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Abstract. Galilei-Newton spacetime G with its Galilei group can be un-
derstood as a ‘degeneration’ as c → ∞ of Minkowski spacetime M with
its Poincaré group. G does not have a spacetime metric and its Galilei
symmetry transformations do not include energy; but Bargmann-Galilei
spacetime BG, a 5-dimensional extension that preserves Galilei physics,
remedies these infelicities. Here an analogous Bargmann-Minkowski space-
time BM is described. While not necessary for Poincaré physics, it may
illuminate a path towards a more extensive ‘Galilei general relativity’
than is presently known, which would be a useful—and conceptually and
mathematically sound—approximation in astrophysical scenarios such as
core-collapse supernovae.
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1 Introduction

The terms ‘relativistic physics’ and ‘non-relativistic physics’ refer to what might
be called something else—perhaps ‘Poincaré relativity’ and ‘Galilei relativity’ re-
spectively. In terms of space, so-called ‘non-relativistic physics’ is in an important
sense just as relativistic as ‘relativistic physics’. Einstein’s essential innovation
in so-called ‘relativistic physics’ is not relativity in general, but specifically the
relativity of time, or more precisely, the relativity of simultaneity: space is mixed
into time in Lorentz transformations but not in homogeneous Galilei transfor-
mations. However, time is mixed into space in both Lorentz transformations and
homogeneous Galilei transformations. Thus the presence of ‘relativity’ in both
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cases—albeit space only in one case, and both space and time in the other—
justifies more careful reference to ‘Galilei relativity’ and ‘Poincaré relativity’
instead of ‘non-relativistic physics’ and ‘relativistic physics’.

Now, what about Einstein circa 1905 vs. Einstein circa 1915? Having freed
the term ‘relativity’ from specific attachment to the world according to Einstein
and recognizing its relevance to the world according to Newton and Galilei, the
terms ‘special relativity’ and ‘general relativity’ must be reconsidered as well.
The spacetime of Einstein circa 1905 is an affine space, which can be regarded as
a flat differentiable manifold. In contrast, the spacetime of Einstein circa 1915
is a more general pseudo-Riemann manifold whose curvature is determined by
the energy and momentum of matter and radiation upon it.

This distinction—between flat and curved spacetime—is what ought to be
meant by the terms ‘special relativity’ and ‘general relativity’, without regard for
whether the physics is governed by the Poincaré group or the Galilei group [2]. In
this perspective the key difference is not between ‘relativistic physics’—whether
‘special’ or ‘general’—governed by the Poincaré group on the one hand, and ‘non-
relativistic physics’ governed by the Galilei group on the other. Instead, what
distinguishes ‘special relativity’ from ‘general relativity’ is whether the group in
question—whether Poincaré, or Galilei—applies to spacetime globally, in which
case it is an affine space; or only locally, in which case its curvature is determined
by its energy/momentum/mass content. The proper references, then, would be
to ‘Poincaré special relativity’ and ‘Poincaré general relativity’, and to ‘Galilei
special relativity’ and ‘Galilei general relativity’.

One might hypothesize that these linguistic shifts, unavoidably associated
also with conceptual shifts, point toward a unified perspective on Poincaré and
Galilei physics that may bear fruit in a Galilei general relativity more extensive
than that presently known (described for instance in [6, 4]). This would play
out as follows. A 5D (5-dimensional) Bargmann extension of 4D Galilei-Newton
spacetime is needed to include energy in a tensor formalism on a pseudo-Riemann
manifold [5, 6]. A 5D Bargmann extension of 4D Minkowski spacetime is not
needed, but it is allowed, and may illumniate a path to a full Galilei general
relativity, in which full spacetime curvature (including possible curvature of
‘space slices’) is determined by the energy/momentum/mass content (not just
given by assumption of Newton’s gravitational potential as an ad hoc input).
As a first step towards this goal, a 5D Bargmann extension of 4D Minkowski
spacetime that limits nicely to the 5D Bargmann extension of 4D Galilei-Newton
spacetime is described here, and the metric tensors of possible corresponding 5D
curved spacetime generalizations are displayed.

2 Minkowski spacetime M

Minkowski spacetime M is a 4-dimensional affine space with underlying vector
space VM. The invariant structure on VM that governs causality is the null cone,
embodied in a 4-metric g. With respect to a Minkowski basis (e0, e1, e2, e3) of
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VM, the metric g is represented by

g = η =

[
−c2 0
0 1

]
=

[
−c2 0j
0i 1ij

]
.

