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Structure of coagulation factor VIII bound to a
patient-derived anti–C1 domain antibody inhibitor
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KEY PO INT S

• The structure of FVIII
bound to an anti–C1
domain antibody
inhibitor reveals a novel
epitope.

•Antibody binding
blocks multiple lysine
and arginine residues
implicated in FVIII
endocytosis by
dendritic cells.
26
The development of pathogenic antibody inhibitors against coagulation factor VIII
(FVIII) occurs in ~30% of patients with congenital hemophilia A receiving FVIII
replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti–
C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia
A. In addition to potently blocking FVIII binding to von Willebrand factor and phos-
pholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1
(LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells.
Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of
KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that
the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which
constitute membrane-binding loops in the C1 domain. Further analysis revealed that
multiple FVIII lysine and arginine residues, previously shown to mediate binding to
25/blood_bld-
LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site.
Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor
and provide structural evidence for engineering FVIII with reduced LRP1–mediated clearance.
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Introduction
Hemophilia A is an X-linked recessive bleeding disorder
afflicting 1 in 4065 male births worldwide and is characterized
by defective or deficient coagulation factor VIII (FVIII), leading
to uncontrolled bleeding events.1 The formation of pathogenic
antibody inhibitors against FVIII occurs in 30% of patients with
congenital hemophilia A receiving FVIII replacement therapy as
well as in all cases of acquired hemophilia A.2 Most of the
characterized antibody inhibitors target the A2, C1, and C2
domains of FVIII and disrupt coagulation mechanistically. Anti–
C1 domain inhibitor antibodies can block FVIII binding to von
Willebrand factor (VWF) and phospholipid surfaces, resulting in
premature proteolytic degradation, clearance of FVIII, and/or
impeding access to membrane surfaces, in which activated FVIII
serves to nucleate the intrinsic tenase complex. KM33, a group
AB anti–C1 domain antibody inhibitor was previously isolated
from a patient with severe hemophilia A who presented with
multiple inhibitor antibodies.3 In addition to potently inhibiting
FVIII binding to VWF and phospholipid membranes, KM33 has
the novel property of blocking the FVIII endocytosis by den-
dritic cells, which regulates the hepatic clearance of FVIII and
antigen presentation.4,5 Studies incorporating site-directed
mutagenesis with surface plasmon resonance (SPR) and live
cell microscopy as well as hydrogen-deuterium exchange mass
spectrometry (HDX-MS) have localized the KM33 epitope to
several membrane-binding spikes in the C1 domain.5-11 To
identify the amino acids that make up the KM33 epitope, this
study reports on the structure of ET3i, a bioengineered human/
porcine FVIII chimera, bound to a Fab fragment of NB33, a
recombinant immunoglobulin G derivative of KM33, by single-
particle cryo-electron microscopy (cryo-EM).

Study design
ET3i and NB33 were expressed, purified, and analyzed as pre-
viously described (see supplemental Methods, available on the
Blood website).12-14 Cryo-EM sample preparation, data collection,
image processing, and structure determination and validation are
detailed in the supplemental Methods.

Results and discussion
Characterization of ET3i inhibition by NB33
Neutralization of ET3i by NB33 was assessed using a factor X
activation chromogenic assay and Bethesda protocol. We
determined an IC50 value of 3.64 nM in the chromogenic assay
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(supplemental Figure 1A) and a specific inhibitory activity of
7451 Bethesda units per mL NB33 in the Bethesda assay
(supplemental Figure 1B), consistent the reports from previous
studies.5,14 These results demonstrate that the inhibition of ET3i
by NB33 is analogous to the inhibition of human FVIII by KM33.

Structure of ET3i:NB33 complex
The structure of ET3i bound to NB33 was determined by single-
particle cryo-EM at a nominal resolution of 4.23 Å (Figure 1A-B).
The initial 2-dimensional classification showed intact particles
with unambiguous densities in the NB33 Fab constant (heavy
and light) and variable (heavy [VH] and light [VL]) domains
(supplemental Figure 2A). The final sharpened map, excluding
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Figure 1. Cryo-EM structure of the ET3i:NB33 complex. Cryo-EM map (A) and struct
human A2 domain; cyan, porcine A3 domain; orange, human C1 domain; yellow, human
Intermolecular contacts between ET3i residues (C-D) R2090-F2093 and (E) I2158-R2159 (o
represent noncovalent interactions ≤5 Å.

