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Abstract

Knowledge of how heat flows anisotropically in van der Waals (vdW) materials is crucial
for thermal management of emerging 2D materials devices and design of novel anisotropic
thermoelectric materials. Despite the importance, anisotropic heat transport in vdW materials
is yet to be systematically studied and is often presumably attributed to anisotropic speeds of
sound in vdW materials due to soft interlayer bonding relative to covalent in-plane networks of
atoms. In this work, we investigate the origins of the anisotropic heat transport in vdW materials,
through time-domain thermoreflectance (TDTR) measurements and first-principles
calculations of anisotropic thermal conductivity of three different phases of MoTez. MoTe: is
ideal for the study due to its weak anisotropy in the speeds of sound. We find that even when
the speeds of sound are roughly isotropic, the measured thermal conductivity of MoTe: along
the c-axis is 5-8 times lower than that along the in-plane axes. We derive meaningful
characteristic heat capacity, phonon group velocity, and relaxation times from our first
principles calculations for selected vdW materials (MoTe>, BP, 2-BN, and MoS,), to assess the
contributions of these factors to the anisotropic heat transport. Interestingly, we find that the
main contributor to the heat transport anisotropy in vdW materials is anisotropy in heat capacity
of the dominant heat-carrying phonon modes in different directions, which originates from
anisotropic optical phonon dispersion and disparity in the frequency of heat-carrying phonons
in different directions. The discrepancy in frequency of the heat-carrying phonons also leads to
~2 times larger average relaxation times in the cross-plane direction, and partially explains the
apparent dependence of the anisotropic heat transport on the anisotropic speeds of sound. This

work provides insight into understanding of the anisotropic heat transport in vdW materials.



Main Text

Van der Waals (vdW) materials (e.g., graphite, transition metal dichalcogenides,
black phosphorus) consist of covalently bonded two-dimensional atomic layers (i.e., basal
planes) that are weakly bound by van der Waals forces, forming layered crystal structures in the
hexagonal, orthorhombic, monoclinic and triclinic crystal families. One consequence of the
layered crystal structures is that the optical [1,2], electronic [3], thermal [4,5] and thermoelectric
[6,7] properties of vdW materials can be highly anisotropic. For example, the in-plane thermal
conductivities (A, and Ap) along the crystallographic directions a and b in the basal planes are
usually much higher than the cross-plane thermal conductivity (A.) along the crystallographic
direction ¢ across the basal planes. The thermal conductivity anisotropy ratios of these vdW
materials can be as high as = 300 (e.g., Ao/Ac = 300 in graphite) while in-plane anisotropy only
reaches <3 (e.g., Ad/A» = 3 in black phosphorus). In this regard, the anisotropic thermal
properties have been explored for novel applications of vdW materials, e.g., as directional heat
spreaders [8] for thermal management of electronic devices and for more efficient
thermoelectric energy conversion along particular directions [6,9]. Thus, it is crucial to
understand the origins of the anisotropic heat transport.

Fundamentally, anisotropic heat transport in vdW materials is due to collective effects
of all phonon modes (of different frequencies and directions). To illustrate this point, consider

the thermal conductivity in any principal direction i, A; (or in the tensor form A; =A;;), given

by [10],
A = Zq Cq vEcos?0,,1, (1)

where Cy, v4, and 7, are modal heat capacity, group velocity, and relaxation time of each phonon



mode ¢ in the first Brillouin zone with different wavevectors and polarizations, and 6,,; is the
angle between the propagation direction of phonon mode ¢ and the direction of applied
temperature flux i. Here, we explicitly express (vq : i)z as UqZCOSZQq_i to isolate the effects of
propagation direction from the amplitude of phonon velocity. We consider 7z; as determined in
the relaxation time approximation [11] and thus it does not have explicit directional dependence.
Transport lifetimes determined by full solution of the Boltzmann transport equation can vary
depending on the direction of the applied temperature gradient. This ultimately leads to the
same Eq. (1) except with lifetime calculated along direction i. As suggested by Eq. (1) heat is
carried in direction i not only by phonons strictly propagating in direction i but also in large
part by phonons propagating in all directions in a convoluted manner. Hence, there is no easy
way to simplify Eq. (1) such that the different directional thermal conductivities depend only
on the bulk material properties along their respective directions (e.g., speeds of sounds in high-
symmetry crystallographic directions), and as a result, it is hard to isolate the contributions of
individual properties to heat transport anisotropy.

