, N., Kobayashi, R., Tatebe, O.: Cygnus - world first multi-hybrid
accelerated cluster with GPU and FPGA coupling. In: 2nd International Workshop
on Deployment and Use of Accelerators (DUAC2022) (2022)

5. Fujita, N., et al.: Accelerating space radiative transfer on FPGA using OpenCL. In:
2018 International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies (HEART 2018) (2018). https://doi.org/10.1145/3241793.3241799

6. Hill, K., Craciun, S., George, A., Lam, H.: Comparative analysis of OpenCL vs.
HDL with image-processing kernels on Stratix-V FPGA. In: 2015 IEEE 26th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP2015), pp. 189-193 (2015)

https://www.intel.com/content/www/us/en/software/ programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/ programmable/sdk-for-opencl/overview.html
https://developer.nvidia.com/hpc-sdk
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.smg356
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.smg356
https://doi.org/10.1145/3241793.3241799

Author Proof

10.

11.

12.

13.

14.

15.

OpenACC Unified Programming Environment 13

Kashino, R., Kobayashi, R., Fujita, N., Boku, T.: Multi-hetero acceleration by
GPU and FPGA for astrophysics simulation on intel oneAPI environment. In:
Proceedings of International Conference on High Performance Computing in Asia-
Pacific Region (HPCAsia2022) (2022)

Kobayashi, R., et al.: Multi-hybrid accelerated simulation by GPU and FPGA on
radiative transfer simulation in astrophysics. J. Inf. Process. 28, 1073-1089 (2020).
https://doi.org/10.2197 /ipsjjip.28.1073

Kobayashi, R., et al.: GPU-FPGA-accelerated radiative transfer simulation with
inter-FPGA communication. In: 2023 International Conference on High Perfor-
mance Computing in Asia-Pacific Region (HPCAsia2023) (2023)

Lee, S., Kim, J., Vetter, J.S.: OpenACC to FPGA: a framework for directive-based
high-performance reconfigurable computing. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS2016), pp. 544-554 (2016)
Okamoto, T., Yoshikawa, K., Umemura, M.: ARGOT: accelerated radiative trans-
fer on grids using oct-tree. Monthly Not. Roy. Astron. Soc. 419(4), 2855-2866
(2012)

Tanaka, S., Yoshikawa, K., Okamoto, T., Hasegawa, K.: A new ray-tracing scheme
for 3D diffuse radiation transfer on highly parallel architectures. Publ. Astron. Soc.
Jpn. 67(4), 1-16 (2015)

Tsunashima, R., et al.: OpenACC unified programming environment for GPU and
FPGA multi-hybrid acceleration. In: 13th International Symposium on High-level
Parallel Programming and Applications (HLPP2020) (2020)

Tsuruta, C., Miki, Y., Kuhara, T., Amano, H., Umemura, M.: Off-loading let
generation to peach2: a switching hub for high performance GPU clusters. ACM
SIGARCH Comput. Archit. News 43(4), 3-8 (2016)

Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M., Matsuoka, S.: Evaluating
and optimizing OpenCL kernels for high performance computing with FPGAs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2016), pp. 35:1-35:12 (2016)

https://doi.org/10.2197/ipsjjip.28.1073

	OpenACC Unified Programming Environment for Multi-hybrid Acceleration with GPU and FPGA
	1 Introduction
	2 MHOAT - Single Language Coding for CHARM
	3 OpenACC Coding for High Performance on FPGA
	4 Practical Application Example - ARGOT
	5 Performance Evaluation
	5.1 ARGOT Code Implementation for MHOAT
	5.2 Performance Evaluation

	6 Discussion
	7 Conclusions
	References

