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Abstract—The OpenMP language continues to evolve with
every new specification release, as does the need to validate
and verify the new features that have been implemented by the
different vendors. With the release of OpenMP 5.0 and OpenMP
5.1, plenty of new target offload and host-based features have
been introduced to the programming model. While OpenMP
continues to grow in maturity, there is an observable growth
in the number of compiler and hardware vendors that support
OpenMP.

In this manuscript, we focus on evaluating the conformity
and implementation progress of various compiler vendors such
as Cray, IBM, GNU, Clang/LLVM, NVIDIA, and Intel. We
specifically address the 4.5, 5.0, and 5.1 versions of the speci-
fication. For our experimental setup, we use the Crusher and
Summit computing systems hosted by Oak Ridge National
Lab’s Computing Facilities. The effort of fault-finding in these
implementations is especially valuable for application developers
who are using new OpenMP features to accelerate their scientific
codes. We present insights into the current implementation status
of various vendors, the progression of specific compiler’s support
for OpenMP over-time, and examples of how our test suite has
influenced discussion regarding the correct interpretation of the
OpenMP specification. By evaluating OpenMP conformity of pre-
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Exascale computing systems, we aim to detail progress and status
of AMD + Cray ecosystem before the system and their OpenMP
implementation is used for mission critical applications when the
first Exascale Computer Frontier is made available to researchers
and scientists.

Index Terms—OpenMP, GPU, Offloading, LLVM

I. INTRODUCTION

Seven out of the ten fastest supercomputers in the world
are heterogeneous systems [21]. Heterogeneous systems may
be compromised of a CPU and an accelerator such as GPUs,
FPGAs, APUs, etc., however, the top performing supercom-
puters tend to opt towards a configuration of CPU and GPU.
For two years in a row (June 2020 - June 2022), the Fugaku
A64FX supercomputer produced by Fujitsu and ARM and
hosted by RIKEN Center for Computational Science held the
title for the fastest supercomputer [22] and proved that a CPU
only configuration was able to transcend the performance of
heterogeneous systems like Oak Ridge National Laboratory
(ORNL)’s Summit (IBM Power9 CPU + NVIDIA V100 GPU).

Following the release of ORNL’s Frontier, the world’s first
Exascale supercomputer (HPL score of 1.102 Exaflop/s using
8,730,112 cores) [2], we again see the top supercomputer in
the world is composed of a heterogeneous mix of compute
power (3rd Gen AMD EPYC 64C CPUs and AMD Instinct
MI250X GPU accelerators). As hardware vendors with het-
erogeneous systems in the TOP500, HPE Cray, IBM, Intel,
NVIDIA, and AMD provide software support for various
parallel programming models that allow users to port their
parallel applications to accelerators.

Considering the various changes in hardware architecture
offerings over the years, many programming models and base
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languages are now trying to incorporate parallelism that can
effectively use the CPU as well as the GPUs. For a long time
CUDA [15] has been the first choice for GPU programming.
Developed by NVIDIA, CUDA provides an API to program
GPUs that can be used in applications written in C/C++ or
Fortran. HIP [1]is AMD’s proprietary GPU programming en-
vironment. Although CUDA and HIP offer great performance
for parallel applications, they often require programmers to
rewrite their programs entirely and are platform specific.

As more vendors are entering the GPU market, portable
parallel programming methods are required so that application
programmers can run codes on diverse heterogeneous systems,
such as Summit and Frontier, without massive re-engineering.
Directive based parallel programming models OpenMP [18]
and OpenACC offer an approach that allows users to annotate
their serial code in a more straightforward manner and produce
parallel versions of their applications that will run on many
different architectures.

In preparation for the release of ORNL’s Frontier and other
US Department of Energy (DOE) funded systems, the DOE
Exascale Computing Project sought to prepare an Exascale
software stack to ensure that mission-critical applications are
able to embrace the potential performance boosts offered by
newer generations of hardware. OpenMP is one component
of this software stack. More features that are valuable to
developers continue to be added to the OpenMP specification.

As of May 2022, the compilers that offer support for
OpenMP offloading features (specification version 4.0 and
later) are AMD, Flang, GNU, HPE, IBM, Intel, LLVM,
NVIDIA, and Siemens. While this list of compilers that
support offloading with OpenMP is significant, there are far
less compilers that have continued to expand their OpenMP
implementations for versions 4.5, 5.0, and 5.1. According to
the OpenMP website [17], the only compilers that have any
coverage of OpenMP 5.0 offloading features are AMD, GNU,
HPE, Intel, LLVM, Siemens, and NVIDIA.

OpenMP 5.0 was released in November 2018 and intro-
duced a wide variety of improvements on heterogeneous
target offload and host based features. One new addition,
the requires directive, allows the programmer to request
features from the implementation that must be supported to
enable proper execution of kernels in a given computation unit.
Of these features available for enforcement, reverse offload
and unified shared memory prove to the most valuable as they
enable on-host execution initiated from the offload device and
utilization of a shared memory space between devices, respec-
tively. Another important feature released in OpenMP 5.0 is
the declare mapper directive. The declare mapper
directive now allows the creation of user-defined mappers to
avoid ambiguities that can arise between explicit and implicit
mapping of variables as well as the ability to map members
of a struct or class.

