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1. EXECUTIVE SUMMARY:

Secure Data Logging and Processing with Blockchain and Machine Learning (ML) research is
focused on the development of a platform to securely log and process sensor data in fossil power
plants. The platform integrates two emerging technologies, blockchain and ML, and incorporates
several innovative mechanisms to ensure the integrity, reliability, and resiliency of power systems.
The goal is to protect the power plant from various cyberattacks such as false data injection and
denial of service attacks using these technologies. The research goal was enabled by the following
Research Project Objectives: 1) Secure authentication and identity verification of sensor nodes,
actuators, and other equipment within a network. 2) Development of mechanisms that ensure only
data sent by legitimate sensors are accepted and stored in the data repository. 3) Development of
data aggregation methodologies using ML / Deep Learning (DL) algorithms to minimize noise /
faulty data. 4) Implementation of the blockchain technologies to provide data security using

secured IOTA framework & nodes.

2. INTRODUCTION:

This document presents the final report of the research activity completed during the three years
of the project and includes the major challenges and accomplishments. The report presents specific
details of the methodologies used to develop the pipeline for a secure data logging and processing
platform using machine learning and blockchain and complete the project milestones. In particular,
the report includes sections that address the problem statement, background, development of the
entire pipeline which includes synthetic sensor data generation, sensor identity management,
sensor data anomaly detection using ML, secure logging and storage of sensor data using
blockchain and finally the web application to manage the entire pipeline. The report concludes

with a discussion on potential paths forward and concluding remarks.

3. TECHNICAL APPROACH AND RESULTS:

This section contains the methodology used to develop the pipeline for secure data logging and
processing platform using machine learning and blockchain. It begins with a section on the
motivation and background of the research and is followed with a description of our approach to

addressing the issues.



3.1 Background:

Power plants are expensive assets in the power industry, and maintaining healthy operation of
power plants is very important. Unexpected faults may cause generators to be unable to meet
performance standards, resulting in poor reliability and high penalties. The conventional
maintenance activities are carried out according to time schedules, which can incur unnecessary
shutdowns and manpower costs. With the deployment of advanced sensing techniques, data-driven
condition monitoring has been widely recognized as an essential function by asset owners for its
potential to improve asset longevity and reduce maintenance costs.

These power plants are equipped with many heterogeneous Internet of Things (IoT) devices that
generate and collect massive amounts of data through the deployment of a multitude of sensors
that are prone to the possibility to obtain anomalous or faulty data. This can be attributed to various
causes such as device malfunctioning or tampering. This malicious data can cause issues for loT
systems and may provide incorrect insights. Many times, due to temporal patterns and high-
dimensional data structures, these anomalies may be difficult to detect. Hence, there is a need to
timely detect these anomalies in the data for maintenance and to prevent losses. Anomaly detection
is a technique that identifies abnormal data or data that deviates from its historical pattern. The
detection of such data is critical in a variety of applications, which includes fraud detection, and
intrusion detection etc. Furthermore, detecting anomalies from a huge amount of data is becoming
a requirement for several new systems/applications. Additionally, the results of anomaly detection
using Artificial Intelligence (Al) and the massive volume of data collected by these IoT devices
must be stored in a distributed and decentralized manner. While traditional databases and
centralized storage can become a single point of failure, there is a need to store the huge amount
of IoT data in a distributed ledger such as a blockchain that is decentralized and solves the issues
of traditional and centralized storage systems. Therefore, there is a need to build a pipeline that
integrates sensor identification, anomaly detection and blockchain to overcome the mentioned
challenges.

Blockchain technology was introduced in 2008 by Satoshi Nakamoto and has become a disruptive
and significant technology for Industry 4.0. Blockchain is a distributed ledger or database which
is decentralized, immutable, and operates in a peer-to-peer manner without the need for any
intermediary or central authority. The above-mentioned features of blockchain ensure that the data

is secured, authentic, and immutable once it gets stored on the blockchain. Using this decentralized



blockchain technology to store aggregated IoT data logs can be useful, particularly if transparency
and immutability are required, such that every participant will be able to view the data without
modifying it. However, blockchain technology has certain limitations, which restrict its integration
with the IoT. For instance, the size of a block in the blockchain is limited to 1 MB and the mining
time is about 10 min. additionally, scalability is a major challenge for many types of blockchain
technology. This hinders its application for IoT systems where scalability is important.
Furthermore, there is also a possibility of selfish mining in the blockchain, where miners can
achieve higher rewards than their allocated amount. Therefore, to meet the current demand of the
IoT systems, there is a need for a distributed ledger that can seamlessly integrate with IoT and
overcome the limitations of the traditional blockchain. The IOTA distributed ledger was introduced
in 2015, and it uses a data structure called the Tangle that is a Directed Acyclic Graph (DAG) in
contrast to the chained block structure of blockchain. IOTA was designed to address the resource
limitations of IoT devices. Hence, IOTA overcomes the limitations of blockchain, particularly the

transactional throughput, which makes it the most suitable choice for IoT systems.
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Figure 1: System Architecture - Secure Data Logging & Processing with Blockchain and

Machine Learning System



This project aimed to build a platform which includes three main components: 1) Sensor identity
management, 2) Anomaly detection using Al, and 3) Secure storage of sensor data using
blockchain. The sensor identity management module ensures that the data transmitted from the
sensors in a fossil fuel power plant is legitimate and not from malicious sensors. The anomaly
detection module ensures that the power plant is up and running continuously by detecting faulty
sensors or power plant component failures timely. The third module is for the secure storage and
retrieval of sensor data by using blockchain technology. Finally, to demonstrate the usability of
this platform, a front-end application was built with all the three modules. A schematic of the entire

pipeline is shown in figure 1.

3.2 Sensor Identity Management:

In sensor identity management, research was conducted on fossil fuel power plants to identify
various components and sensors used to collect data. Once we identified the components and the
sensors, the next step was to generate synthetic sensor data which mimics the actual data collected
from these plants. Finally, once the data was generated the last step was to implement identity
management techniques to make sure that the data collected from these sensors is legitimate.
3.2.1 Research on Different Components and Sensors in Fossil-fuel Power Plants:

Research was conducted on different fossil-fuel power plant datasets and academic literature
review on different types of sensors and components to understand threshold sensor values that

are normally seen in different sections of the power plants as shown in figure 2.

