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Abstract: 

A previous study demonstrated the potential for Cyanobacterial-Methylotroph cocultures to 

facilitate biogas processing as well as to be used in other biotechnological applications. To advance this 

technology, we investigated potential interactions between Cyanobacterium stanieri HL-69 (HL69) and 

Methylotuvimicrobium alkaliphilum 20Z (20Z) by inferring and analyzing gene co-expression networks 

under co-culture and axenic conditions. Five different co-expression networks were examined. These 

networks were inferred using gene expression profiles for 20Z axenic condition, HL-69 axenic, HL-69, 

20Z coculture, HL-69 coculture, and cross-species HL-69-20Z coculture. Through the analysis of node 

(gene) betweenness and node normalized degree values in all five network cases, we compared 

adjustments in gene expression between growth conditions (axenic vs co-culture) as well as identify 

biological functions relevant to interspecies interactions. This analysis was done to distinguish between 

gene interactions within an organism and gene interactions between two organisms. Moreover, for all five 

cases we investigated two different network cutoff levels of 3,000 and 10,000. By shedding light on inter- 

and intra- species interactions, we hope to gain a better understanding of how these two organisms 

interact. This research will allow the investigation of further biotechnological applications of coculture 

systems and optimization of such applications for biotechnological purposes. 

 

Introduction: 

Within the field of biotechnology, the use of bioreactors have increased over time due to 

their ability to produce a variety of different bioproducts with a variety of functions from biogas 

to wastewater treatment1. Bioreactors are susceptible to contamination from a variety of different 

factors, and therefore are typically kept under extreme conditions (high temperature, high pH, 

etc.) to protect against contamination. Selecting organisms that can be utilized within bioreactors 

requires the organism to be able to exist and thrive in such conditions and takes careful 

consideration. Due to the diversity of use cases for bioreactors selecting the organism or 

organisms that can survive these harsh conditions for cultivation becomes critical, especially 

when designing a bioreactor for a specific bioproduct. With the extreme conditions typically kept 

within bioreactors, algae have become a popular organism of study because of their hardy nature 

and ability to survive in extreme conditions2. 

To create bioproducts, a precise understanding of the function and interactions that the 

organism of choice has with their environment is necessary to optimize the system for 

production. With global warming on the rise and increasing greenhouse gases, solutions need to 

be made for how to deal with the excess CO2 in the atmosphere, as well as how to clean up waste 

products from industry. Numerous strategies have been developed to fix atmospheric CO2, with 



algae being a method of fixing atmospheric CO2 out of different kinds of wastewater to filter it 

for contaminants3. Additionally, with the multiple use cases for algae in biotechnology, research 

into exploiting the properties of algae continue to be investigated4-6. 

In addition to fixing atmospheric CO2, another objective is to transform other harmful 

greenhouse gases, like CH4 and other off gasses from microbes into useful bioproducts for 

industry. In microbial communities, different symbiotic relationships exist where systems 

maintain equilibrium, and these kinds of communities have been attempted to be recreated in 

laboratory settings for further study7. Through understanding how these different synthetic 

communities work together, we can understand how the organism(s) functions and how best to 

use them to create bioproducts as well as fix common greenhouse gases. 

Specifically, utilizing methylotrophic bacteria within bioreactors to facilitate the 

synthesis of these bioproducts. Methylotrophic bacteria, or methylotrophs, can oxidize CH4 into 

different metabolites, which can be used to remove unwanted methane from a variety of different 

substrates8. Methylotrophs are also very sturdy and can grow in harsh conditions, like the ones 

kept within bioreactors. Due to the ability for methylotrophs and algae alike to survive in both 

extreme conditions and preform important bioremediation functions, investigation into coculture 

interactions of these two organisms were carried out. The goal of this study is to determine how 

these two organisms interact on their own and with each other to better understand how to 

optimize their growth for producing bioproducts. 

To understand the interactions of these organisms, gene network analysis was utilized to 

gain detailed knowledge about their function and cross-species interactions. Over the last several 

years, the field of –omics has exploded in popularity within research areas spanning numerous 

disciplines9-11. Within the arena of network biology, –omics has allowed for advances in 

understanding of numerous different systems with applications in industry, from drug discovery 

to metabolic pathways for bioproduction5, 12. To produce biogas and other useful bioproducts, the 

utilization of more and more sensitive approaches is critical to understand the complexity of the 

networks that we are looking to harness. In nature, organisms operate in such balance that minute 

changes and other nuances are incredibly difficult to reproduce in laboratory settings. However, 

recent advances in transcriptomics technology have allowed researchers to begin to understand 

these complex networks, and how they interact with the world around them4.  