II. BACKGROUND

A. OpenMP

OpenMP Specification provides an Application Program In-
terface (API) to allow programmers to develop threaded paral-
lel codes on shared memory systems. The OpenMP directives
or pragmas are understood by OpenMP aware compilers
while other compilers lacking OpenMP support are free to
ignore them. Usually a flag such as -fopenmp is required at
compile time to activate OpenMP recognition and processing
by the compiler. Along with compiler directives OpenMP also
provides library routines and environment variables for explicit
control.The OpenMP parallel directive generates parallel
threaded code where the original thread becomes thread “0”.
The new league of threads share resources of the original
thread and the specific data-sharing attributes of variables can
be specified based on usage patterns of the application. A basic
usage example of the parallel directive is provided in the
code-snippet below.

1 int A[N][N], B[N][N], C[N][N];
2 // initialize arrays
3 #pragma omp parallel for
4 for (int i = 0; i < N; ++i) {
5 for (int j = 0; j < N; ++j) {
6 C[i][j] = A[i][j] + B[i][j];
7 }
8 }

Listing 1: Simple C program using OpenMP for matrix-matrix
addition

B. Offloading to Devices

OpenMP device directives such as target provide mech-
anisms for an OpenMP program to offload parallel code and
data to target devices. OpenMP offers three levels of paral-
lelism (teams, threads, and simd lanes), but typical devices
provide only two levels of parallelism; Intel CPUs offer thread
and simd level parallelism, NVIDIA GPUs provide thread-
block and thread level parallelism, and AMD GPUs provide
work-group and work-item level parallelism. Therefore, dif-
ferent OpenMP compilers can choose different parallelism
mapping depending on target devices. For example, many of
the existing OpenMP compilers largely ignore simd clauses
when targeting GPUs (mapping OpenMP teams to GPU thread
blocks and OpenMP threads to GPU threads), but the simd
clause may play an important role when targeting CPUs
(mapping OpenMP threads to CPU threads and OpenMP simd
lanes to CPU simd lanes).

OpenMP provides a relaxed-consistency, shared-memory
model for a given device, which allows all OpenMP threads to
access the device memory to store and retrieve variables. In the
OpenMP device data environments, each device has its own
device data environment, which may or may not share storage
with other devices. OpenMP device directives offer various
data-mapping options (via map) to specify how an original
variable is mapped from the current task’s data environment to
a corresponding variable in the target device data environment.
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1) New 5.X Features
As newer architectures continue to evolve, so does the

feature requirements of parallel applications. To accommodate
these needs, the OpenMP ARB continues to add new features
to the specification. One of the more intriguing features that
was added in the 5.0 specification is the metadirective, which
allows a program to run different variants of an OpenMP direc-
tive as determined by a conditional statement. The metadirec-
tive provides the when clause, which receives arguments like
arch (architecture) and isa (instruction set architecture). A
common use case for this directive would be when architecture
is NVIDIA or when(arch==nvidia) we can call one
OpenMP directive, say #pragma omp target. When this
condition is not met, we can instead define a default behavior
such as #pragma omp parallel. In 5.1, the error
directive and nothing directive were added specifically for
usage with the metadirective clause, and enable run time errors
or non-action behaviors to occur when a condition in the when
clause is not met.

The declare target directive, also introduced in 5.0,
allows the user to explicitly ensure that procedures and global
variables can be accessed on a device. A key functional-
ity of this new directive is allowing a user to create only
device version, only host version, or both versions of a
function that they wish to be included in the device memory.
Functionality induced by this clause is somewhat similar to
metadirective in that a user can make a host only or
device only version of a function or global variable accessi-
ble. However, metadirective offers the added bonus of
triggering different behavior based on a conditional statement.

Many of the features introduced in 5.0, such as
metadirective and requires, are implementation-
dependent, meaning compiler vendors have some variability
in the manner by which they choose to implement these
features. The requires directive inherently requests that
an implementation must be able to provide a certain be-
havior in order to compile and run a program correctly.
The certain behaviors that can be requested or ’required’
by the programmer are reverse offloading, unified address,
unified shared memory, atomic default memory ordering, and
dynamic allocators. A user can request reverse offloading
using #pragma omp requires reverse_offload at
the top of their program. If the implementation does not have
support for this feature, the program will either ignore the
requires statement and issue a compiler warning or rather
issue a compile error.

The declare variant directive, again, can be utilized
to achieve a similar functionality as the metadirective
and
declare target directive. Utilizing the same context-
selector-specification field as the metadirective,
declare variant can call a different version of a
provided base function, based on the context or conditional
statement with which the directive is associated.

Marching forward, OpenMP 5.1, released in November
2020, introduces features such as the assume, nothing,

scope,
interop directives, loop transformation constructs, new
modifier clauses that extend the taskloop construct, newer
support for indirect calls to the device version of a function
in target regions, amongst others.

OpenMP 5.2 was released in November 2021 and continues
to add onto the previous OpenMP developments. OpenMP 5.2
specifically made improvements in its memory allocators, use
of Fortran PURE procedures, and use of the scope construct.
OpenMP 5.2 also includes simplified unstructured data offload
use, extended support of user-defined mappers, more consis-
tent linear clause, and refined OpenMP directives syntax.