-

Figure 2: Components in a Traditional Power Plant



The purpose of finding these value ranges was to generate meaningful simulated data to train ML
models that can detect anomalies in the plant’s system components, hence improving the security
of the facilities.

Based on the investigation, it was observed that the most amount of gas sensors are found in the
flue stack of the plants. Additionally, temperature sensor ranges can vary between different
components, and the same can be said for pressure sensors. On the other hand, different sensors
can be used in the turbines to check the health of the component. Some of the sensors that can be
found in the turbine are the vibration sensor and the pressure sensor as shown in table 1.

Table 1: Sensor Value Ranges in Fossil-Fuel Power Plants

Sensor Unit System Component Value Range
Temperature °C Turbine 1.81-37.11
Temperature °C Boiler 540 - 570
Pressure hPa Turbine 992.89 —1033.3
Pressure hPa Boiler 600 — 2465
Vibration pm (pk-pk) Turbine 13.31 - 14.07
0)) % in flue Stack 1.6 -4.1

Gas ppm Stack 10— 1000
Gas ppm Boiler 0-100

CO: Gas % in flue Stack 8—-10

NO: Gas %in flue Stack 10-12

pH - Boiler 7-9

3.2.2 Generating Sensor Data:
With the sensor information obtained from the research, artificial sensor data was generated to

train the machine learning models. The data was generated by using Python scripts that would
create random values for the output of the sensors at a specific instance of time. The scripts were
able to generate the data for any of the sensors mentioned above and could create outputs for
normal sensors and malicious sensors. Therefore, the use of anomaly detection models would be
trained with generated datasets and would be validated with the same type of artificial data.
These models would be tested against the malicious sensor data type.

Dataset Features: The dataset contained six features and one label as shown in figure 3. The label

was represented with values of ‘0’ and ‘1’ to signal if the sensor value was normal or malicious,
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respectively. Moreover, each record in the dataset was composed of a specific sensor ID, that
belonged to a system component (also included as a feature), and the type of sensor which indicates

if it is a temperature, pressure, vibration, gas, etc. The sensor value was a float data type value that

is the output of the sensor at the designated timestamp (another feature of the dataset).

Sensorkd SensorType  SensorSystemComponent  Batchid SensorValue Timestamp SensorBehavior
6ad35030 temperature Bailer 1 555.153414545676  01/04/2022 12:35:41 o
| 6ad99030 temperature  Boiler 1 543.369520954414  01/04/2022 12:40:41 0O

Ead$5030 termperature Bailer 1 560 620456846564 01/04/2022 12:41:41 o

Gad93030 temperasture  Boiler 1 568.105172518282 01/04,2022 12:42:41 O

6ad33030 temperature  Boiler 1 563.612998486298 01/04/2022 12:43:41 0O

6ad%3030 temperature Bailer 1 552 680990722037 01/04/2022 12:44:41 o

6ad53030 temperature  Boiler 1 554 520241207531  01/04/2022 12:45:41 0O

Ead95030 temperaturs Baoiler 1 542 917206471498 010472022 12:46:41 o

Figure 3: Example of Generated Records for Training and Testing datasets

Dataset Description: The two datasets were created to develop the anomaly detection pipeline
using machine learning algorithms. The first dataset was the training dataset, consisting of 40,000
records and containing only normal temperature sensor values. The testing dataset contained 8,000
examples with 80% of them labeled as “normal” data and the rest labeled as “malicious data.” The
testing dataset was later used for prediction / anomaly detection. Each record contained the type
of sensor, the system component, the sensor ID, the batch ID, the sensor value, and the timestamp.
These features were selected to identify each output by its sensor ID.

3.2.3 Implementation of Artificial Sensor Data Generation:

To create the dataset, a Python script, as shown in figure 4, was used to simulate the behavior of

SENSOors.

delta = datetime. timedelta( =1)
t=t+delta

t str = t.strftis

out =

temp = pd.Series([sclf.sensor_ID, .batch_num, output_val, t_str, .sensor_behavior, sig, verification val],

— i
delta = datetime. timedelta( -y
t =1t + delta

0%V %HER:%S")

- validsignatur

temp - pd.Series([seLf.sensor_ID, _batch_num, output_val, t_str, .sensor_behavior, sig, verification_val],

df = df.append(temp,

Error: Invalid sensor type or distribution.”)
num

return df

Figure 4: Sensor Class in Python script Generating Normal or Malicious Data



A series of sensor values were generated with a difference of one minute each. The normal sensors
would generate uniformly distributed random values from a defined interval. Whereas the
malicious sensors would generate sensor values from this uniform distribution mentioned earlier
and an offset would be added or subtracted to the final value. This ensured that the malicious data
would differ from the normal data.

Generating the training dataset entailed only instantiating one sensor and running the data
generation method. However, the testing dataset needed to include normal data and malicious data.
For this case, multiple processes were created to simulate if both sensors would generate data at
the same time. One process generated normal data while the other generated malicious data.
Subsequently, the records were inserted in a pandas Data Frame and then shuftled.