198 13 JULY 2023 | VOLUME 142, NUMBER 2
the flexible constant domains, displayed unequivocal densities
for the A1-A2/A3-C1-C2 domains of ET3i and the variable
domains of NB33. The ET3i A domains vary in local resolution,
whereas the C2 domain has suboptimal resolution owing to its
flexibility but sufficient density for complete model building. No
large-scale conformational rearrangements of the C domains
were observed as previously described.15,16

The ET3i:NB33 interface, which exhibits a local resolution of
~3.5 to 4 Å (supplemental Figure 2C), is stabilized by a com-
bination of electrostatic and hydrophobic interactions with a
buried surface area of 822 Å2. The NB33 epitope centers on
membrane-binding spikes in the C1 domain, composed FVIII
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residues R2090-S2094 and I2158-R2159.17 Residue K2092
anchors the C1 domain to NB33 by binding to an acidic cleft at
the center of the paratope, forming multiple salt bridges and
hydrogen bonds with the NB33 VH domain (Figure 1C). NB33
residue Y32 in the VH domain forms a hydrogen bond with FVIII
residue R2090, in addition to hydrophobic interactions with
residue F2093 (Figure 1D). These results are consistent with
prior SPR and enzyme-linked immunosorbent assay data,
demonstrating that the FVIII R2090A/K2092A/F2093A triple
variant abrogated binding to KM33.8 The cryo-EM structure of
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Figure 2. Electrostatic interactions between the C1 domain and NB33. (A) Electros
domain (top) and NB33 Fab fragment (bottom) at ±10 kcal/(mol⋅e–). (B) FVIII residue K20
domain (surface). NB33 is colored based on the electrostatic surface potential, as in pan
epitope (C1 domain, orange) and paratope (NB33 VL, light pink; NB33 VH, dark purple)
replacement therapeutics with reduced LRP1-mediated clearance and immunogenicity b

STRUCTURE OF A FVIII/ANTI–C1 AB INHIBITOR COMPLEX
BIVV001, a bioengineered extended half-life therapeutic FVIII
fused to the VWF D′D3 domains, helped identify interactions
between FVIII residues K2092 and F2093 and the D3 domain,
supporting the obstruction of VWF binding as an inhibitory
mechanism by KM33.5,18 Additional contacts were present
between FVIII residues I2158-R2159 and the CDR3 loop of the
NB33 VH domain (Figure 1E). Although previous HDX-MS data
demonstrated interactions between KM33 and FVIII residues
from 2077 to 2085, the ET3i:NB33 structure reveals no inter-
actions with this region.5
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Most of the intermolecular contacts are with the NB33 VH

domain, consistent with the isolation of KM33 through genetic
recombination from the VH gene segment of a patient with
hemophilia A and combined with a noninhibitory immuno-
globulin G4 VL.

3 Recent pull-down assays illustrated that the
KM33 VH domain, but not the VL domain, retained its affinity
toward FVIII.19 However, several interactions are observed in
the ET3i:NB33 cryo-EM structure at lower map contour levels
between FVIII residues Y2043-Q2045 and the NB33 VL domain,
as previously suggested by HDX-MS experiments.5 Together,
the structure that we report is in agreement with previous
studies demonstrating that the KM33 epitope overlaps with
amino acids in the C1 domain, previously shown to bind VWF
and/or phospholipid membranes.5,10,11 A complete list of
intermolecular contacts is provided in supplemental Table 2.