III. MOTIVATION

The need to validate and verify the compiler implementa-
tions of OpenMP features becomes more important than ever
as the Frontier supercomputing systems being made available
for use by application and software developers. This paper
elaborates on the validation and verification testsuite creation
strategy, its workflow, statistics on OpenMP features’ coverage
and challenges faced while writing tests for corner cases.
Results and discussions entail evaluation of compilers’ current
status of stability and maturity of implementations, types of
errors, and discussions that have led to the language committee
revisiting the verbiage used in the specification.

IV. SOLLVE VALIDATION AND VERIFICATION SUITE

A. Test Creation Strategy

Within every new release of the OpenMP specification,
there is a section that details the differences between the most
current version and its predecessor, which essentially outlines
all of the new features that are provided to users. Compiler
developers from LLVM, GNU, and more take this differences
list, or a similar list potentially provided by the OpenMP ARB,
and formulate a to-be-implemented list that is typically hosted
on their website. For LLVM, each of the features will have
a status associated with it that describes the progress made
thus far in implementing: either unclaimed, worked on, mostly
done, not upstream, or done. Our development of feature tests
is dictated first by the ECP application needs. Through our
interactions with the Application Development (AD) teams we
create a priority list of the most desired features from the new
features introduced. When writing a new test for an already
implemented feature, we start by interpreting the usability
of the feature that is outlined by the specification. Then,
we outline the potential combinations of options that may
be presented, for example the default clause, which was
introduced in OpenMP 5.1, has options for firstprivate,
private, and lastprivate. For this example, we would
need to create three tests to encapsulate the full functionality
of this new feature. Lastly, we pay careful attention to the
’restrictions’ section of each feature, to ensure that the test we
are writing does not violate boundaries that have been outlined
by the OpenMP ARB. In the case of OpenMP features that do
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not have implementations, generating a brand new test that is
both syntactically correct and accurate can prove difficult.

In either case we ensure the test meets all conditions and re-
strictions noted in the specification and provides adequate error
checking in case of failure. During this stage of development
it is common to receive feedback from other collaborators
on how to approach or improve the test, especially on new
tests that do not have implementations. After the test has been
written it enters a review process. This process includes having
each test independently verified by two other collaborators,
internal or external to our team. Once the test is approved by
at least two collaborators, it is merged into the main testing
suite. A visual flowchart of our workflow is depicted in Figure
1

Fig. 1: Process flow demonstrating the typical test creation
process.

B. OpenMP 5.x+ Feature Coverage

Currently, our testsuite includes 258 5.0 tests, 45 5.1 tests
& 6 5.2 tests. Our 5.0 coverage includes a mix of Fortran & C
versions while the majority of our 5.1 tests are coded in C. We
have created tests for a vast majority of 5.1 features. Our pri-
orities related to which 5.1 tests we should write first is based
not only on which features LLVM has already implemented,
but also on the needs of SOLLVE application developers,
starting with high-priority, implemented features, and working
our way to low-priority non-implemented features. Out of the
13 features listed in the ”medium to very-high” range by
application teams, 10 have tests written for them. In order
to increase our 5.1 coverage, we will continue to create tests
in C as a base-line, and afterwards create Fortran versions of

these tests. Once our team has written test cases for all of the
new features in C and Fortran, our primary focus will shift
toward 5.2 features.

C. Challenges

1) Testing Unimplemented Features
Often times we undertake writing test cases for new

OpenMP features that are not yet implemented by any of the
major compiler vendors. This makes the OpenMP specification
one of the only resources, with which we may have to
understand how the feature would work once implemented.
This can lead to some issues when attempting to develop
strong tests for new features. A prime example of this is when
we wrote the test case for the nothing clause extension of
the metadirective construct.

Here is an example of a simple implementation:

1 #pragma omp metadirective \
2 when( device={arch("nvptx")}: nothing) \
3 default( parallel for )
4 {
5 for (int i = 0; i < N; i++) {
6 A[i] += 2;
7 }
8 }

Listing 2: Simple usage of the nothing clause with the
metadirective

At a high level, the metadirective provides a way to dynam-
ically change what OpenMP constructs are rendered. In the
example above, if the code is offloaded to an NVIDIA device
then the nothing clause would be rendered. If not, it would
default to a parallel for loop. At first glance this seems
pretty intuitive. Our initial interpretation of the specification
was that the nothing clause would simply negate the code.
In other words, it would not run the for loop if the code was
running on an NVIDIA device. Based off the specification
itself and various examples this seemed to be correct. This then
lead to the bigger question of how to properly test nothing.

We initially tested this by looking for any spawned threads,
or signs that the array had been changed and thus the code had
run despite the nothing clause. This seemed promising, but
just as the test was beginning to take shape, we discovered our
interpretation was not actually how compilers were implement-
ing it. As often times with new features in the specification,
explanations can be vague. The nothing clause when used
outside of the metadirective simply means that OpenMP would
ignore the pragma. However, the code would still run in serial.
This meant our initial version of the test was wrong and needed
to be amended.