3.2.4 Sensor Identity Management:

The team developed two python scripts that generate a private and public key to digitally sign and
verify all data that is being generated. The first function, “append with Signature” as shown in
figure 5, returned a signature generated from the data string that was encoded using UTF-8. The
data string was a concatenation of the features of sensor data that included the sensor ID, batch
number, sensor output value, and time. The private key was used to sign the “data_string”, which
was then returned as the signature. The second function, “valid_signature int”, will verify the
signature generated by the first function and returns O if the signature is not valid and 1 if the
signature is valid. The public key was used to verify the signature generated for each system

component.

def append_with_Signature(data_string, priv_key, public_key):
signer_priv_key = SigningKey.from_pem(priv_key)

Encode String
data_bytes = data_string.encode("utf-8")

# Sign Data
signature = signer_priv_key.sign(data_bytes)

return signature

def walidSignatureInt(signature, public_key, data_string):
verify_key = VerifyingKey.from_pem(public_key)

data_bytes = data_string.encode("utf-8")
try:
valid = verify_key.verify(signature, data_bytes)
return 1

except BadSignatureError:
print("BAD SIGNATURE™)

return @

#finally:
#return valid_signature

Figure 5: Digital Signature Validation



The data signature and the verification that was generated from the above functions were then

appended into a data frame as shown in figure 6.

sig = append with Signature(dats string, self.priv key, self.pub key)

verification val = validSignatureInt(sig, self.pub key, data string)

#0et hash value and verification here

temp = pd.Series([self.sensor I, self.type, self.sys component, self.batch num, output val, t str, self.sensor_behavior, sig, verification val],
index = cols)

df = df.append(temp, ignore index = True)

Figure 6: Appending Data Frame with Digital Signature

This method provided a way to uniquely identify sensors based on their unique characteristics and
provided a technique to prove the authenticity of the sensors by using digital signatures.

3.2.5 Dataset Features:

The dataset contained six features and one label as shown in figure 7. The label was represented
with values of ‘0’ and ‘1’ to signal if the sensor value was normal or malicious, respectively.
Moreover, each record in the dataset was composed of a specific sensor ID, that belonged to a
system component (also included as a feature), and the type of sensor which indicates if it is a
temperature, pressure, vibration, gas, etc. The sensor value was a float data type value that is the

output of the sensor at the designated timestamp (another feature of the dataset).

Sensorld  SensorType  SemsorSystemComponent  Batchld  SensorValue Timestamp SensorBehavior
Gad35030 temperature  Boailer 1 £59.153414545676 01/04/2022 12235471 O
| 6ad99030 temperature  Boiler 1 543.369520054414  0N/04/2022 12:40:41 0

6ad93030 temperature  Boiler 1 560.620456846564 01/0&/20221247141 0

€ad39030 temperature  Boiler 1 56%,105172518282  01/04/2022 124241 0

£ad93030 temperature  Boiler 1 563 612998486298 010472022 124341 0

GadS9030 temperature  Boiler 1 552.680990722037 0/04/2022 124441 0

6ad53030 temperature  Boiler 1 554 520241207531 01/04/202212:4541 0

BadS5030 temperature  Boiler 1 542 917206471458  01/04/2022 124647 D

Figure 7: Example of Generated Records for Training and Testing datasets

3.2.6 Dataset Description:

Two datasets were created to develop the anomaly detection pipeline using machine learning
algorithms. The first dataset was the training dataset, consisting of 40,000 records and containing
only normal temperature sensor values. The testing dataset contained 8,000 examples with 80% of
them labeled as “normal” data and the rest labeled as “malicious data.” The testing dataset was
later used for prediction / anomaly detection.

Each record contained the type of sensor, the system component, the sensor ID, the batch ID, the

sensor value, and the timestamp. These features were selected to identify each output by its sensor
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ID. This sensor, if normal, would later be enrolled in the IOTA framework, that is why all the
previous data was collected. The sensor would output a value every minute, and this data could be
either malicious or normal.

The training and testing datasets were imported into Python scripts to train the machine learning
models for anomaly detection. In the next step, we generated and inserted the sensor data into a
SQL database table so that the data could be queried by different services. The table could be
queried by the web application to display information about the different sensors, it could be
requested by stored procedures in the backend of the web application to be passed through the
machine learning algorithms, or it could be requested by stored procedures to send the data to the

IOTA Tangle.

3.3 Data Aggregation and Anomaly Detection:

The data was aggregated using SQL Server with the data residing in database tables. This also
served as a backend implementation for the web application where the backend requests were
implemented as stored procedure queries.

The stored procedures consist of an embedded script called “sp_execute external scripts”, which
allows to run code from a scripting language like Python. The scripts processed the data from the
tables, generated data from the tables, and passed the data to the web application.

3.3.1 Database Tables:

For generating the data and storing it in the database, three main tables were used. One to store the
sensor generated data, another one to keep track of the number of batches generated, and the final

one to store information about the system components of the power plant.

BatchlD  BatchSize  InsertedOn
1 i1 e 20220412 12:43:56.713
S - el
3 3 60 2022-04-13 10:26:04 543
4 4 10 2022-04-13 10:52:29.183
5 5 10 2022-04-13 10:57-05.380
6 6 10 2022-04-13 11:00:41 817
77 10 2022-04-13 11:02:29 550
: S 10 2022-04-13 11:04:54 857
3 9 10 2022-04-13 11:06:12.243
10 10 10 2022-04-13 11:07-18.943
no1 10 2022-04-13 11:10:09.637
1212 10 2022-04-13 11:12:45.933

Figure 8: Generated Sensor Parameters
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The purpose of the Sensor Batches table was to keep track of the number of batches of the
generated sensor data. Each sensor data record is associated with one batch number as shown in
figure 8, which is a unique ID for the entire batch of artificial sensor data. A stored procedure was
created that generated the random sensor data and obtained the batch number (referred to in the
table as BatchID) by inserting a new size into the table. The insertion of a new record generated a
new primary key, the BatchID, which was then queried by another stored procedure to generate a
new batch of sensor data.

On the other hand, the system component table contained the data about all the system components
of the power plant. Each record had a FPPComponentID column as shown in figure 9, which is
the primary key of the table, the name of the component with a brief description, an InsertedOn
column with the timestamp, which showed when the system component record was generated, and
lastly 2 columns that represent the Private Key and Public Key. Each component had a pair of
cryptographic keys which were used to sign every sensor value generated by the sensors belonging
to that component. For instance, if a temperature sensor of the boiler is used to capture 60 different
records, the keys from the boiler component will be used to sign and verify the signature of those

60 records.