This ‘Minkowski matrix’ is invariant under Lorentz transformations represented
by matrices PM:

PT
M ηPM = η.

It is well known that an element P+
M of the identity component of the Lorentz

group (restricted Lorentz group) can be factored into a boost and a rotation:

P+
M = LM R.

Here
R =

[
1 0
0 RS

]
,

with RS ∈ SO(3) a rotation of the subspace VS of VM spanned by (e1, e2, e3). A
boost is parametrized by a 3-column u ∈ R3×1:

LM =

[
Λu

1
c2 Λu u

T

Λu u 1+ 1
∥u∥2 (Λu − 1) u uT

]
,

where

Λu =

(
1− ∥u∥

2

c2

)−1/2

is the Lorentz factor associated with u, and ∥u∥2 = uTu is the squared Euclid
norm with respect to an orthonormal basis of VS (naturally appropriate to a
Minkowski basis of VM).

The inverse metric ←→g is represented by

←→
η =

[
− 1

c2 0

0 1

]
=

[
− 1

c2 0j

0i 1ij

]
,

and is also invariant, according to

P−1
M
←→
η P−T

M =←→η .

Given g there is metric duality between vectors and linear forms (‘raising and
lowering of indices’). Let VM∗ be the vector space of linear forms on VM. For
a ∈ VM and ω ∈ VM∗,

a = g(a, ·) ∈ VM∗
←−ω =←→g (ω, ·) ∈ VM.

For natural contractions (here, never scalar products!), use the dot operator, for
example

a = g · a = a · g,
←−ω = ω · ←→g =←→g · ω,
←−
F =←→g · F ,
←→
F =←→g · F · ←→g =

←−
F · ←→g .
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3 Galilei-Newton spacetime G

Galilei-Newton spacetime G is a ‘degeneration’ of Minkowski spacetime M as
c → ∞. The metric g asymptotes (without a true limit) in a manner that
suggests that the linear form τ = dt, where t is the time coordinate, becomes the
invariant structure governing causality, embodying absolute time. With respect
to what will be called a Galilei basis, the ‘time form’ τ is represented by

τ =
[
1 0

]
=

[
1 0i

]
.

The inverse metric ←→g limits sensibly to another invariant structure, the (2, 0)
tensor ←→γ . With respect to a Galilei basis, ←→γ is represented by

←→
γ =

[
0 0
0 1

]
=

[
0 0j

0i 1ij

]
.

The covector τ is invariant according to[
1 0i

]
PG =

[
1 0i

]
,

and the tensor ←→γ is invariant according to

P−1
G

[
0 0j

0i 1ij

]
P−T
G =

[
0 0j

0i 1ij

]
.

Here the homogeneous Galilei transformations PG are the c → ∞ limit of the
Lorentz transformations PM. As with the restricted Lorentz group, elements P+

G
of the identity component of the homogeneous Galilei group can be factored into
a boost and a rotation:

P+
G = LG R.

Here R is the same as before, and the Galilei boost is

LG =

[
1 0
u 1

]
.

The tensor ←→γ derived from ←→g does not qualify as an inverse metric tensor on
VG. It has no inverse because it is degenerate:

←→γ (τ , ·) = τ · ←→γ = 0.

There is no spacetime metric on G. Tensor algebra is more constrained: there
is no metric duality—no ‘raising and lowering of indices’. There are spacetime
tensors but they can only be of fixed type.

4 Decomposition of M and G into time and space

Theories formulated in terms of tensors on spacetime can only be compared with
experiments once spacetime is broken into ‘time’ and ‘space’ (and tensors are
decomposed accordingly).
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Affine spacetimes permit ‘inertial observers’ with straight worldlines and no
rotation. The splitting of space and time as perceived by a single inertial observer
is formally similar on M and G. Select an event O of M or G as origin. Select a
Minkowski basis of VM or a Galilei basis of VG, designated (eµ) = (e0, e1, e2, e3).
A point X ∈M,G is given in terms of coordinates (Xµ) = (t,xi) by

X = O+ eα Xα.

The time axis T is the straight line

T = {O+ e0 t | t ∈ R}.