Ultimately we reworked the test to determine if the metadi-
rective had properly used the nothing directive by checking
if the code was running in parallel instead of just checking
for threads by leveraging the runtime omp_in_parallel
function. This function would only return 1 if the code is
running in parallel. In our example above, that would mean it’d
only be 1 if the nothing directive was not rendered properly.
This ended up being a much more robust way to test the
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nothing clause with metadirectives and was utilized in the
final version.

The nothing metadirective test is a perfect example of the
challenges of building tests for cutting-edge OpenMP features.
Our initial version of a test is not always how the compiler
developers interpret the specification’s intentions. This is why
each and every test is rigorously reviewed to make sure each
version fully tests the feature in question. Sometimes, like
in this case, review can lead to entire rewrites when new
interpretations and implementations surface.

2) Unclear Specification
Another example of confusion relating to interpretation

of the specification arose when writing a test case for the
has_device_addr clause, added to the target construct
in OpenMP 5.1. The description of this clause states: ”The
has_device_addr clause indicates that its list items al-
ready have device addresses and therefore they may be directly
accessed from a target device.” [16] While this may seem
straight-forward, the purpose of this is relatively unclear.
Should these list items be mapped first, and then marked as
on the device? If they are already on the device, what is the
benefit of listing them there? How do we ensure that the list
items are not unmapped at the end of a target region so that
we can ensure they are on the target region when utilizing
the clause? The difference between use_device_addr and
has_device_addr is not explicitly clear.

Furthermore, this clause was not listed on the OpenMP
examples document. [3] This document is often used by our
team to assist in creation of tests that have no yet been
implemented, as that document is the only official resource
supported by the OpenMP ARB which shows the intended
purpose and proper syntax of a new feature.

1 #pragma omp target enter data map(to: x, arr)
2 #pragma omp target data use_device_addr(x, arr)
3 #pragma omp target map(from:

second_scalar_device_addr,
second_arr_device_addr) has_device_addr(x,
arr)

4 {
5 second_scalar_device_addr = &x;
6 second_arr_device_addr = &arr[0];
7 }
8 #pragma omp target exit data map(release: x, arr)

Listing 3: Simple example of has device addr directive
Our agreed-upon solution for this test arose only after

having community-driven detailed discussion on the directive’s
purpose and the implicit mapping of target directive. We
decided that a target enter data map should be used
to ensure variables are properly mapped to the device. Then,
the use_device_addr and has_device_addr can be
used in tandem to ensure the variables maintain their device
addresses in the target region.

V. RESULTS AND DISCUSSION

A. Results from Summit
The following subsections shows results of GNU, LLVM

and NVHPC compilers and their maturity over time, on
Summit.

1) GNU Maturity Over Time
For the GNU results shown in Figures 2, 3 & 4, we

only utilize stable releases of the compiler that are made
available on OLCF’s Summit supercomputer. Regarding the
GNU compilers, GCC and G++, there is seemingly a linear
increase in support for both 4.5 and 5.0 features in OpenMP
across major version releases. It is also important to note that
GNU-11.2.0 is the first version of the compiler that supports
features described in the OpenMP 5.1 specification. Version 12
Release of GNU supports far more 5.1 features than version
11.2.0, so any users attempting to utilize OpenMP 5.1 and
5.2 features with the GNU compiler should aim to use GNU
version 12.

2) LLVM Maturity Over Time
The results presented in Figures 2, 3 & 4, are for Clang

and Clang++ using the LLVM-13 stable release, LLVM-14
stable release, and the LLVM-15 developmental release on
OLCF’s Summit supercomputer. It is important to note that
LLVM provides an -fopenmp-version flag that allows
you to clarify to the compiler which specification version of
OpenMP you would like to compile for. This is vital for testing
various implementations of features, as many times features
will get redefined by new versions of the specification. For
example, the master construct in OpenMP 5.0 was renamed
to masked in OpenMP 5.1. The important thing to note here
is that LLVM continues to introduce more and more OpenMP
5.1 features. There are some rollbacks in 4.5 and 5.0 which
could be due to features being ’completed’ and then reopened
for further investigation, becoming ’partial’.

3) NVHPC Maturity Over Time
The results collected in Figures 2, 3 & 4, regarding NVHPC

are on OLCF’s Summit supercomputer system. We targeted the
last three stable releases of the NVIDIA HPC compiler suite
including the latest, 21.11. For these results, it is important to
note that while coverage for 4.5 is about complete, acceleration
of coverage for 5.0 has not increased quickly over the last few
releases. Additionally, none of the 45 features that we have
written tests for OpenMP 5.1 for are supported.

B. Results from Crusher - A Pre-Frontier System

Here we share the evaluation of compiler implementations
on Crusher. We evaluate AMD ROCm and Cray CCE compil-
ers.

1) ROCm Maturity Over Time
The results listed in Figure 5 are from the Pre-Frontier

Crusher system and show 4 versions of AMD’s developmental
HPC ROCm compiler. Results show a leap in OpenMP im-
plementation from version 4.5.0 to version 5.0.0, but minimal
changes there onward. It is interesting to note that one C
test now passed from version 5.1.0, but one Fortran test now
fails. This, again, could be due to features requiring more
investigation or being changed in newer versions of OpenMP.

