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Background and Motivation



Fly ash (FA), a coal combustion residual (CCR), is one of the most commonly

used supplementary cementitious materials (SCMs).

FA particles carried out of coal combustion chamber by
exhaust gases and subsequently filtered out

Two main classifications:
Class F 2 FA w/ pozzolan properties
Class C = FA w/ pozzolan & cementitious properties

Often used as a [partial] replacement of conventional
Portland cement
- With restrictions for high-early strength concretes
- Initial Prestress
- Formwork Removal
— Rapid re-opening of structure
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High early strength development in FA concretes is typically limited by
relatively lower heat of hydration

High early strength commonly achieved using Type Ill Portland cement

- Type lll PC exhibits high heat of hydration
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Increasing FA content for conventional mix designs usually leads to slower compressive strength gain

- Note the larger offset from the control ‘Cement’ mix curve with increasing FA content
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Moghaddam, F., Sirivivatnanon, V., and Vessalas, K. “The effect of fly ash fineness on heat of hydration, microstructure, flow
and compressive strength of blended cement pastes.” Case Studies in Construction Materials 10 (2019) e00218. Elsevier Ltd.
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Why is today’s topic important? and innovative?

Push for more “sustainable concretes” is well known

Can we continue to further advance sustainability initiatives without
sacrificing pertinent fresh & hardened properties?

+ Especially critical for high-early strength mixes

—> High replacements of OPC often result in low heats of hydration
- Generally results in lower early-age strengths

Furthermore...

If we develop novel mix designs to meet such objectives, do we have a
unified methodology to characterize their performance?

Are current methods or provisions still sufficient?



Outline of Proposed Framework



1) Gather Concrete Performance Requirements

2) HVFA Binder Optimization

3) Assess the Environmental Impact of Using HVFA Concretes

4) Scaling to HVFA Concrete Mix Designs

5) Characterization of HVFA Concrete Strength Development

6) Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments
7) Assessing the Behavior/Performance of HVFA Concrete Structures

8) Expected Durability and Long-Term Performance

9) Facilitating Updates/Revisions to Design Standards, Guidelines, etc.
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1) Gather Concrete Performance Requirements

Mechanical Performance

Workability
+ Early-age compressive strength
(initial prestress, bridge re-opening, etc.) +SCC?
+ Early-age flexural strength (if so, follow a few extra steps later on)
(lifting & handling, etc.) + Slump retention

+ Desired set time
Think like vectors = (magnitude and time!)

Durability & Long-Term Performance Environmental Impact
+ Air content + Limits on certain chemical contents
+ Formation Factor + Leaching

+ Creep & Shrinkage + Environmental life-cycle goals



2) HVFA Binder Optimization



Reactivity

2) HVFA Binder Optimization

+ Measure the heat release of novel
SCMs in a calorimeter @ 40°C
(ASTM 1897-20)

+ In many ways, an important
precursor to binder performance

(and subsequently concrete strength
development) characterization

https://www.humboldtmfg.com/digital-cement-calorimeter.html
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2) HVFA Binder Optimization

Development of Optimized HVFA Binders

Binary Binders
- HVFA & Type Il Portland Cement w/ additional optimization

Ternary Binders
- HVFA, Type Il Portland Cement, [additional material] (w/ additional optimization)
- Ex: CSA, slag, calcined clay, etc.
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Gypsum Optimization

2) HVFA Binder Optimization

1-day strength

Determine SO; Content of Binder

ASTM - C563: Standard Guide For Approximation of Optimum SO,

Type Il 2.80% in Hydraulic Cement
0 . e . .
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2) HVFA Binder Optimization

Accelerator [admixture] Optimization
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3) Assess the Environmental Impact of Using HVFA Concretes



Environmental Performance

3) Assess the Environmental Impact of Using HVFA Concretes

Chromium Concentration (mg/L)
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Related Topics: Hazardous Waste Test Methods | SW-846 CONTACT US

SW-846 Test Method 1315: Mass Transfer Rates
of Constituents in Monolithic or Compacted
Granular Materials Using a Semi-Dynamic Tank
Leaching Procedure

This method is ene of four Leaching Environmental Assessment Framework (LEAF) methods. It is designed to provide the mass transfer
rates (release rates) of inorganic analytes contained in a monolithic or compacted granular material, under diffusion-controlled release
conditions, as a function of leaching time.
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3) Assess the Environmental Impact of Using HVFA Concretes

Environmental Life-Cycle Analyses

—LCA analysis framework has been Raw materia Production

. . . extraction basic materials
built to quantify the environmental .g

impact of using HVFA concretes
—>The framework accounts for source
End of ife LIFE CYCLE é

Concrete
production

of raw (or recycled) materials, and reayeling ANALYZER
transportation costs, end use of the
concrete structure(s), etc.