Many prior studies [12-18], however, have made attempts to understand anisotropic
heat transport in vdW materials in this way. For example, anisotropy in in-plane thermal
conductivity (i.e., As/Ap) is often attributed to anisotropy in speeds of sound in the in-plane
direction (e.g., ¢2/c?), due to good agreement between A4 /Ay and ¢2/cZ along the high-
symmetry a and b directions according to the kinetic theory of phonons [12-14]. (Note that the
average speed of sound ¢; is gives a relatively simplistic measure of the effects of the more

rigorous mode phonon velocities v, in Eq. (1). It is often defined, here and elsewhere [13,18],

2 1 . . .
as CzZZEZCiZ,a, where c;q 1s the speed of sound of acoustic branch « (typically two transverse



and one longitudinal acoustic branch) along the high-symmetry crystallographic direction i,
typically sampled near the Brillouin zone center.) However, as indicated in Eq. (1), the thermal
conductivity in a high-symmetry direction should not only depend on the low-frequency
phonons propagating along the direction, but on all phonons with some component of its
velocity in this direction. Hence, the good agreement between ¢2/c2 and A./Ap may be
coincidence, and other properties (e.g., phonon heat capacity and relaxation time) may also
contribute to the anisotropy of heat transport. In fact, calculations using the Peierls-Boltzmann
transport equation [5,19] and estimations from an anisotropic Callaway model [20] suggest that
phonon relaxation times for phonons with wavevectors primarily in the ab plane can be
substantially higher than those with wavevectors primarily along the ¢ axis, and thus contribute
to thermal conductivity anisotropy [19,21].

In this paper, we identify the main contributing material properties to the anisotropic
heat transport, through time-domain thermoreflectance (TDTR) measurements and first-
principles calculations of the anisotropic heat transport in three vdW layered phases of MoTeo.
We choose MoTe; for our studies because it has three stable phases with different crystal
structures but similar speeds of sound along high-symmetry directions, and thus is a good
platform to investigate the roles of phonon relaxation time and heat capacity to the anisotropic
phonon transport in vdW materials. We find that contradictory to common beliefs, the thermal
conductivity anisotropy in vdW materials is primarily originated from anisotropy in the mode
heat capacity of phonons contributing to heat transport in respective directions. In this context,
we further discuss how phonon velocities and relaxation times contribute to the thermal

conductivity anisotropy. Our work provides valuable insights into the origins of anisotropic heat



transport.

We examine all three phrases of MoTey, i.e., hexagonal MoTe: of the P63/mmc group
(2H-MoTe,), orthorhombic MoTe: of the Pmn2; group (Td-MoTez) and monoclinic MoTe: of
the P21/m group (1T'-MoTez). Section S1 of Supplementary Material (SM) give descriptions of
the crystal structures these phases. We note that 2H-MoTe> and 1T'-MoTe are
thermodynamically stable at 300 K, while a phase transition from the 1T’ phase to the Td phase
occurs at = 250 K [22]. In this work, heat transport anisotropies are discussed for 2H phase and
1T phase at 300 K, and for Td phase at 80 K. Due to crystal symmetry, only the 1T’ and Td
phases exhibit anisotropy in the thermal conductivity in the basal plane. We carefully verify the
existence of the MoTe: phases in our samples at 300 K and 80 K, and determine orientations

for our measurements by Raman spectroscopy, see Figures S1(c) and (d) in Section S1 of SM.

We measured the in-plane thermal conductivity (A4, Ap) and cross-plane thermal
conductivity (A.) of all three phases of MoTe, by beam-offset TDTR and TDTR, respectively.
Details of TDTR and beam-offset TDTR can be found in Methods and Section S2 in SM. We
performed TDTR and beam-offset TDTR measurements using a wide range of modulation
frequencies (0.2 MHz < < 10 MHz) and 1/&? laser beam radii (2.5 pm < wo < 25 pum) to ensure
that the reported thermal conductivity is not affected by experimental artifacts due to non-
equilibrium phonons [23-26], see Section S3 in SM for discussion on frequency and spot size
dependence of our measurements. The uncertainty of our measurements is around 15 %. We
also note that accurate A of MoTe: can only be derived from TDTR measurements performed
using a sufficiently low f. For example, prior measurements of A. of 2H-MoTe> by Yan et al.