2) CCE Maturity Over Time
The results listed in Figure 5 also show the Cray Compil-

ing Environment (CCE) results on Crusher. The results only
include CCE 14.0.0 & CCE 14.0.1 versions, as the only other
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Fig. 2: OpenMP version 4.5 on Summit. This plot shows the tests written in C,C++,Fortran for OpenMP version 4.5 run on
Summit using various compilers (GCC,LLVM,NVHPC).These test have been run on three different versions of the compilers
listed above GCC(v9.3.0,v10.2.0,v11.1.0) LLVM(v13,v14,v15) and NVHPC(v21.7,v21.9,v21.11) Later versions were not tested
due to unavailability. A total of 228 tests were conducted of which 100 are on Fortran, 114 are on C and 14 are on C++ Taking
GCC v11.1.0 into account 99.1% of tests pass have passed. The only test that have failed on this compiler are 2 C tests out
of the 114 C tests. The greatest improvement is seen across GCC with a pass rate of 89.9% on v9.3.0 improving to 99.1% on
v11.1.0. LLVM’s performance was stagnant with a pass rate of 56.1% because of all the Fortran tests failing.

versions available on Crusher, 13.0.0 & 13.0.2 do not work
properly with OpenMP. These versions require dependencies
from both ROCm 4 & ROCm 5, which cannot be loaded at the
same time. The results show decent performance, with around
80% of tests passing for version 14.0.0, increasing slightly
with 5 more Fortran tests passing in 14.0.1. It is interesting
to note that C implementation for CCE & ROCm compiler is
nearly identical, but Fortran implementation on CCE is slightly
better.

VI. IMPACTING OPENMP THROUGH COMMUNITY
INTERACTION

A. How Our Test Suite Impacts the OpenMP Community

Our team frequently interacts with compiler vendors and
open source compiler developers through the means of issues
and pull requests on our GitHub. Whether it be including our
tests in their continuous integration pipeline, using our tests
to validate the specific implementation of an OpenMP feature,
or using our test cases to see an example of proper usage a
specific feature, we find that some organizations and software
developers certainly benefit from the availability and constant
maintenance of our test suite. And regardless of the reason
for interacting with us, it is apparent that our test suite is
one of the only places to find concrete use-case examples for
new OpenMP features that have not been implemented yet.

Many times we may adapt a test or take inspiration from
the OpenMP Examples document, but we would be selling
ourselves short if we said that we have not contributed some
of the only publicly available use cases of new OpenMP
features. When creating a test for a feature that has no easy
to find examples online, we run into situations where we
may misinterpret the specification. Other times, we run into
issues where the specification itself is not clear and could be
interpreted many different ways. Either way, putting out a new
test often generates discussions amongst people who monitor
our test suite, and sometimes this discussion may result in
submitting issues to the OpenMP Language Committee.

B. Usage Error leads to Upstream Patch in GCC

The test cases we create can also help expose miss-
ing aspects of a specific compiler’s implementation. In one
instance https://github.com/SOLLVE/sollve vv/issues/409, we
were developing a test to evaluate the new metadirective
feature. The goal of the test was to check that we can
use context-selectors to determine which vendor provided the
implementation, either AMD or NVIDIA in this case. Then,
depending on which vendor produced the current implementa-
tion, we would run with a different number of threads, 32 for
NVIDIA or 64 for AMD. After approving and merging this
test, a developer from NVIDIA noticed that we had incorrectly

6
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Fig. 3: OpenMP version 5.0 on Summit. This plot shows the tests written in C, C++, Fortran for OpenMP version 5.0 run on
Summit using various compilers (GCC,LLVM,NVHPC).These test have been run on three different versions of the compilers
listed above GCC(v9.3.0,v10.2.0,v11.1.0) LLVM(v13,v14,v15) and NVHPC(v21.7,v21.9,v21.11). Later versions were not tested
due to unavailability. A total of 211 tests were conducted of which 47 are on Fortran, 151 are on C and 13 are on C++. Taking
NVHPC v21.9 into account 36.5% of tests pass have passed. The major contributing factor to the low percentage are the 109
C tests that have failed out of the 151 C tests. The greatest improvement is seen across GCC with a pass rate of 53.5% on
v9.3.0 improving to 82.4% on v11.1.0.

used an omp_is_initial_device runtime call strictly
nested inside of a teams region as shown below.