For this study, we utilized two organisms, an algae, Cyanobacterium stanieri HL-69 

(HL69) and a methylotrophic bacterium, Methylotuvimicrobium alkaliphilum 20Z (20Z). These 

organisms were chosen for their ability to survive and extreme conditions (high pH, extreme 

temperatures, etc.) as well as for individual characteristics, cyanobacteria for its photosynthetic 

properties of fixing CO2, and methylotroph for its ability to oxidize CH4
8. To better understand 

these organisms, a gene network analysis approach was taken to get a clear understanding of the 

genetic interactions of these organisms.  

Materials and Methods: 

 Five different gene network cases were studied, axenic condition 20Z, axenic HL69, 

coculture condition 20Z, coculture HL69, and cross-species interaction HL69-20Z coculture. 



These cases were studied because they allowed for baseline data to be gathered about 20Z and 

HL69 gene networks in singular growth conditions that could be compared to the gene 

expression data of the coculture growth conditions. Of note, we separated by species the gene 

interactions from the cross-species coculture interactions, to see what genes were differentially 

expressed between intra- and inter- species interactions. We analyzed the networks in Cytoscape, 

a network analysis visualization software, combined with a modified FastGreedy algorithm to 

trim gene network data to desired cutoffs13, 14. The modified FastGreedy script allowed for raw 

GENIE3 output files to be trimmed of satellite networks and allowed for focus on the main gene 

network responsible for the majority of interactions15. Additionally, this allowed us to reduce the 

noise within our raw data, so that greater attention could be paid to the main network 

interactions.  

 Each network was trimmed to two different cutoffs, 3,000 and 10,000 edges. The edges, 

double-sided connections that come from each node (gene), showing how other genes are related 

to one another. These edges that connect nodes can be used to calculate how central or 

“important” a gene is to the overall network, which can be calculated through a variety of 

different topological statistics (degree, betweenness centrality, stress, etc.)16. These topological 

values were calculated via Cytoscape’s “Analyze Network” function and were exported for each 

network case for statistical analysis and comparison between networks. This topological data 

was then merged with Clusters of Orthologous Genes (COG) functional group information, that 

was assigned to each gene based on the specific gene’s name17. This COG annotation allowed for 

greater depth of analysis to be performed by analyzing not only the gross topological data but 

also being able to analyze the gene networks by functional group to see what functions were 

differentially expressed. 

Figure 1. 

 

A. Provides a visual representation of betweenness centrality. Circle X having the highest betweenness 

centrality due to its position within the network, therefore being the central node that information must pass 



through to get to other nodes. B. Provides a visual representation of degree centrality. With circle X having 

the highest degree because it has the most connections coming from it to other circle. 

  For specific comparison, degree and betweenness centrality were chosen as comparative 

values for each gene network based on the Giovanni and Carlo 2012 paper describing the 

different centrality analysis statistics suitable for complex biological networks16. Degree, defined 

as the number of connections or edges, that come from one node or gene to another16. The higher 

the degree, the greater the number of connections that gene has. Betweenness centrality can be 

defined as how central a node is to a specific genetic pathway, and therefore, how important a 

gene is to the overall gene network’s function16. The higher the betweenness centrality the more 

“central” a node is to the network or specific pathway that is being analyzed. These two 

topological analysis factors were chosen due to their ease of interpretation as well as their 

diagnostic significance to the overall network function and relationships. From these values, 

inferences could be made about the centrality and importance of a gene or functional group to the 

specific network or coculture interactions. 

 For specific comparative analysis of the two network cutoffs, a normalization was 

applied to the degree and betweenness values. For degree, there were two separate calculations 

made. The first was for axenic and coculture interactions: where each degree value was divided 

by (2*(total # edges/total # species-specific nodes). For the interspecies interactions, the 

calculation was by doing each degree value divided by (total # edges/total # of species-specific 

nodes). The reasoning for this type of normalization was so that when averaged the normalized 

degree values across all cases would equal 1 and be comparable, and interspecies data sets 

contain both species, 20Z and HL69, within them, whereas the axenic and coculture do not. This 

means that while most of the datasets have the total number of nodes of the data set being used in 

the calculation, the interspecies cases only have around half the number of nodes compared to 

the total number of edges. Therefore, alterations were made to the calculation to keep all the 

numbers normalized to one and comparable. Additionally, the calculation for betweenness was 

mu0ch more straight forward. With all cases having each betweenness value dived by the total 

sum betweenness values per case, equaling 1 when averaged. With this data cleaning process, it 

allowed for the analysis of the different growth conditions, organisms, and network cutoffs to be 

uniform within scaling, allowing for easier comparison downstream. 