[27] using a high modulation frequency of /= 10 MHz, similar to our measurements at the same



£, 1s = 40% lower than the intrinsic values reported in this work.

We show our in-plane thermal conductivity (As, As) and cross-plane thermal
conductivity (Ac) measurements of 2H-MoTe> and 1T'-MoTe; as a function of temperature in
Figures 1(a) and 1(b), respectively. For comparison, we also include prior first-principles
calculations of MoTe: [28] and prior measurements of other bulk vdW materials (i.e., graphite
[29], BP [5], MoS: [4], MoSe: [4], WS: [4], WSe: [4,30], and WTe> [31]), also plotted as a
function of temperature. For 2H-MoTe», our measured A. and A, agree reasonably well with
the first principles calculations by Lindroth et al. [28], see Figure 1. We find that both A. and
A, of 2H-MoTe; exhibit a 7"! temperature dependence, which suggests that phonon scatterings
are dominated by Umklapp processes along both crystallographic orientations. For 1T’-MoTe:
and Td-MoTe>, measured A is substantially smaller than that of 2H-MoTe,, likely due to
stronger scattering of acoustic phonons by optical phonons in their more complex crystal
structures [32,33]. The strong scattering of acoustic phonons is further demonstrated in the
weak, glass-like temperature dependence of A4, Ap, and A, of 1T'-MoTe; and Td-MoTe», which
is consistent with the prior measurements by Yan et al. [27], see Figure 1. Similar weak
temperature dependence of A was found in other complex, low-symmetry (monoclinic or
orthorhombic) crystals, e.g., NaNbO3 [34], CsBiNb20O7 [35] and clathrates [36,37]. Interestingly,
we do not observe any abrupt changes of A in the temperature range of the phase transition of
1T'-MoTe; at 250 K. The continuous A suggests that the slightly different crystal structures of

1T'- and Td-MoTe: do not significantly affect phonon scattering in the materials.

We show the cross-plane (black) and in-plane (red) anisotropy in the measured A of

2H, 1T’, and Td-MoTe: in Figure 1(c). We find that while the in-plane anisotropy in A does not



depend on temperature, temperature dependence is observed for the cross-plane anisotropy.
Since the phonon dispersion is not expected to change significantly with temperature, little
temperature dependence of the anisotropic heat transport should be observed if this is governed
by anisotropy in the speeds of sound alone. Thus, the observed temperature dependence of the
anisotropy further suggests that, in additional to speeds of sound, other factors may be

contributing to thermal transport anisotropy.
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Figure 1. (a) Temperature dependence of in-plane thermal conductivity A, and A,
measurements of 2H-, 1T’-, and Td-MoTe: (solid black symbols, this work), compared to prior
measurements of graphite (open circles, [29]), BP (red squares, [5]), WTe: (open black triangles,
[31]) and other vdW materials (as labelled, [4]). Solid circles and solid diamonds represent A,
and Ap, respectively. (b) Temperature dependence of cross-plane thermal conductivity A.
measurements of 2H-, 1T'- and Td-MoTe: (solid black symbols, this work), compared to the
previous measurements of 2H-MoTe; (open squares, [27]), 1T" and Td-MoTe: (open diamonds,

[27]), graphite (open circles, [29]), BP (red squares, [5]), WSe> (orange down triangles, [30])



and other vdW materials (as labelled, [4]). (¢) Temperature dependence of anisotropy of
selected vdW materials, derived from measurements in (a) and (b). Red symbols are in-plane
anisotropy, while black symbols are cross-plane anisotropy. In all figures, the dashed lines are
first principles calculations of 2H-MoTe: by Lindroth et al. [28], and the dot-dash vertical lines

indicate the phase transition temperature at ~ 250 K.