NB33 and LRP1 bind to the FVIII lysine and
arginine residues in the C1 domain
The ET3i:NB33 structure revealed a patch of positively charged
residues in the FVIII C1 domain docked onto an acidic cleft
formed by the VH/VL domain interface of NB33 (Figure 2A),
providing the first structural insight into how KM33 blocks the
uptake of FVIII by dendritic cells through low-density lipoprotein
receptor-related protein 1 (LRP1)-mediated endocytosis. LRP1
uses clusters of extracellular complement-type repeat domains to
bind and endocytose a wide variety of ligands, including FVIII, for
processing and antigen presentation to T cells.20 Ligand binding
to LRP1 occurs through a conserved acidic patch and an aromatic
residue in the complement-type repeat domains, which target
ligands carrying surface-exposed positively charged resi-
dues.21,22 The binding of LRP1 to FVIII is predicted to rely on an
array of surface-exposed lysine residues on the FVIII light chain in
a charge-dependent manner.10 Further studies have suggested a
partial overlap between the LRP1 binding region and KM33
epitope.5,7,8,23 Our structural analysis of ET3i:NB33 was consis-
tent with these experiments, revealing that residues K2065,
R2090, K2092, and R2159 docked onto a patch of acidic NB33
residues, thus blocking the putative LRP1 binding region
(Figure 2B-C). These positively charged FVIII residues have
previously been shown to bind to VWF and/or phospholipid
membranes, supporting the inhibitory mechanism of KM33
disruption of VWF and phospholipid interactions (supplemental
Table 2).6,11,17,18 Intriguingly, NB33 appears to mimic the pre-
dicted LRP1 binding site using an aliphatic paratope to target
positively charged FVIII residues and neighboring hydrophobic
residues. These results provide structural evidence for the
mechanism of FVIII clearance by LRP1 and suggest that mutating
positively charged FVIII residues in the C1 domain can reduce
hepatic clearance rates.

The structure of the C1 domain bound to NB33 bears resem-
blance to the crystal structure of the isolated C2 domain bound
to BO2C11, a patient-derived anti–C2 domain antibody inhib-
itor that forms multiple salt bridges with FVIII residues R2215
and R2220 (supplemental Figure 4).24 Both antibodies target
several β-hairpin loops and disrupt FVIII binding to VWF and
phospholipid membranes, although the BO2C11 epitope was
significantly more aliphatic than the electropositive KM33
epitope. In addition, the FVIII C1 domain forms extensive
interactions with the VWF D′D3 domains in contrast to the C2
domain.18 Uptake of FVIII by monocyte-derived dendritic cells
was blocked in the presence of BO2C11 or KM33 antibodies.25
200 13 JULY 2023 | VOLUME 142, NUMBER 2
Furthermore, the exposure of FVIII–/– mice to recombinant FVIII
preincubated with BO2C11 or KM33 diminished the host
immune response.7,25 Similar results were observed using a
recombinant FVIII R2090A/K2092A/F2093A triple variant in the
absence of antibodies, presumably because of the impaired
binding to LRP1; however, the FVIII R2215A/R2220A double
variant on the C2 domain showed no measurable effect on
diminishing the immune response.8,25 Indeed, previous SPR
studies have demonstrated that the C2 domain has no affinity
for LRP1, suggesting that the BO2C11 antibody may indirectly
block LRP1 binding through steric interference or overlap with
the binding region for a non-LRP1 endocytic receptor.11

Although inhibitor development is a rare occurrence in cases
of mild/moderate hemophilia A, our structural analysis may also
indicate that certain missense mutations in the C1 domain may
promote FVIII binding to LRP1 and induce an immune
response.26 Together, these results suggest differential roles for
positively charged residues in the C domains in driving LRP1-
mediated FVIII endocytosis and immunogenicity.

In summary, the ET3i:NB33 structure represents the first struc-
tural analysis of a complex of a therapeutically active FVIII
construct bound to a patient-derived pathogenic inhibitory
antibody. Our structural analysis delineates the role of surface-
exposed, positively charged residues on the C1 domain in
binding to KM33, which disrupts the endocytosis of FVIII by
dendritic cells. Fundamental questions concerning FVIII clear-
ance require further investigation, including the role of non-LRP1
endocytic receptors, such as macrophage mannose receptors,
which are unaffected by KM33-bound FVIII.7 These findings are
critical for therapeutic strategies for designing a recombinant
FVIII molecule with an extended half-life, reduced immunoge-
nicity, and decreased clearance by dendritic cells (Figure 2D).
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