- Global warming potential (GWP) will also E

Use Construction

be quantified to aid precast producers in stage process
meeting SUStaina ble COﬂStFUCtiOﬂ https://sphere-project.eu/wp-content/uploads/sites/10/2021/01/Picture-2.png
requirements with HVFA mixes
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4) Scaling to HVFA Concrete Mix Designs



4) Scaling to HVFA Concrete Mix Designs

Optimized Mix Proportioning
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2) Admixture Dosage P
+ Admixtures need to be assessed/optimized
0.075 . 11 2.36 475 05
again at concrete stage MO g

0%

+ Facilitate proper workability in the presence of larger aggregates
+ Maintain desired slump (or slump flow for SCC) and retention

3) w/c ratio
+ Shouldn’t be only reliance for enhanced strength
+ Enhances strength gain as long as workability is maintained
— Usually less of a problem for SCC mixes



4) Scaling to HVFA Concrete Mix Designs

HVFA Concrete Batching
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4) Scaling to HVFA Concrete Mix Designs
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5) Characterization of HVFA Concrete Strength Development

— Evaluate compressive and flexural strength at several
points during early-age period
(e.g., within ~12-24 hours — don’t forget 28 days!)

- Specific metrics are a function of the corresponding project/application




40% Fresh Class C FA — Example Cases

Main Accelerators

C40-SCC-030-B

C40-G97-SCC-030-C

C40-G97-CABR2-SCC-030-A

C40-G97-ACC-SCC-030-A

None (control)

Optimized Gypsum

Opt. Gyp. w/ CaBr2

Opt. Gyp. w/ non-Cl Liq. Accel.

Air Content (C231)

4.3%

6.8%

12-hour Compressive Strength

Average (psi)

1193.3

18-hour Compressive Strength

603

Average (psi)

4.8%

24-hour Compressive Strength

5.5%

[
.

Minimum Goal Here
3500 psi comp. strength
@ 24 hours

Average (psi) 3750 | 3760 | 4317 4210
C40-SCC-030-B C40-G97-SCC-030-C C40-G97-CABR2-SCC-030-A C40-G97-ACC-SCC-030-A
Main Accelerators None (control) Optimized Gypsum Opt. Gyp. w/ CaBr2 Opt. Gyp. w/ non-ClI Liq. Accel.
12-hour Modulus of Rupture
Average (psi) 202.7 161 515 526
ACI 318 f, (psi) 259.1 184 404 412
18-hour Modulus of Rupture
Average (psi) 336.0 463 562 556
ACI 318 , (psi) 376.0 393 465 456
24-hour Modulus of Rupture
Average (psi) 439.9 565 599 607
ACI 318 f, (psi) 4593 460 493 487
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40% Fresh Class F FA — Example Cases

F40-FP20-SCC-030-A F40-CI-SCC-030-B3 F40-SH-S40C-SCC-030-H
Main Accelerators non-ClI Liq. Accel. calcium nitrite Accel. non-Cl Lig. SH Accel.
Air Content (C231) 5.8% 7.0% 9.0
16-hour Compressive Strength
Average (psi) 3023 3029 3613
20-hour Compressive Strength
Average (psi) 3613 3578 4157
24-hour Compressive Strength
Average (psi) | 3978 3998 4360
F40-ACC-SCC-030-A F40-CI-SCC-030-B3 F40-SH-S40C-SCC-030-H
Main Accelerators non-Cl Liq. Accel. calcium nitrite Accel. non-Cl Lig. SH Accel.
16-hour Modulus of Rupture
Average (psi) 523 552 549
ACI 318 £ (psi) 412 413 451
20-hour Modulus of Rupture
Average (psi) 562 582 595
ACI 318 f, (psi) 451 449 484
24-hour Modulus of Rupture
Average (psi) 567 591 662
ACI 318 £ (psi) 473 474 495

[
.