To assess whether the anisotropy in the thermal conductivity is mainly due to
anisotropy in speeds of sound as previously suggested [12-16], we compare the in-plane (A+/Ap)
and cross-plane (A4/A¢) anisotropy in our thermal conductivity measurements of 2H- and 1T'-
MoTe; at 300 K and Td-MoTe; at 80 K, to the anisotropy in speeds of sound in Table 1. We
derived the average speeds of sound from our first principles calculations (see Methods and
Table S1 in Section S4 of SM for our calculated values of speeds of sound for all phases of
MoTe;) using c‘i2=§z‘,ci2_a (We note that other expressions of average speeds of sound have
been in the literature, see Refs. [15-17,38]. Here, we choose this expression as it is the most
commonly used. Choosing other expressions for ¢; does not affect the conclusions drawn here,
see Table S2 in Section S4 of SM). We find that in the basal planes, A./As approximates to
¢2/c? forboth 1T-MoTe: and Td-MoTe: phases. However, across the basal planes, ¢2/c? and
¢Z/c? are < 2.2, while the anisotropy of the thermal conductivity (i.e., Ao/Ac and Ap/Ac) can

range up to = 8, see Table 1.

The distinctive behavior between anisotropy in and across the basal planes is not
unique to MoTez. To illustrate the stark difference between the in-plane and cross-plane
anisotropy, we compile the cross-plane (black symbols) and in-plane (red symbols) thermal

conductivity anisotropies for a wide range of vdW materials as a function of ¢? / ¢?, in Figure



2. We derive the average speeds of sound of the materials from our calculations and prior first
principles calculations of phonon dispersions and experimental measurements of elastic
stiffness constants, see Section S4 of SM for the details. We fit the compiled thermal
conductivity measurements with power-law functions of the corresponding ¢?/c?, i.e.,

A; 2\ . .
A—fZA (z_—;) , Where the prefactor 4 and exponent » are fitting parameters. We summarize the
J J

fitted values of 4 and » in Table 2. Interestingly, we find that while the heat transport anisotropy

both in and across basal planes is proportional to ¢? / ¢?, a prefactor of 3.7 instead of unity is

observed in the cross-plane direction, see Figure 2 and Table 2.

Table 1. Measured anisotropic thermal conductivity and averages of speeds of sound from
first-principles calculations in 2H-, 1T’- and Td-MoTe;

2H-MoTe: (300 K) 1T’-MoTe: (300 K) Td-MoTe: (80 K)
Properties
a axis ¢ axis aaxis | baxis | caxis | aaxis | baxis | c axis
Ai (Wm' KT) 19 2.5 6.8 7.2 0.95 6.2 6.8 1.1
Ad/Nb - 0.94 0.91
Ad/Ac 7.6 7.2 5.6
¢ (ms™h 2702 2592 2786 | 2674 1909 | 2762 | 2741 | 1934
ct/ck - 1.09 1.02
c2/c? 1.08 2.13 2.04

Table 2. Prefactors (4) and exponents (n) for power law fits to measurements (Figure 2) and
calculations (Figure 3) of anisotropy of thermal conductivity (Ai/A;), effective heat capacity

(Cietf/Cjefr), average group velocity (77 /77), and average relaxation time (T;/7;).

. . Ai/Aj Ci,eff/ Cj,eff 1712 / 1312 fi/ f]
Anisotropy ratios . . .
measurements calculations calculations calculations
Fitting A n A n A n A n
parameters
In-plane 1.0 1.2 2.2 0.16 0.78 0.68 0.77 0.50
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Figure 2. Anisotropy in thermal conductivity measurements A;/A; of a wide range of vdW
materials [4,5,16,29-31,39] at 300 K (except for 80 K for Td-MoTe>), as a function of
anisotropy in the speeds of sound ¢? / c_jz. The red symbols represent in-plane anisotropy while

the black symbols represent cross-plane anisotropy (i = a or b and j = ¢). Speeds of sound of /-
BN, MoS;, BP, and three phase MoTe; are from first-principles calculations in this work. Speeds
of sound of other vdW materials are from prior experiments [40,41] and first-principles

calculations [28,42-44]. The dashed lines are power law fits (equations in figure).