Equation 1. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑒𝑔𝑟𝑒𝑒𝑎 =  
𝐷𝑒𝑔𝑟𝑒𝑒 𝑉𝑎𝑙𝑢𝑒

(2 ∗ (𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠)/(𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑁𝑜𝑑𝑒𝑠)
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =  
𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒

(𝑆𝑢𝑚 𝑜𝑓 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒𝑠)
 

 Eq. 1. These two equations show how the normalization functions were calculated during the analysis. A. 

The normalized degree function is utilized only for the axenic and coculture data, the cross-species data does not 

include the coefficient multiplied to the total number of edges and total number of species-specific nodes. This is 

because the when the species-specific nodes are calculated for the cross-species calculations, the number of edges 

stays the same, while effectively halving the number of nodes going into the equation. Therefore, to normalize all 

values to 1, the coefficient is removed, to allow for the node difference to normalize for comparison. 



Preliminary Results: 

Analysis of the complete dataset is still on-going, and more detailed analysis of more 

topological analysis factors are in progress. The current data analysis shows that overall, the 

degree centrality values are larger in the 10,000-edge case when compared with the 3,000 edge 

cases. This is likely because of the greater number of edges within the main network, which 

allowed for a greater number of overall connections between nodes when compared to the more 

constrained network. Generally, the same trends are carried throughout the two different 

networks cutoffs regarding what functional categories have greater connections in one cutoff vs 

another. However, in some cases, when comparing from axenic growth to coculture and cross-

species (interspecies) interactions, there is a large difference. For example, in Cell Motility, the 

axenic case of HL69 at 3,000 edges has .5 average degree, whereas the coculture growth case has 

over 1.75 average degrees. This differential expression of this motility function shows that in 

axenic conditions the cells are not moving as much as when in coculture growth conditions. 

Whereas looking at the interspecies expression of motility, the 3,000-cutoff value for HL69 was 

just over .75 average degrees, a drop of about a degree on the average. These kinds of 

fluctuations within the data as growth conditions were compared and are still be investigated. 

Figure 2. 

Fig. 2. This graph shows the 3,000-edge cutoff for the coculture compared to the interspecies gene 

networks. With the average normalized degree on the y-axis and the x-axis showing the COG functional categories. 

Additionally, when comparing the translation category between the two different edge 

cutoffs, it is maintained that the highest degree value within this category across all gene 

networks is the coculture HL69, averaging >1.75 average degrees. Showing that perhaps in 

coculture growth conditions the HL69 organism has enriched translational response. 

 Within the betweenness centrality, averages hovered low, with no clear functional 

category hovering above the others. The main reason for the lack of clear-cut data points within 



the betweenness values is speculated to be two-fold, the first being that betweenness is calculated 

by how used a path is to get to other nodes, and with larger and larger network size, there is no 

“one way” to move throughout the gene network. 

The other potential reason for this is that the data is so varied, with the quartiles not 

encompassing all data points, leaving outliers high above even the maximum values within the 

boxplots. 

Figure 3. 

 Fig. 3. This figure shows the betweenness value plotted out in a boxplot, in a 3,000-edge cutoff comparing 

the coculture expression to the interspecies expression data. 

This makes for less straightforward interpretations of the data gathered so far and why 

further analysis is required to get a handle on this data. There is more analysis underway at the 

publishing of this report, as well as more research on network analysis of 20Z and HL69 which 

should further shed light on the interactions between these two organisms and how they can best 

be optimized for biotechnological applications. 

Discussion: 

 This research can help further inform biotechnical applications of co-culture systems, as 

well as help to improve current process. With the explosion of recent microbial research and the 

push for renewable energy, all potential avenues of biofuel and bioproducts should be 

investigated. With the promising results coming out of bioreactor products, such as wastewater 

cleanup and other products, having a greater understanding of the transcriptomic functions of 

these two hardy organisms, 20Z and HL69, will hopefully lead to useful products being created 

from their interactions3. Having a better understanding of the different gene interactions that 



occur between and within these organisms will allow for future research endeavors to study the 

flow of specific desirable metabolites within the network, as well as how to engineer this 

coculture growth to produce whatever desired bioproducts, such as biogas that are of interest. 

Furthermore, with a greater understanding of these networks, sequestering of greenhouse gases, 

such as excess CH4, atmospheric CO2, as well as other harmful waste products could be 

removed from the environment and transformed into more useful products.  
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