B Reats [BF Messages
FPPComponentlD  SystemComponentName  Description InsertedOn PrivateKey PublicKey

1T e Produces stezm SN 12313117 (x2D2D2D2D2DAM5ATAENASATI 505249564 154450048, (k2 D2D2D2DIDAZ5 TS EPDS5544CABAT24BA550202D2
2 1 " Rumace Bums Coal o het boler 2520190350003 (2020202024457 HE2A5A 505249564 15445748, (k2 D2D2D 20204245 1A EDS0554PACAB4T04BAB52D20 .
13 Tutine Genersies electicty 0200520 150353307 0x2D2D2D2D2DA4SATAIEXSAT0505249564 154452048 . Ox2D2DRD2DIDA2A5ATASAE2DSS5424CA043204BAS5A2D202
4 Stack Eipels gases MEN 132323483 (x2D2DID2DIDAMBATARENMASATIS05249564 154450048, (k2 D2D2D2DIDAZ5 TS EPDS05544CASAT24BA55202D2
55 Tubes Water and aiflow 5N 132839363 (x2D2DID2DIDAMBATARENASATIS54S564 15445048, (k2 D2D2D2DIDAZS TS EPDSS544CASATIABA5ER202D2
66 Container Water colection 0200520 19:25:10267  (x2D2D2D2D2D424547A04E 2540505249564 154452048, Ox2D2D2D2D2DA2A5 TAE 2050554240 4043204BA552D202
77 Condenser Conderses steam MMEIT 11240960 (x2D2DID2DIDAMBATAENASATIS54S564 54450048, (k2 D2D2D2DIDAZS A EPDS5544CASATI4BA5E0202D2
78 Generator Produces electicty 5T 1251360 (x2D2D2D2D2DAMBATAENABATIS0524S564 54452048, (k2 D2D2D2DIDAZS TS EPDSS544CASATIABABER2D2D
5 3 Transfomer Modfies electical outpu to meet the needs of .. 2020-05:27 131355787 0x2D202D2D2D4245TS4E2 54 20505245564 54452048, .. (x2D2D2D2D2DA 245 A E 2050554404 B4 3204845520202
0 10 Pulverzer Ginds codl ST IEIZS000  (x2D2D2D2D2DAMBATAENASATIS054S564 15445048, (k2 D2D2D2DIDAZS TS EPDS5544CASATIABA5ER202D2
o Cod Suppler Holds coal ARSI IEIEADA0T (202D ID2D2DABATAENASATIS05A4S564 54450048, (k2 D2D2D2DIDAZS TS EPDS5544CASATII4BA5ER202D
2 on Conveyor Alows ortranspotaion f materidls M52 11452407 (x2D2DZD2DIDASATASEXABATIS0524S564 5445748, (k2 D2D2D 20204245 1A EDS0554PACASAT4BABE2D202 .
BB Transmission Lines~ Caies lectcy ot o the powerpant 0200527 131508810 0x2D2D2D2D2DA45ATAIEXSAT0505249564 154452048 . Ox2D2DRD2D2DA2A5ATASE2DS55424CA043204BAS5A2D202

Figure 9: FPP Component table example
Similarly, a table was created to store the actual generated sensor data as shown in figure 10. The
structure of the table is like the previously mentioned tables generated to train the machine learning
model. The difference is that this table contained four extra columns, one column stored the
signature hash of each reading, and one contained the output of signature verification. The
SensorVerification column had either a ‘1’ or ‘0’ value depending on whether the signature
verification was successful or not. The ModellID and TestCaseID columns were used for the

machine learning models for anomaly detection.
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SensorUniquelD  Sensorvalue ModelD TestCaselD Batchld SensorBehavior SensorHash SensorVerfication  SensorTimestamp

1 | 910.954362424067 -1 NULL 13 0 (x0C948A1457ED 1061B4C3280232418BF6C52B56B6ABT56D0A .. 1 14/04/2022 11:09:10
2 Oofedede 123353591213293 -1 NULL 13 0 (169361D78E4956ACAIDERDEGD7AERBIEAS2I0F 144BEFEIF . 1 14/04/2022 11:08:10
3 omfadsdc 1584 63689954387 -1 NULL 13 0 OXCFES0446F545540C 28172325430 2CD252EE 15FAABR4A2FE . 1 14/04/2022 110710
1 Ofsdedc £36.190103146626 -1 NULL 13 0 0x810AFDSE4B13B06F 20698CDE2527FB28185E24B2BC9BF 100 1 14/04/2022 11:06:10
5 00fadsdc 1637.07782935981 -1 NULL 13 0 (x28F61226FB6F 144E2ECD70332D3EAER323A4CFADTARCIFT. 1 14/04/2022 110510
6 O0Fadedc 1779.90209643257 -1 NULL 13 0 (xBOSDB5ESIIETBCO1E4CE1DEEASAG165EATDAEAESET0SC... 1 14/04/2022 11:04:10
7 OlFsdsdc 2085.02454384505 -1 NULL 13 0 (x7696CDB2F163D751BD2458AE6ES1C 34D 84598CR33045287. . 1 14/04/2022 110310
8 O0Fadedc 781.769317757196 -1 NULL 13 0 (x73500F BEENGA48518A2DDFEALZ 750 754597669460D29181E.. 1 14/04/2022 11:02:10
S O0Fsdsdc 1080.18356171922 -1 NULL 13 0 (x35BEARA426CE5368D5C 782 7BS6F 7D48578ADSDCDFADADSS. 1 14/04/2022 110110
10 00Fadsdc £78.538593979316 -1 NULL 13 0 (xF5EB24FF482EC0375C B5A08FDIIFE3 1FEICAAFIABICABE02F . 1 14/04/2022 11:00:10
1 0fFsdede 1428.75657264257 -1 NULL 12 0 0x51CFD2E3D075C08BCD4337752100D401FDDDSTFSBEDES03.. 1 13/04/2022 11:22:48
12 00Fedsdc 1823.91756814634 -1 NULL 12 0 (xA54A8F603083ECFE53655472FCFO03F 10A 143D 1ASDBD 1564, 1 13/04/2022 11:21:46
13 O0Fsdsde 1406 63154341483 -1 NULL 12 0 0x712FFDCBF19D859606BE3ABDF IFAZI67ID414145FCASTFA.. 1 13/04/2022 11:20:48
14 0ffadsdc 1346 35123206952 -1 NULL 12 0 (xF21EBEE435ACE0EAASBEFAEARSA5855D569FE14ERS361049 1 13/04/2022 111846
15 O0Fadedc 2026.01774231846 -1 NULL 12 0 (x2F 313FAFF2339C44B57BB1CICBF 72C05F9ATEB2AT262FCEA . 1 13/04/2022 11:18:46
16 00Fadsdc 1774.80428529588 -1 NULL 12 0 (x3668326C44343380BCFFEADE2EA4T022BD T70FEIABESADBS. . 1 13/04/2022 111746
7 Ofadedc 771.510234867291 -1 NULL 12 0 (xD21C1EBAGAAE35292AB65BE9IEAFSDOCB02B440A0EB7B30.. 1 13/04/2022 11:16:45
18 O0Fsdsdc 1452 33215589938 -1 NULL 12 0 (xE238FD02A363DCBB2EAEDFFSACETBCI3BCECEDSIDT4ER . 1 13/04/2022 111545
19 00FadBdc 1224.23876471753 -1 NULL 12 0 (xADSASTITEFDB2B2FCFEEA4BF AAB2A0902633509CTFD1GTFA.. 1 13/04/2022 11:14:46