The apparent dependence of the thermal conductivity anisotropy on the speed of
sound anisotropy is hard to justify from the perspective of phonon transport. First, in the
calculation of &7 (c_l-2=§20i2’a), it is implicitly assumed that heat is carried only by low-energy

phonons and relaxation times in three acoustic branches (LA, TA, and ZA) are the same. The

11



assumptions contradict the fact that phonons of different frequencies [45,46], as well as
phonons in different acoustic branches [14,47], play quite different roles in heat transport in
different directions. Thus, ¢Z, which is calculated only from the speeds of sound, do not fully
capture the physics of the heat transport anisotropy.

To identify the origins of the heat transport anisotropy both in and across the basal
planes, we propose a simple framework to assess the roles of anisotropies in phonon heat
capacity, group velocity, and relaxation times to the heat transport anisotropy. In this framework,

we approximate the thermal conductivity in direction i, A;, as
_ =2~
A;=Ci eV Ty ()

where Cieft, ; and T; are the effective heat capacity, average group velocity and average
relaxation time, respectively, in direction i, calculated from the modal heat capacities (Cy),

phonon velocities (v,), and relaxation times (z;) of phonon mode ¢, over all phonons in the first

Brillouin zone (FBZ):
2 YwiC,cos%0, 7, (3a)
: .Cqc0820, T,
_ Yrav¢Cycos®ly, (3b)

= 2 29 .
2UgCqc08%0,

Wi cut
Ci,eff = z Cq COSZBQ_L' (3C)
0

More weight is put on phonons that contribute more significantly to heat transport in direction
i, i.e., have larger wavevector components along i. For ¥; and t;, remaining components of
mode-dependent thermal conductivity in direction i are used as the weights, see Eq. (3) for the

equations for the parameters. For Ciefr, we include only predominant heat-carrying phonons

12



with frequencies less than a cutoff frequency, icu, Which is determined by thermal
conductivity accumulation with frequency reaching 95% of heat transport in direction i, see
Section S5 in SM for more details including the determination of @jcu values. As Ciefr is
different from the total heat capacity, C;.tr cannot be independently measured by differential
scanning calorimetry. Note that although heat capacity is a scalar property, C;.r depends on the
heat flow direction through the cos?,; term and the fact that heat is carried in different
directions primarily by different phonons. Again, we determine v,, 7; and C,; from first
principles calculations, see Methods.

Our framework, while not rigorously derived, can capture the essential physics of
anisotropic heat transport as governed by anisotropies in phonon heat capacity, group velocity,
and relaxation times. First, for a special case of all phonons in an isotropic material having the
same phonon velocity v (simple Debye approximation) and relaxation time 7, Eq. (2) correctly
reduces to iCredvzr, where Cr.q equals 95% of the total lattice heat capacity, as expected from
the kinetic theory of phonons. Moreover, calculations of Eq. (2) correctly approximate to the
first principles calculations of the anisotropic thermal conductivity of selected vdW materials
(h-BN, MoS», MoTe, and BP) along crystallographic directions of a, b, and ¢, with a root-mean-
square deviation of only 23 %, see Figure S7 in the Section S5 of the SM. This agreement,
despite the simplicity of our framework, suggests that the model successfully captures the
essential physics of anisotropic heat transport.

In Figure 3, we show the anisotropy ratios of the derived Ciefr, 7;, and 7; across (for
directions a and ¢ or directions » and c¢) and along (for directions a and b) the basal planes

against the respective ¢7 / c_jz from the same first-principles calculations. We fit the anisotropy

13



ratios with power-law functions and compare the fitted values of the prefactor 4 and exponent
n for the effective heat capacity, average phonon velocity, and average relaxation times in Table
2. Though the fitting is far from perfect, the crude trend is sufficient to isolate the contributions

of heat capacity, phonon velocity, and relaxation times to the thermal conductivity anisotropy.
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Figure 3. Anisotropy ratios of Cies, U;, and T; (a) across (for directions a/c or b/c) and (b)
along (for directions a/b) the basal planes. The values are calculated from our first-principles

calculations using Eq. (3). Solid lines are fitted power laws with prefactors 4 and exponent n

listed in Table 2.