Minimum Goal Here
3500 psi comp. strength
@ 24 hours
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40% Harvested Class F FA — Example Cases

L40-SCC-030-A

L40-G97-SH-SCC-030-A

Main Accelerators Optimized Gypsum Opt. Gyp. w/ non-ClI Lig. SH Accel.
Air Content (C231) 6.4% 7.5%
16-hour Compressive Strength
Average (psi) 2183 3147
20-hour Compressive Strength
Average (psi) 3003 3633
24-hour Compressive Strength
Average (psi) | 3373 | 3977

L40-SCC-030-A

L40-G97-SH-SCC-030-A

20-hour Modulus of Rupture

Main Accelerators Optimized Gypsum Opt. Gyp. w/ non-ClI Liq. SH Accel.
16-hour Modulus of Rupture
Average (psi) 414 499
ACI 318 £, (psi) 350 421

Average (psi)

470

524

ACI 318 £ (psi)

411

24-hour Modulus of Rupture

452

Average (psi)

548

561

ACI 318 £, (psi)

436

473

3500 psi comp. strength

( Minimum Goal Here
L @ 24 hours

Slump flow test for an L40 mix.
High stability with no segregation was observed.
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Characterizing HVFA Early Strength Development — f’c

Compressive Strength AVG, f'c (MPa)
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Characterizing HVFA Early Strength Development — MOR

Flexural Strength (MPa)

4.5

35

25

1.5

0.5

0

0/-
/ e

[’

0 6

= = MOR Predicted (C-G-SCC)
A MOR (C-G-SCC)

Class C FA First 24 Hours - MOR

’-‘_—'.r’.'—’.. A
— ’
= 7
—
o R U
== /s __=---"
/ __=--"
—/’ -
-7
- s
-~ /,
_- - /7
A
12 18 24
Time (hrs)
MOR predicted (C-G-CBr2-SCC) == - MOR predicted (C-G-ACC-SCC)

MOR (C-G-CBr2-5CC)

© MOR (C-G-ACC-SCC)

30



6) Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments

MJ Gombeda - IIT
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6) Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments

Towards Maturity Method

Strength vs. C39 Cylinder Strength Test Results
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Towards Maturity Method

6) Facilitating Extrapolation from Ideal Laboratory Conditions to Relevant Environments
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7) Assessing the Behavior/Performance of HVFA Concrete Structures

Examples of some critical early-age milestones:
+ Formwork Removal (precast or CIP)
+ Lifting/Handling (precast/tilt-up)
+ Initial Prestress (precast)
+ Rapid bridge deck construction or repairs

Main Objective: Confirmation of service or strength limit states for the structural member




7) Assessing the Behavior/Performance of HVFA Concrete Structures

Tests @ 12 hrs.
in this case
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7) Assessing the Behavior/Performance of HVFA Concrete Structures
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8) Expected Durability and Long-Term Performance

[SELECT] Pertinent Metrics:

[Standard] Air Content
- ASTM C231-22 (pressure method)
—> Facilitates improved freeze-thaw durability
- Additionally enhances workability

Super Air Meter (SAM) Test
- Related to C231-22 test
- Measures air void spacing factor
—> Better distribution of smaller aid voids generally facilitates enhanced durability

Creep under Compression
- ASTM C512-15
—> Deflections under sustained dead load
- Necessary for comparing long-term HVFA concrete performance vs. standard mix designs

Formation Factor
- AASHTO TP119
- Measure of electrical resistivity to assess micro-structure (pore) for durability



9) Facilitating Updates/Revisions to Design Standards, Guidelines, etc.

f'c = a + b.log(M)
-350.11 312.95
Report on High-Volume
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[Some] Future Research Needs

+ Characterization of other SCMs

+ Additional structural testing (prestressing, etc.)

+ More data with further reductions of Portland cement
+ Latest developments in concrete admixture technology
+ More investigation on slump/slump flow retention

+ Full-scale integration into precast production
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Questions ?



Thank You!