Figure 10: Sensor Data table example

3.3.2 Stored Procedures:

Various stored procedures were created to generate, insert, update, and delete records in different
tables. These stored procedures can be divided into the ones that modify the sensor table and the
ones that modify the FPPComponent table:

1) SensorData_AddSensorData: This stored procedure generated a batch of data for a specified
component. It required five parameters: the sensor unique ID (nvarchar), the sensor behavior (‘1°
for malicious and ‘0’ for normal), the batch size, the offset if the sensor is malicious (for normal
sensors, there was no need to pass a value for this parameter), and the system component in which

the sensor belongs.

@sensor_ID nwvarchar(28),
@sensor_behavior nvarchar(ze),
@batch_size int,

@offset float - @.@,

@SysComp nvarchar(2@)

As
—IBEGIN

--Get the minimun and maximum value for the range of the sensor by guerying SensorMaster tbl
DECLARE @start_val AS float:
DECLARE @end_wal as float:

SELECT @start_val = [MinimumRange] FROM SensorMaster WHERE [SensorUnigqueID] = @sensor_ID:
SELECT (@end_wal = [MaximumRange] FROM Sensorfaster WHERE [SensorUniqueID] = @sensor ID:

--Get the batch ID from SenscorBatches table and store it in a wvariable
INSERT INTC SensorBatches ([BatchSize]) walues (@batch_size);

DECLARE @var AS int:

SELECT TOP 1 @var - [BatchID] FROM SensorBatches ORDER BY [InsertedOn] DESC;

--Get the pair of keys from the FPPComponent table and store them in wariable for later signing the data
DECLARE @private_key AS varbinary
DECLARE @public_key AS wvarbinary(
SELECT @public_key = [PublicKey] FROM FPPComponent WHERE [SystemComponentName] =
SELECT @private key - [PrivateKey] FROM FPPCOmponent WHERE [SystemComponentiame]

@Sy sComp ;
= @sysComp;

--Run the Python script and store the resulting table records in the BlockchainTransaction table
—IINSERT INTC SensorData
EXECUTE sp_execute_external_script
@language - N'Python’,
@script = N’
import numpy as np
import datetime
import pandas as pd
from ecdsa import Signingkey, verifyingkey, BadsignatureError, NIST384p, NIST192p

def append_with_Signature(data_string, priv_key, public_key):
# ONCAT A STRINGS
#signerPrivkey = fetchOrCreatePrivateKey()
signer_priv_key = Signingkey.from_pem(priv_key)

# Encode String
data_bytes = data_string.encode("utf-8")

Figure 11: SensorData_AddSensorData Stored Procedure
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The procedure as shown in figure 11, queried the Sensor Batches table to obtain the Batchld and

the FPPComponent table to obtain the pair of keys. It also queried the minimum and maximum

sensor values from the SensorMaster table based on the sensor ID. Then, the Python script

generated a random sensor value for as many times as specified with timestamps separated by 1

minute from the previous record, starting at the specific instance of time the stored procedure was

called. Once the data was inserted into the table, the SensorHash and SensorVerification were

generated for each record.

2) SensorData_DeleteSensorData_Batchld: This procedure as shown in figure 12 was created

to delete all records from the SensorData table that matched the Batchld value, and this value was

unique for every record inside this table. The only parameter it required was the batch ID to delete

the records.

HALTER PROCEDURE SensorData DeleteSensorData BatchId

f@batch_to_delete int

AS
HEBEGIN

DELETE FROM SensorData WHERE [BatchId] = @batch_to_delete;
END

Figure 12: SensorData_DeleteSensorData_Batchld Stored Procedure

3) FPPComponent_GenPairOfKeys: This stored procedure as shown in figure 13 created a

public and private key specifically for the system component which was passed as an argument

(nvarchar). It used a Python script to generate the keys and store them in the proper table as

varbinary (MAX) values.

—|ALTER PROCEDURE FPPCDmpDnEnt__GEﬂPair‘DfKEys
@sysComponent nvarchar(28)

AS
= BEGIN

—ICREATE TABLE #tblTemp
[ID] int IDENTITY (1,1) PRIMARY KEY,

[Privkey] varbinary(
[PubkKey] wvarbinary(Mex)

—IINSERT INTC #tblTemp
EXECUTE sp_execute external_script
@language = N'Python',
@script = N°
from ecdsa import SigningKey, VerifyingKey, BadSignatureError, NIST384p, NIST192p
import pandas as pd

priv = SigningKey.generate{curve = NIST384p)
pub = priv.verifying_key

priv_str = priv.to_pem({}

#print(priv_str)

--Insert the keys in the FPP
DECLARE @pubKey AS varbinar v
DECLARE @privkey AS wvarbinar
@pubkey = [pubKey] FROM #tthEmp WHERE [ID]
@privkey = [pr‘vi_Ey] FROM Jﬂ:blTEmp WHERE [ID

mpenent table

OutputDataSet = pd.concat([pd.Series([priv.to_pem()], name = "PrivKey™), pd.Series([pub.to_pem()], name = "Pubkey™)], axis = 1)’

Figure 13: FPPComponent_GenPairOfKeys stored procedure
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4) FPPComponent_DeletePairOfKeys: This stored procedure as shown in figure 14 replaced the
values of a specified system component (nvarchar) with NULL on the Public and Private Key

columns.