We draw a few observations from the plots of Cietr, V;, and 7; in Figure 3 and the
values of 4 and » in Table 2. First, we find that while the anisotropy in effective heat capacity
(Cief) is roughly independent of ¢? / C_']-Z in both cross-plane and in-plane directions, the
prefactor in the cross-plane direction is ~ 4 times larger than that in the in-plane direction, see

Table 2. The factor of ~ 4 corresponds well with the prefactor of 3.7 that we observe from the

14



cross-plane anisotropy in the thermal conductivity measurements in Figure 2, suggesting that
anisotropy in the thermal conductivity primarily originates from anisotropy in heat capacity.
To further understand the large anisotropy in the cross-plane direction, we closely
examine the first principles calculations of 1T'-MoTe», which has similar speeds of sound in
three crystallographic directions a, b, and c¢. We calculate and plot the accumulative heat
capacity of 1T-MoTe; along direction 7 (i.e., a, b, and ¢), C;ec(w) = Z(: choszeq_i, as a
function of frequency @ in Figure 4(a). We plot both the absolute values Ciacc(w) and the
normalized values Cjace(@)/Citot, Where Ci o is the summation of Cycos®6,,; over all phonons
in the materials as labelled in Figure 4(a). In the plot, we also include the cutoff frequency @; cus
in directions a, b, and ¢, and the corresponding Ci i/ Cior. We identify two factors contributing
to the large cross-plane anisotropy in Cjefr. First, we find that C; o is substantially smaller in the
cross-plane direction, see Figure 4(a). Specifically, Cyrot = 0.91 J cm™ K, Cp ot = 0.50 J cm™ K,
and Ce ot = 0.14 J cm™ K, respectively. C;r is higher along the basal planes because there are
more high-energy phonon modes propagating along basal planes in the anisotropic FBZ of vdW
materials, as discussed and demonstrated previously in anisotropic Debye models for layered
materials [20,48]. Second, we find that while = 50 % of thermally excited phonons contribute
to heat transport in both a and b directions, only 18 % contribute to heat transport in the ¢
direction, see the ratios of Ci.tt/Citor in Figure 4(a). Contradictory to heat transport in the basal
planes, heat is carried predominantly by low-frequency phonons across the basal planes [45]
and high-frequency phonons that carry a large amount of heat are strongly scattered in the cross-
plane direction, as suggested in prior first-principles calculations of BP [19] and MoS; [45].

The disparity in the frequency of the heat-carrying phonons along and across the basal planes

15



further leads to large heat capacity anisotropy.

The second observation we have from Figure 3 is that for both in-plane and cross-
plane directions, 77T;/ 17]-2 7; is roughly proportional to ¢t/ c_jz . Thus, the apparent linear
dependence of the thermal conductivity anisotropy on ¢7/ C_'jz originates from the anisotropy in
both #? and T;, notjust 77 alone. For #7, we find that the exponent n ~ 0.5 and not unity, i.e.,
77 scales with ¢; instead of ¢Z. One possible explanation to the deviation is that materials
with high ¢; usually have more phonons with higher energies that are not thermally excited
compared to materials with low ¢;, and thus the weaker dependence on ¢;. Interestingly, we find
that 7;/7; have similar dependence on c? / c_j2 as v7/ 17]-2. This is consistent with the empirical

relationship for Umklapp scattering of phonons, T « v? [49].
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Figure 4: (a) Accumulative heat capacity (Cjacc(w)), in the in-plane directions a (red), b (black)
and the cross-plane direction ¢ (blue), in absolute (right axis) and normalized (left axis) values.
The cutoff frequencies wjcut for three directions, and the corresponding Cier(w)/Citor, are

labelled accordingly. (b) Frequency-dependent relaxation times 7 of 1T'-MoTe> from our first-
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principles calculations. The dashed horizontal lines are average relaxation times 7; derived

using Eq. (3b). The dotted line shows the 7o ~ @ dependence.