Interpret T as as the worldline of a fiducial (and inertial) observer whose tangent
vector is the constant 4-velocity n = e0. Let VS be the subspace of VM or VG
spanned by (e1, e2, e3). For a given time t ∈ R, consider a one-to-one mapping

VS →M or G
x 7→ O+ n t+ x.

The image of this mapping is a hyperplane St through the event O+ n t:

St = {O+ n t+ ei x
i | (xi) ∈ R3}.

St is a 3-dimensional affine subspace of M or G with underlying vector space
VS. Interpret St as ‘space’ according to the fiducial observer at her time t—a
surface of ‘simultaneity’. It is evident from the factorization P+ = LR that VS
is rotationally invariant. Thus VS is endowed with a Euclid metric γ defining
the usual scalar product on R3. Each hypersurface St is a level surface of the
coordinate function t. The complete collection (St)t∈R is said to be a foliation of
M or G.

5 A material particle on M and G

A material particle is represented by a timelike curve X(τ) in spacetime, parametrized
by the particle’s proper time τ . The tangent vector U(τ) = dX/dτ , the 4-
velocity, satisfies g(U ,U) = −c2 on M and τ (U) = 1 on G. Select a fiducial
observer with global coordinates (t,xi) associated with a choice of origin O of
M or G and a Minkowski or Galilei basis (n, ei) for VM or VG. Decompose U
into measurable pieces parallel to T and tangent to St:

U =
dt

dτ

dX

dt
=

dt

dτ
(n+ v) .

This follows from the 4-column representations

X =

[
t

x(t)

]
, n =

[
1
0

]
, v =

[
0

dx/dt

]
.
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The leading factor dt/dτ is determined by the fundamental structures g and τ
governing causality. Proper time increments dτ are given by

cdτ =
√
−g (dX, dX) = cΛ−1

v dt (on M),

dτ = τ (dX) = dt (on G),

so that dt/dτ = Λv on M and dt/dτ = 1 on G.
So far so good on both M and G: a spacetime description of particle kinematics—

specifying where a particle is (a point X(τ) on its worldline), and how fast it is
moving (the 4-velocity U tangent to the worldline)—is unproblematic in either
case.

However, a spacetime formulation of particle dynamics turns out to be more
problematic on G. Because of the absence of a spacetime metric there is no equiv-
alence between inertia and total energy. The best one can do is include kinetic
energy in the time component of a ‘relative energy momentum covector’ Π [3].
But this is not fully satisfying because the notion of kinetic energy (energy of
motion) inherently depends on a choice of observer (motion relative to whom?):
the fiducial observer covector n is built into the definition of the 4-covector Π
whose time component is the kinetic energy relative to the fiducial observer.
The unsatisfying result is that Lorentz or homogeneous Galilei transformations
cannot transform the components of Π in such a way as to demonstrate the
transformation rule of kinetic energy. This motivates extensions of the Lorentz
and homogeneous Galilei groups that address the transformation of kinetic en-
ergy.

6 Bargmann spacetimes BM and BG

Work backwards towards Bargmann-Minkowski (or B-Minkowski) spacetime
BM and Bargmann-Galilei (or B-Galilei) spacetime BG by considering a ‘5-
velocity’ Û that extends the 4-velocity U on M or G. The fifth component
will be the specific kinetic energy—kinetic energy per unit mass—involving only
3-velocity. With respect to a B-Minkowski or B-Galilei basis (fiducial observer):

Û =

 Λv

Λv v
c2 (Λv − 1)

 (on BM), Û =

 1
v

1
2∥v∥

2

 (on BG).

The additional dimension requires an additional coordinate. A point X̂(τ) along
the particle worldline is represented by a 5-column

X̂ =

 t
x(t)
η(t)

 =

 t
xi(t)
η(t)

 .

The proper time τ is governed by g or τ as before; these are now regarded as
tensors on BM or BG respectively. The fifth component Ûη of the 5-velocity
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Û = dX̂/dτ must satisfy

Ûη =
dη

dτ
=

dt

dτ

dη

dt
= c2 (Λv − 1) (on BM),

=
1

2
∥v∥2 (on BG). (1)

It is apparent that η has units of action/mass; call it the ‘action coordinate’.
The above ‘action coordinate relation’ will prove crucial to the geometry of BM
and BG.