Although this test was not for the teams directive, nor for
omp_is_initial_device, this mishap led GCC to add in
additional API call checks for constructs strictly nested inside
teams https://gcc.gnu.org/PR102972

1 #pragma omp metadirective \
2 when( implementation=vendor(nvidia): \
3 teams num_teams(512) thread_limit(32) ) \
4 when( implementation=vendor(amd): \
5 teams num_teams(512) thread_limit(64) ) \
6 default (teams)
7 which_device = omp_is_initial_device();
8 #pragma omp distribute parallel for
9 for (i = 0; i < N; i++) {

10 a[i] = i;
11 }

Listing 4: Incorrectly Strictly Nested OpenMP runtime call

C. Changes to the OpenMP 6.0 Specification

1) Discussion of Test Case Leads to Specification Issue
In another instance, a line of questioning regarding one

of our already peer reviewed and merged pull requests that
came in the form of a GitHub issue led to discussion with the
OpenMP Language Committee. The issue, also described here
https://github.com/SOLLVE/sollve vv/issues/426 and shown
in the code caption below, pointed out a unique case where

a local variable is mapped to the device using a target
enter data map, but is not explicitly mapped again on
the target region itself. The stack variable is then treated as
firstprivate in the target region and is not deallocated
properly causing the stack address to be reused by a different
stack variable. In this case, confusion arises due to discrepan-
cies in the present table and produces a runtime error. The fix
we agreed upon with the community member who discovered
this issue is to free memory on the device associated with the
stack variables before the lifetime of said variable ends on the
host. Even though we were able to resolve this runtime error
through deallocating the variable at the proper time, it became
clear that there is no wording in the OpenMP specification
that states that an OpenMP programmer must use a target
exit data or similar directive to ensure that the lifetime of
a variable does not end before it has been unmapped from a
device data environment. An issue was filed with the OpenMP
specification for inclusion in the 6.0 specification, but has not
been resolved or merged yet.

1

2 #pragma omp target enter data map(to: val) depend
(out: val)

3

4 #pragma omp target map(tofrom: isHost) map(alloc:
h_array[0:N]) depend(inout: h_array) depend(
in: val)
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Fig. 4: OpenMP version 5.1 on Summit. This plot shows the tests written in C and C++ for OpenMP version 5.1 run on
Summit using various compilers (GCC,LLVM,NVHPC). These test have been run on three different versions of the compilers
listed above GCC(v9.3.0,v10.2.0,v11.1.0) LLVM(v13,v14,v15) and NVHPC(v21.7,v21.9,v21.11) Later versions were not tested
due to unavailability. Varied number of tests were conducted with the number of C test varying between 13-20 and a single
C++ test. Taking LLVM v14 into account 46.6% of tests pass have passed. Half of the 14 C test have failed. The greatest
improvement is seen across GCC with a pass rate of 7.1% on v9.3.0 improving to 73.3% on v11.1.0. NVHPC’s performance
was stagnant with a pass rate of 6.6% because of all the C tests failing.

5 {
6 isHost = omp_is_initial_device();
7 for (int i = 0; i < N; ++i) {
8 h_array[i] = val; // val = DEVICE_TASK1_BIT
9 }

10 }

Listing 5: Confusion surrounding lifetime of stack variable var
2) New Clarification Introduced due to Test Case Discus-

sion
Further success resulted from our test case of the

recently added allocate directive https://github.com/
SOLLVE/sollve vv/pull/440. An in depth discussion regarding
whether a certain variable could or could not be explicitly
mapped, led to the inclusion of the following language in the
restrictions of the threadprivate directive: ”A variable that is
part of another variable (as an array element or a structure
element) may appear in a threadprivate directive only if it is
a static data member of a C++ class.”

3) Potential Change from Test Case Discussion
A unique test we created covered a reduction on the device

with two array elements from the same array. This issue is still
pending on the OpenMP internal GitHub, and has generated
discussion regarding whether allowing this behavior is even
plausible since it is likely inefficient. See code listing below.

1

2 temps[0] = 0;

3 temps[1] = 0;
4

5 #pragma omp target map(tofrom: temps)
6 {
7 #pragma omp parallel reduction(+:temps[0], temps

[1])
8 {
9 temps[0] += 1;

10 temps[1] += 1;
11 }
12 }

Listing 6: Restrictions common to reduction clauses

VII. RELATED WORK

Work on OpenMP offloading has evolved in the past several
years. Updated information on the various compiler tools
and their coverage of OpenMP implementations especially
offloading features can be found here [17].

Following are some of related works on the validation and
verification of OpenMP implementations that includes features
prior to offloading as well [6], [7], [13], [14], [23]. These
works have been highlighting ambiguities in the specifications
and reporting compiler/runtime bugs thus enabling application
developers to be aware of the status of the compilers.

Other related work includes Csmith [24], a comprehensive,
well-cited work where the authors perform a randomized
test-case generator exposing compiler bugs using differential
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Fig. 5: ROCm and CCE on Crusher. This plot shows the tests written in C, C++, Fortran for OpenMP run on Crusher using
ROCm versions v4.5.2, v5.0.0, v5.0.2, v5.1.0, v5.2.0 and CCE versions v14.0.0, v14.0.1. Later versions weren’t tested due to
unavailability. It is important to note that earlier version of CCE, such as version 13.0.0, weren’t able to be tested as an error
is present when using the ROCm libamdhip64.so dependency, with both ROCm version 4 & ROCm version 5 dependencies
required. A total of 487 tests were conducted, of which 172 are on Fortran, 289 are on C and 26 are on C++. After ROCm
version 4.5.2 we see a slight jump in the pass rate, from 72.3% to a constant 79.8% for the following versions. CCE performed
well, with 80% pass rate, which slightly increases in CCE 14.0.1 with 5 more Fortran tests passing.

testing. Csmith detects compiler bugs, however the strategy
entails automatically mapping a randomly generated failed
test to a bug that actually caused it. Such a strategy would
be effective on implementations that are stable and mature.
However in our case, we have frequent communication with
vendors with respect to discussing and reporting bugs, we also
require to use combined and composite directives that need to
be tested prior to marking a bug as a compiler or a runtime
error. To that end the testsuite is not quite ready to use an
approach like that used in Csmith.