[@sysComponent nvarchar(25)

AS
—1BEGIN

END;

Figure 14: FPPComponent DeletePairOfKeys stored procedure
3.3.3 Machine Learning Algorithms for Anomaly Detection:
The normal dataset was used to train three anomaly detection algorithms which were semi-
supervised / unsupervised algorithms are implemented. The models were trained only with normal
data, and when predicting data with anomalies, they were able to detect the malicious data or
outliers. The models that were tested were the Local Outlier Factor, Agglomerative Clustering, and

AutoEncoder for Anomaly Detection.

3.3.4 Algorithms:

The first implemented model was the Local Outlier Factor. This model measured the local
deviation density of a given sample with respect to its neighbors. Samples that have substantially
lower density and their neighbors were labeled as anomalies as shown in figure 15. The
implementation utilized the LocalOutlierFactor class from the scikit-learn library. The parameters
passed were contamination of 1% in the training dataset and 10 as the number of neighbors to
consider. Additionally, since the training data only contained normal points, the novelty parameter

was set to True.

Local Outlier Factor (LOF)

- Data points
41 o Outlier scores

J o ©@

O]
© &

prediction errors: 8

S

-4 -2

Figure 15: Example of Local Outlier Factor Graph, with Clear Outliers and Clusters
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The Agglomerative Clustering algorithm was employed to make predictions on anomalous data. It
uses linkage distance to recursively merge pairs of clusters of data. The number of clusters to find
was set to ‘2° and the linkage was set to ‘ward’ to compute the Euclidean distance.

The testing dataset was divided into two clusters, these clusters represent the anomalies and the
normal data. With this knowledge, it was assumed that the distance of the anomalies to clusters
could be computed recursively.

An AutoEncoder for anomaly detection is shown in figure 16. An AutoEncoder is a neural network
that encodes some data to learn its structure, then it is decoded and the difference between the

input and the output is regarded as the loss.

Input Output
— o
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Figure 16: Basic AutoEncoder Neural Network

The use of loss can be leveraged to identify anomalies in a dataset. For the regular use of
AutoEncoders, models need to be generalized by minimizing the loss of testing data. However, in
this scenario where the model was trained using normal data, it is expected that the loss of
anomalous data points would be bigger.

A simple decision model was designed in terms of the distribution of the loss. After observing the
distribution of the loss, a lower and upper threshold was determined to detect the anomalies,
consisting of the mean of the loss plus/minus 2 standard deviations. The loss distribution of the

training and testing datasets is shown in figure 17.
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Fig. 17: Loss distribution of the training (left) and testing (right) datasets.
3.3.5 Results:
The Local Outlier Factor model prediction on the test dataset produced good results, with a
98.75% accuracy on the testing set and 99.44% accuracy on the training set. This shows that the
model is not overfitting or underfitting. As seen in figure 18, the confusion matrix demonstrates

that only 10 predictions were inaccurate.

precision recall fl-score support

-1 0.94 1.00 0.97 160

1 1.00 0.98 0.99 640

accuracy 0.99 800
macro avg 0.97 0.99 0.98 800
weighted avg 0.99 0.99 0.99 800

Prediction

= 600

- 500
400
300
200
100
-

Ground Truth

Figure 18: Confusion Matrix and Performance Metrics for the LOF Model
Conversely, the agglomerative clustering model did not perform well as shown in figure 19. When
predicting the testing dataset. After different runs, the best accuracy turned out to be 48.25% with
complete linkage and computing of the Manhattan distance. The results leave this algorithm out

of the possibilities of being considered for the study.
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precision recall fl-score support

=1 0.19 0.50 0.28 160

1 0.79 0.48 0.60 640

accuracy 0.48 800
macro avg 0.49 0.49 0.44 800
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Figure 19: Confusion Matrix and Performance Metrics for the Agglomerative Clustering
The AutoEncoder model as shown in figure 20 scored well in the different metrics, demonstrating
an accuracy of 97.75% and precision of 100% and 97% for the anomaly and normal class,
respectively. This shows how powerful deep learning algorithms are when implementing

unsupervised and semi-supervised models.

precision recall fl-score support

=1 1.00 0.89 0.94 160

1 0.97 1.00 0.99 640

accuracy 0.98 800
macro avg 0.99 0.94 0.96 800
weighted avg 0.98 0.98 0.98 800
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200

100
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Figure 20: Confusion Matrix and Performance Metrics for the AutoEncoder Model
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3.4 Secure Data Logging with Blockchain:

The fossil fuel power plant data was aggregated and analyzed to detect anomalies using machine
learning and implement secure logging of sensor data using blockchain. In order to implement
secure logging with blockchain, a SHA-256 checksum of the aggregated data was generated. Once
the checksum was generated, the next step was to insert the sensor metadata to the blockchain
platform for secure storage. A message ID was generated after the sensor meta data was uploaded
to the blockchain nodes. This message ID is then used to fetch this data from the blockchain
database whenever required. For the blockchain implementation, the IOTA distributed ledger was
chosen due to its high scalability and zero transaction fees.

3.4.1 Blockchain Architecture:

To implement the blockchain platform, the IOTA framework was implemented, which is a Directed
Acyclic Graph (DAG)-based blockchain. To preserve privacy and achieve high scalability, a

private Tangle was constructed with three private nodes as shown in figure 21.