Next, determine the 5 × 5 B-Lorentz transformation matrices P̂+
BM and ho-

mogeneous B-Galilei transformation matrices P̂+
BG that appear in the 5-velocity

transformation
Û = P̂+ Û′,

or in (4+1)-dimensional form[
U
Uη

]
=

[
P+ 0
Φ 1

] [
U′

U ′η

]
.

The 4-column 0 =
[
0µ

]
in P̂+ ensures that the 4D relation U = P+ U′ on M

or G is preserved when embedded in the 5D setting of BM or BG. It also
ensures that the matrix representations of g and τ do not acquire non-vanishing
components in the η dimension when these are regarded as tensors on BM and
BG. This means that the ‘timelike 4-velocity’ character of U on M or G is
preserved when it is extended to the 5-velocity Û on BM or BG. The 4-row Φ
in P̂+ is determined by the requirement that the fifth component of the above
transformation of Û yield the transformation rule for (specific) kinetic energy.
For Poincaré physics this can be derived most easily from the time component of
the 4D relation U = P+

M U′. For Galilei physics it is derived from the transformed
3-velocity (Galilei velocity addition with rotation), the space components of the
4D relation U = P+

G U′. The resulting expressions for Φ are

Φ =
[
c2 (Λu − 1) Λu u

T RS
]

(on BM),

=
[

1
2∥u∥

2 uT RS
]

(on BG). (2)

No new parameters beyond u ∈ R3×1 and RS ∈ SO(3) already present in a
Lorentz transformation P+

M or homogeneous Galilei transformation P+
G are intro-

duced.
The set of B-Lorentz transformations P̂+

BM and the set of homogeneous B-
Galilei transformations P̂+

BG are subgroups of GL(5). It is evident that these
sets of matrices contain the identity (u = 0 and RS = 1). Once again there is a
factorization P̂+ = L̂ R̂, so that inverses are given by P̂+−1

= R̂T L̂−1 with L̂−1

obtained from L̂ via u 7→ −u. Closure under matrix multiplication is shown by
considering the product

P̂+′′
= P̂+ P̂+′

,
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or [
P+′′

0
Φ

′′ 1

]
=

[
P+ 0
Φ 1

] [
P+′

0
Φ

′ 1

]
=

[
P+ P+′

0

ΦP+′
+ Φ′ 1

]
.

The 4× 4 matrix relation
P+′′

= P+ P+′ (3)

in the upper-left block is simply the known closure of the restricted Lorentz or
homogeneous Galilei group. The remaining question is whether the 4-row

Φ
′′ = ΦP+′

+ Φ′

is in the form of Eq. (2), with the relevant expressions involving u′′ and R′′

determined consistently from Eq. (3). Direct computation shows that the answer
is yes, completing the demonstration of closure.

The existence of a ‘Bargmann metric’ G is suggested by the ‘action coordi-
nate relation’ in Eq. (1) relating coordinate variations along a material particle
worldline, and it turns out to be invariant under B-Lorentz or homogeneous B-
Galilei transformations, making it a fundamental structure on BM or BG. On
BM, use Λv = dt/dτ and c2 dτ2 = c2 dt2 − ∥dx∥2 in Eq. (1) to deduce

−2 dη dt+ dxa 1ab dx
b +

1

c2
dη2 = 0 (on BM).

On BG, use dτ = dt and ∥v∥2 dt2 = ∥dx∥2 to deduce analogously

−2 dη dt+ dxa 1ab dx
b = 0 (on BG).

In both cases the left-hand side looks like a line element, suggestive of a Bargmann
metric (or B-metric) G represented by the B-Minkowski or B-Galilei matrix

G = η̂BM =

 0 0j −1
0i 1ij 0i

−1 0j
1
c2

 (on BM), G = η̂BG =

 0 0j −1
0i 1ij 0i

−1 0j 0

 = (on BG)

with respect to a B-Minkowski or B-Galilei basis. The invariance condition reads

P̂T
η̂ P̂ = η̂

and is verified by direct computation for both P̂+
BM with η̂BM and P̂+

BG with
η̂BG. However, the 6-dimensional Lie groups of B-Lorentz and homogeneous B-
Minkowski transformations are only subgroups of the 10-dimensional Lie groups
that preserve G for BM and BG respectively.