Other related work includes the parallel testsuite [8] that
chooses a set of routines to test the strength of a computer
system (compiler, runtime system, and hardware) in a variety
of disciplines with one of the goals being to compare the abil-
ity of different Fortran compilers to automatically parallelize
various loops. The Parallel Loops test suite is modeled after the
Livermore Fortran kernels [12]. Overheads due to synchroniza-
tion, loop scheduling and array operations are measured for
the language constructs used in OpenMP in [20]. Significant
differences between the implementations are observed, which
suggested possible means of improving future performance.
A microbenchmark [4] suite was developed to measure the
overhead of the task construct introduced in the OpenMP 3.0
standard, and associated task synchronization constructs.

The LLVM open-source compiler infrastructure [11] has a

testing setup called lit testing tool, which by itself does not
contain accelerator (offloading) tests except for a very few tests
on offloading and tasking. The LLVM testing infrastructure
contains regression tests and whole programs. These regres-
sion tests are expected to always pass and should run before
every commit. These tests are designed to test the various
features of LLVM. Our OpenMP offloading testsuite has been
loosely integrated into the LLVM lit infrastructure and we soon
plan to tighten up this integration. This way the testsuite can
consistently validate and verify OpenMP’s offloading features
being implemented within LLVM.

These above mentioned work are some of the closely related
work that focuses on tests being built and measuring overheads
of implementations. There are several other related efforts
that evaluate implementations using proxy, mini- or real-world
applications. These work focus on mostly for performance
evaluation and not the validity of the implementations. Some
of these work include [5], [9], [10], [19].

VIII. CONCLUSION

Application Developer teams often use OpenMP to improve
the performance of their code. Newer versions of OpenMP
are released every other year which include GPU offloading
features, and it is vital that these features are implemented by
compiler vendors & system managers. Our testsuite ensures
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developers know what systems & compilers perform the most
optimally for C, C++ & Fortran. Some newer features, such
as the metadirective and nothing directives, combined
with an unclear specification make features difficult to test.

We have ran our suite on multiple systems, including
ORNLs’ Summit system and the Pre-Frontier systems Crusher
with multiple compilers. Overall, it is obvious GCC, Clang
& NVHPC perform similarly for OpenMP 4.5 features, while
NVHPC falls behind in later versions. LLVM’s lack of Fortran
compiler makes it difficult to compare these compilers as a
whole, though. On Crusher, which uses an AMD GPU, both
ROCm and CCE have better support but do not progress much
over version releases.

Despite challenges presented to test writing, compiler imple-
mentation continues to improve over time and newer versions
of OpenMP feature tests, presently supporting OpenMP 5.2,
are being included in our testsuite.
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APPENDIX

A. Abstract

This paper explores the conformity and implementation pro-
gress of various compilers for the OpenMP 4.5, 5.0 and 5.1
release specifications. Various scripts were built for testing the
implementation, and to gather results from various systems.
This repository includes information on the resources such as
scripts, hardware, software and other dependencies that can be
used to reproduce the results that are being used in the paper.

B. Artifact Availability

Software Artifact Availability: All software is maintained in
an repository under Open-Source License BSD-3.

Hardware Artifact Availability: There are no author-created
hardware artifacts.

Data Artifact Availability: All data, except Crusher results
are available on our website and is under Open-Source License
BDS-3. Crusher results are under the discretion of OLCF.

Proprietary Artifacts: There are no author-created propritary
artifacts.

List of URLs and/or DOIs where artifacts are available:
https://github.com/SOLLVE/sollve vv
https://crpl.cis.udel.edu/ompvvsollve

C. Baseline experimental setup, and modifications made for
the paper

1) Summit
Relevant hardware details: [2x] IBM’s 22 SIMD Multi-Core

POWER9 CPUs, 512 GB of DDR4, [6x] NVIDIA Tesla V100
Operating systems and versions: Red Hat Enterprise Linux

(RHEL) version 8.2
Compilers and versions: GCC 11.2.0 IBM XL 16.1.1-10
Applications and versions: CUDA 11.5.2
Libraries and versions: OpenMP 4.5, 5.0, & 5.1
Paper Modifications: No modifications were made
2) Crusher
Relevant hardware details: 64-core AMD EPYC 7A53 CPU,

512 GB of DDR4, [4x] AMD MI250X
Operating systems and versions: SUSE Linux Enterprise

Server 15.3 SP3
Compilers and versions: Cray CCE 14.0.0 & 14.0.01, AMD

ROCm 4.5.0, 5.0.0, 5.1.0 & 5.2.0
Applications and versions: No applications were used
Libraries and versions: OpenMP 4.5, 5.0 & 5.1
Paper Modifications: No modifications were made

D. Summit results generation script

1 #!/bin/bash
2

3 #Load GCC
4 module load gcc/11.2.0
5 module cuda
6 module python
7

8 #run testsuite for 4.5
9 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=4.5 all