Windows Client

[ Attaching Txns ]

Y

/. IOTA NODES
1
i | Coordinator Node_1 Node_2 —
™ ;
Queryto| T [ -------------------------------- Response
the from the
Tangle [ Attaching Txns ] Tangle

Windows Client

3

Figure 21: IOTA System Architecture
A private Tangle was created, which consisted of three full nodes, called the coordinator, and two
neighbor nodes, namely, “Node 1~ and “Node 2”. All three nodes were set up on three Linux
Ubuntu servers with Hornet installed on them. Hornet is a powerful, community-driven IOTA node
software written in the Go language and is a lightweight alternative to the IOTA reference

implementation (IRI). Hornet was developed for the secure transfer of tokens or data, and for
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experimenting and implementing IOTA protocols between nodes or network participants.
Machines can act as a node and connect to the IOTA network with the help of the Hornet software.
These nodes or machines have functions such as authenticating the transactions, storing these
authenticated transactions on the Tangle, and fetching these transactions back from the Tangle
whenever required.

3.4.2 Checksum Generation:

The SHA-256 hashing algorithm which stands for “Secure Hashing Algorithm” to calculate the
checksum was implemented. This algorithm was implemented in Python by using the hashlib
library in the script called IOTA Send Data.py. We used this SHA-256 algorithm to calculate the
checksum of the generated and aggregated power plant sensor data. The checksum generated was
256-bit in size and hence the name of the algorithm is SHA-256. The output of this algorithm can

be seen in figure 22.

In [14]: M checksum = hashlib.sha256(train).hexdigest()

In [15]: M checksum

Out[15]: '6b186fa5019b4e92bf5713de60efclf8fdf8604d44496e833c3e4b48b59fbba5"

Figure 22: Implementation of SHA-256 Algorithm
The SHA-256 algorithm is a cryptographic hashing algorithm that always outputs a 256-bit hash.
Whatever the size of the input is, the output will always be 256-bit in size. The SHA-256 belongs
to the SHA-2 family of algorithms. The working of the SHA-256 hash function can be seen in
figure 23.

one-way

Input Output
SHA-256 256-bit Hash

Figure 23: SHA-256 Working

As shown in figure 23, the SHA-256 operates by taking input data and calculating the checksum,
which is always 256-bit in size. This hash function is irreversible, meaning it is infeasible to obtain

the input from the output. No matter how many times the input is hashed the output hash will
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always be the same in every run unless the data is changed or tampered with. Even a very minute

change in the input will result in a completely different hash, thus notifying the user that the input

data has been altered. Therefore, using this hashing method we can ensure the authenticity of the

data by calculating the hash before transmission and after transmission. If the hash is the same on

both sides, then we can confirm that the data which was in motion has not been tampered with.

3.4.3 Secure Storage of Sensor Metadata:
A Python script was developed and implemented named IOTA Send Data.py, which consisted of

the following subtasks:

1.

AN O e

7.

Imports the required libraries.

Reads the simulated power plant sensor data.

Generates a 256-bit checksum of the entire aggregated data.
Establishes a connection with the private IOTA nodes.
Calculates some statistical measures about the aggregated data.
Creates a JSON structure containing the sensor metadata.

Inserts and stores the JSON data into the IOTA framework.

The Python script reads the simulated sensor data from the database and calculates the aggregated

256-bit hash of the complete batch of data by using the SHA-256 algorithm.

print('Node Information')
pprint(client.get_info())

Node Information

{'nodeinfo': {'bech32_hrp': 'atoi’,
‘confirmed_milestone_index': 1562158,
'features': ['PoW'],
'is_healthy': True,
'latest_milestone_index': 1562158,
'latest_milestone_timestamp': 1650385242,
'messages_per_second': 5.2,
'min_pow_score': 100.0,
‘name': 'HORNET',
'network_id': 'private_tanglel’',
'pruning_index': 1255152,
'referenced_messages_per_second': 5.2,
'referenced_rate': 100.0,
'version': '1.0.5'},

Figure 24: Node Information of IOTA Nodes
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A connection was then established with the IOTA framework by employing the official IOTA
Python library called “IOTA-client”. We used this library’s method called “client” which makes
the connection with the IOTA nodes by passing the IP address and port number of the node to
connect. Once the connection was successful, checked if the nodes are healthy and synced by
acquiring the node information as shown in figure 24.

The figure 24, shows the information about the status of the nodes and the private Tangle. It can
be seen that the node is healthy and synced with its peers with the help of this information.

The statistical analysis of the aggregated sensor data was performed to get some meaningful
insights such as the distribution of the data. This was performed by calculating some statistical
measures such as mean, median, mode, standard deviation, variance, minimum, and maximum of
the aggregated sensor data. This can be seen in figure 25, which shows the calculation of the

mentioned statistical parameters in the Python script.

M sensor_id = data['Sensor_ID'][@]
batch_id = data['Batch_Number'][@]
sensor_mean = round(data[ 'Output’'].mean(),3)

M std dev = round(data['Output'].std(), 3)
sensor_min = data[ 'Output'].min()
sensor_max = data[ 'Output'].max()
sensor_var = data['Output'].var()
sensor_mode = statistics.mode(data['Output'])
sensor_median = data[ 'Output'].median()

M print(sensor_min, sensor_max)
print(sensor_var)
print(sensor_mode)
print(sensor_median)

540.0046453289929 569.997124807355
75.32874298843589
544.,5711975753577
555.0484810365643

Figure 25: Statistical Analysis of Sensor Data
Once we performed the statistical analysis, we created a JSON structure that included all the

statistical values, the sensor ID, and the sensor batch ID as shown in figure 26.
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netl structure = {
"sensor_id" : sensor_id,
"system batch_id" : batch_id,
"checksums" : checksum,
"mean" : sensor_mean,
"mode" : sensor_mode,
"median” : sensor_median,
"min" : sensor_min,
"max" : sensor_max,
"standard _deviation" : std dev,
“variance" : sensor_var

Figure 26: JSON Structure Inserted Into IOTA
Once the JSON structure was created, the data was published as a message transaction in the IOTA
by using the client. message () function which sends and stores the transaction in the IOTA nodes

and returns a message ID as shown in figure 27.