The above calculation suggesting the existence of G also shows that

G
(
Û , Û

)
= ÛT

η̂ Û = 0,

that is, that Û is null with respect to G. This is so even though Û remains
timelike with respect to g or τ as appropriate, as noted previously.
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The inverse metric
←→
G is represented by

←→
G =

←→
η̂ BM =

−
1
c2 0j −1
0i 1ij 0i

−1 0j 0

 (on BM),
←→
G =

←→
η̂ BG =

 0 0j −1
0i 1ij 0i

−1 0j 0

 (on BG)

with respect to a B-Minkowski or B-Galilei basis.
Note the remarkable difference in the relationship between M and G on the

one hand and between BM and BG on the other, including startlingly different
geometric consequences. Whereas the spacetime M is a pseudo-Riemann mani-
fold with metric g and inverse ←→g , the spacetime G obtained as c → ∞ is not:
instead of a metric and its true inverse, one is left with an invariant time form
τ and an invariant degenerate inverse ‘metric’ ←→γ . In contrast both BM and
BG are pseudo-Riemann manifolds with a (flat) metric G and inverse

←→
G , the

versions of both of these on BM limiting smoothly to those on BG as c → ∞,
as is evident from the above expressions relative to B-Minkowski and B-Galilei
bases.

7 Conclusion

This account of Bargmann-Minkowski spacetime BM with its metric G, deduced
from Eq. (1), extends to Poincaré physics an ingenious elementary introduction
given by de Saxcé and Vallée [6] of the Bargmann group as an extension to the
Galilei group. This approach to the Bargmann group is simple and direct in com-
parison with its origins in the study of projective representations of Lie groups
in quantum mechanics [1], but the necessity of transforming kinetic energy is a
shared underlying motivation: the Hamiltonian in the ‘non-relativistic’ (forgive
the lapse) Schrödinger equation contains kinetic energy, and this equation can-
not be shown to be Galilei covariant without taking the projective phase into
account [8].

The next step is to relax the assumption of an affine space, allowing instead
spacetime curvature determined by its energy-momentum content. Call the 4D
spacetime of standard general relativity ‘Einstein spacetime’ E ; in its 3+1 formu-
lation [7] in terms of the lapse function α, shift 3-vector β, and 3-metric γ, the
Lorentz factor of a material particle is Λ = α dt/dτ and proper time intervals are
given by c2 dτ2 = c2α2 dt2−γ (dx+ β dt, dx+ β dt). Using these expressions in
Eq. (1) yields

βaβ
a dt2 − 2 dt βadx

a − 2α dη dt+ dxa γab dx
b +

1

c2
dη2 = 0 (on BE),

suggestive of a 5D Bargmann-Einstein spacetime BE with metric G and inverse←→
G represented by

G =

βaβ
a βj −α

βi γij 0i

−α 0j
1
c2

 ,
←→
G =

−
1

c2α2
1

c2α2 β
j − 1

α

1
c2α2 β

i γij − 1
c2α2 β

iβj 1
α βi

− 1
α

1
α βj 0

 (on BE).
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As c→∞ this limits smoothly to

G =

βaβ
a βj −α

βi γij 0i

−α 0j 0

 ,
←→
G =

 0 0j − 1
α

0i γij 1
α βi

− 1
α

1
α βj 0

 (on BG),

suggestive of a hitherto unknown ‘Galilei general relativistic’ spacetime BG.
(In both cases these reduce to the previous expressions on BM and BG as
α → 1 and β → 0.) Thus there is a reasonable prospect that recasting the
3 + 1 formulation of the Einstein equations on E as a 1 + 3 + 1 formulation on
BE and taking the c → ∞ limit could yield a Galilei gravitation of enhanced
strength in which energy density and stress contribute as sources and give rise
to space as well as spacetime curvature, beyond the flat space slices and space-
time curvature determined by mass density alone in Cartan’s reformulation of
Newtonian gravitation. This would be a useful—and conceptually and mathe-
matically sound—approximation in astrophysical scenarios such as core-collapse
supernovae, in which the energy density and pressure of the nascent neutron
star contribute to enhanced gravity at the 10-20% level, but for which the com-
putationally/numerically fraught phenomena of ‘Minkowski’ bulk fluid flow and
back-reaction of gravitational radiation are much less significant.

Acknowledgements Thanks to Géry de Saxcé for pointing out that preser-
vation of the B-metric G is not sufficient to prove closure of the B-Lorentz
transformations P̂+

BM, but that closure directly follows instead from relations
obtained from closure of the Lorentz group.
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