10

11 #run testsuite for 5.0
12 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.0 all

13

14 #run testsuite for 5.1
15 make CC=gcc CXX=g++ FC=gfortran LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.1 all

16

17 #Load Clang
18 module use /sw/summit/modulefiles/ums/stf010/Core
19 module load llvm/15.0.0-20220420 #might need to

change this version :)
20 module load cuda
21

22 #run testsuite for 4.5
23 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=4.5 all

24

25 #run testsuite for 5.0
26 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=5.0 all

27

28 #run testsuite for 5.1
29 make CC=clang CXX=clang++ FC=flang LOG_ALL=1 LOG

=1 VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=
nvidia SYSTEM=summit OMP_VERSION=5.1 all

30

31 #Load ibm
32 module load xl/16.1.1-10
33 module load cuda
34

35 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1
VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=4.5 all

36

37 #run testsuite for 5.0
38 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.0 all

39

40 #run testsuite for 5.1
41 make CC=xlc CXX=xlc++ FC=xlf_r LOG_ALL=1 LOG=1

VERBOSE=1 VERBOSE_TESTS=1 DEVICE_TYPE=nvidia
SYSTEM=summit OMP_VERSION=5.1 all

42

43 make report_summary
44 make report_json
45 mv report_json summit_results.json

Listing 7: Summit script

E. Crusher result generation commands

1 #Load rocm
2 ml rocm
3 #Load cray
4 ml PrgEnv-cray
5

6 #run testsuite for cce/14.0.0
7 ml cce/14.0.0
8 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1

OMP_VERSION=4.5 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

9 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.0 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

10 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.1 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all
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12 #run testsuite for cce/14.0.1
13 ml cce/14.0.1
14 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1

OMP_VERSION=4.5 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

15 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.0 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

16 make CC=cc CXX=CC FC=ftn LOG=1 LOG_ALL=1
OMP_VERSION=5.1 VERBOSE=1 VERBOSE_TESTS=1
SYSTEM=crusher DEVICE_TYPE=amd all

17

18 #run testsuite for rocm/4.5.0
19 module load PrgEnv-amd
20 module load rocm/4.5.0
21 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

22 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

23 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

24

25 #run testsuite for rocm/5.0.0
26 module load rocm/5.0.0
27 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

28 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

29 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

30

31 #run testsuite for rocm/5.1.0
32 module load rocm/5.1.0
33 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

34 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

35 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

36

37 #run testsuite for rocm/5.2.0
38 module load rocm/5.2.0
39 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1

LOG_ALL=1 OMP_VERSION=4.5 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

40 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.0 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

41 make CC=amdclang CXX=amdclang++ FC=ftn LOG=1
LOG_ALL=1 OMP_VERSION=5.1 VERBOSE=1
VERBOSE_TESTS=1 SYSTEM=crusher DEVICE_TYPE=
amd all

Listing 8: Crusher Commands

F. Sample Result Output

Shown below is a single test result sampled from the
results json file generated by the Crusher results generation
commands

1 {
2 "Binary path": "bin/alpaka_complex_template.cpp",
3 "Compiler command": "amdclang++ -I./ompvv -std=c

++11 -lm -O3 -fopenmp -fopenmp -fopenmp-
targets=amdgcn-amd-amdhsa -Xopenmp-target=
amdgcn-amd-amdhsa -march=gfx90a -
D__NO_MATH_INLINES -U__SSE2_MATH__ -
U__SSE_MATH__",

4 "Compiler ending date": "Thu 14 Jul 2022 04:30:15
PM EDT",

5 "Compiler name": "amdclang++ AMD clang version
13.0.0 (https://github.com/RadeonOpenCompute/
llvm-project roc-4.5.0 21422
e2489b0d7ede612d6586c61728db321047833ed8)",

6 "Compiler output": "",
7 "Compiler result": "PASS",
8 "Compiler starting date": "Thu 14 Jul 2022

04:30:03 PM EDT",
9 "OMP version": "4.5",

10 "Runtime ending date": "Thu 14 Jul 2022 04:30:15
PM EDT",

11 "Runtime only": false,
12 "Runtime output": "\u001b[0;32m \n\n running: bin

/alpaka_complex_template.cpp.run \u001b[0m\
nalpaka_complex_template.cpp.o: PASS. exit
code: 0\n\u001b[0;31malpaka_complex_template.
cpp.o:\n[OMPVV_INFO: alpaka_complex_template.
cpp:40] Test is running on device.\n[
OMPVV_INFO: alpaka_complex_template.cpp:58]
The value of errors is 0.\n[OMPVV_RESULT:
alpaka_complex_template.cpp] Test passed on
the device.\u001b[0m\n",

13 "Runtime result": "PASS",
14 "Runtime starting date": "Thu 14 Jul 2022

04:30:14 PM EDT",
15 "Test comments": "none",
16 "Test gitCommit": "98cae2b",
17 "Test name": "alpaka_complex_template.cpp",
18 "Test path": "tests/4.5/application_kernels/

alpaka_complex_template.cpp",
19 "Test system": "crusher"
20 }

Listing 9: Sample results json output
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