M message = client.message(
index="test_index", data=netl_json

)

M pprint(message)

{'message_id': '534812d36a7a@b576fa23e739d5393ca719e4750695e5de7a87f9bb7692837c4",

'network_id': 8453507715857476362,

'nonce': 2305843009213694757,

'parents': ['6345f7875931410adaa35d3beaaf8ac9002bBabcd29ele7cOc908989414487d8",
'648540885bfel6418084bc4fe52812eb82daatlca76715bcf8b50827b1428¢1417 ",
'ab4d4e708267821d60be248473276ee0c7426999b924cb3e85e8543ecabellec’,
'cfeb5847dflbla9ef263c45608ccae3789fa9257c31eabeb5bf33a33b2f9efde’ ],

"payload': {'indexation': [{'data': [123,

10,
32,
32,
32,
32,
34,
115,
1e1,
110,
115,

111

Figure 27: Sending Data to Private Tangle

3.4.4 Fetching Data from the IOTA:
Another Python script was developed called IOTA_Fetch Data.py, which retrieves the data from
the private IOTA nodes. The client machine queried the private Tangle by using the message 1D

where the nodes use this message ID to locate and fetch the queried transactions and return the
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data requested. Also, by using the message ID, we acquired the transaction timestamp which was
generated when the transaction was sent to the IOTA framework.

3.4.5 IOTA Transactions Table:

After the transactions containing the sensor metadata were fetched and retrieved in the Python
script, the PYODBC driver was imported in Python to interact with the SQL database. A
connection with the SQL server database was established in the Python script, as shown in figure

28, by passing the valid credentials.

M new_query = '''INSERT INTO IOTAhransactions VALUES (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)'"'

M data = [(json_message['sensor id'], json_message['system batch id'], json_message['checksums'],
json_message[ 'mean'], json_message['mode'], json_message[ 'median'], json_message['standard_deviation'],
json_message[ 'variance'], json_message['min'], json_message['max'], tx_timestamp, msg_id),
(json_message[ 'sensor_id'], json_message['system_batch_id'], json_message['checksums'],
json_message[ ‘'mean’], json_message[ 'mode'], json_message[ 'median’'], json_message['standard deviation'],
json_message[ 'variance'], json_message['min'], json_message['max'], tx_timestamp, msg_id)]

M # cursor.execute(insert_query, values)
M cursor.executemany(new_query, data)
M connection.commit()

M cursor.execute('SELECT * FROM TABLE1')

]: <pyodbc.Cursor at @x2delc281bb@>

Figure 28: Python Code for Inserting Transactional Data into Database
A table called IOTA Transactions was created which stored all the transactional data along with

the transaction metadata, such as transaction timestamp and message 1D, as shown in figure 29.

SensorlD  SensorBatchlD Checksum SensorMean SensorMode SensorMedian SensorStandardDeviation SensorVariance
1 6ad99030 6ad99030 1  6b186fab... 554.995 544 57119... 555.0484810... 8.679 75.32874298...

2 6ad99030 6ad99030_1  6b186fab... 554.995 544.57119... 555.0484810... 8.679 15.32874298...

Figure 29: IOTA Transaction Table

3.5 Web Application Implementation:

A Web application was developed by the FIU team to manage the overall Secure Data Logging
and Processing with Blockchain and Machine Learning framework. As seen in figure 30, the
homepage consists of different modules with functionalities to generate sensor data, visualization
on a graph, sensor identity management, and anomaly detection which consists of model building
and prediction. Finally, the blockchain module pushes the sensor metadata into the IOTA

framework for secure storage and logging.
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Certain module screenshots are shown below:

Register
—t Login
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Figure 30: Home Page
Figure 31 shows the fossil power plant component manager where a user can add, edit, or delete

various components of a plant. It also contains some data such as FPP Component ID, component

name, its description and timestamp when the component was inserted into the application.
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Figure 31: Fossil Power Plant Components Management
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Figure 32 to 40 outlines the different modules of the system such as Sensor Management, Sensor
Dashboard, Generating Synthetic Sensor Data, Sensor Data Visualization, Sensor Identification
and Authentication, Machine Learning Model Building, Machine Learning Prediction, Machine

Learning Model Management, Machine Learning Prediction Management.
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Figure 32: Sensor Management
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Figure 33: Sensor Dashboard
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5. CONCLUSION:

In conclusion, this project report presented a comprehensive approach to securing sensor data from
fossil fuel power plants through the implementation of sensor identity management, data
aggregation, and anomaly detection using machine learning, and secure logging and storage of
sensor data using blockchain technology. Sensor identity management played a vital role in
ensuring the authenticity and integrity of the sensor data by employing robust authentication and
access control mechanisms. By implementing secure protocols and encryption techniques,
unauthorized access and tampering with the sensor data were effectively mitigated.

Data aggregation and anomaly detection using machine learning algorithms provided a proactive
approach to identifying abnormal patterns and potential threats within the sensor data. Through
advanced analytics and pattern recognition, the system was able to detect anomalies, such as
equipment malfunctions or security breaches, in real-time, enabling prompt action to be taken to
mitigate risks and ensure the smooth operation of the power plants. Furthermore, the use of
blockchain technology for secure logging and storage of sensor data added an additional layer of

security and transparency. By leveraging the decentralized and immutable nature of blockchain,
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the integrity and auditability of the sensor data were guaranteed. The tamper-resistant nature of
blockchain ensured that any unauthorized modification or tampering with the data could be easily
detected, providing a trustworthy and reliable source of information.

Overall, the implementation of tasks in securing sensor data from fossil fuel power plants
showcased a holistic and robust approach to safeguarding critical infrastructure. By combining
strong identity management, advanced anomaly detection, and secure storage using blockchain,
the system achieved enhanced data integrity, confidentiality, and availability. This not only helps
protect the power plants from potential cyber threats but also ensures the reliability and efficiency
of the energy generation process. The successful implementation of these measures underscores
the importance of leveraging advanced technologies to address the ever-growing challenges of

securing critical infrastructure in the digital age.
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