Finally, we consider the effects of the anisotropy in relaxation times to heat transport
anisotropy. We find that in the cross-plane direction, the prefactor 4 for the average relaxation
time is only 0.37, see Table 2, substantially smaller than unity. 4 < 1 implies that the average
relaxation time is larger in the cross-plane direction if the speeds of sound are isotropic. The
larger relaxation times in the cross-plane direction are primarily due to the disparity in the
frequency of the dominant heat-carrying phonons in the in-plane and cross-plane directions. To
demonstrate this point, we determine the frequency-dependent relaxation times 7» from the
arithmetic mean of modal relaxation times (z;) of all phonons with a frequency of @+ 0.1 THz,
and plot 7, as function of @ in Figure 4(b). We find that 7, scales with @, consistent with the
w-dependence of Umklapp processes for low-frequency phonons, derived by Klemens [50]. In
the same figure, we also include the average relaxation times (7;) we derive using Eq. (3b). The
average relaxation times in the cross-plane direction (7.) and in-plane directions (7, and 7)
correspond to 7»0f 0.95 THz and 1.60 THz phonons, respectively, suggesting that heat is carried
mainly by low-frequency phonons across the basal planes. Thus, the disparity in the frequency
of the heat-carrying phonons along and across basal planes leads to two opposite effects — a
large anisotropy in Cierf(w) that strengthens the heat transport anisotropy across the basal
planes and a moderate anisotropy in T; that reduces the heat transport anisotropy.

In summary, we investigated the origins of heat transport anisotropy in vdW layered
materials through TDTR measurements and first-principles calculations of anisotropic thermal

conductivity of three different phases of MoTe>. We find that despite a weak anisotropy in the
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speeds of sound, the thermal conductivity of all three phases of MoTe> is 5 — 8 times smaller in
the cross-plane direction. Using a simple framework, we conclude that the heat transport
anisotropy originates mainly from a large anisotropy in effective heat capacity. Further analysis
suggests that both the highly anisotropic phonon dispersion of vdW materials and the disparity
in the frequency of heat-carrying phonons contribute to the large anisotropy in effective heat
capacity. Interestingly, the disparity in the frequency of heat-carrying phonons also leads to
larger average relaxation times in the cross-plane direction, and thus reduces the cross-plane
heat transport anisotropy. Our work provides new insight into the understanding of anisotropic

heat transport in vdW layered materials.
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Methods
Sample characterization

Our 2H- and 1T'-MoTe; samples were purchased from HQ-Graphene. For easier
handling, the 1T'-MoTe> sample is mounted on a silicon wafer with thermally conducive Ag

18



paint. We verified phases of our samples (i.e., the 2H and 1T’ phases at 300 K and the Td phase
at 80 K) by Raman spectroscopy. The positions of observed peaks and the ratios of peak
intensities for the three phases are consistent with those in the literature [51,52]. The splitting
of the peak at 130 cm™ into two close peaks indicates that a phase transition from 1T-MoTe>

to Td-MoTe: occured in our measurements [51-54].

We determined the crystallographic orientations of the 1T’-MoTe, and Td-MoTe> by
polarized Raman spectroscopy [55,56]. The setup is under parallel polarized configuration and
the incident light is horizontally polarized. We rotated the 1T'-MoTe2 and Td-MoTe> samples in
15 degree increments and recorded the Raman signals within 100 cm™ to 300 cm™. The
crystallographic orientations were identified based on the integrated intensities of Az mode at
164 cm™ [55], see Section S1 of SM for more details.

TDTR measurements

We employed TDTR [57] and beam-offset TDTR [58] to determine the cross-plane
and in-plane A of MoTe», respectively. In TDTR, a train of 787-nm beam from a mode-locked
Ti:sapphire laser is split into a pump beam and a probe beam. The pump beam modulated at a
frequency f'is used to heat the sample, while the temperature oscillation at the sample surface
is then recorded by monitoring the temperature-induced changes in the intensity of the reflected
probe beam. A, of samples is derived by comparing the measured signal to an analytical
solution of a thermal diffusion model. In beam-offset TDTR, the out-of-phase signal (Vou) ata
delay time of -100 ps is used to extract A, and Ap. More details of TDTR and beam-offset
TDTR can be found in literature [57,58] and Section S2 of the SM.

We carefully ensure that our TDTR and beam-offset TDTR measurements are not
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affected by non-equilibrium phonons due to heating at high modulation frequencies [59] and
small laser spot sizes [25]. We observed a strong frequency dependence in the derived A, of the
2H-MoTe: sample, at 300 K and 100 K. We do not observe any obvious spot size dependence
in all our measurements. These observations are consistent with the results in prior TDTR
measurements for other vdW materials (e.g., MoS> [60], WSe> [4], and BP [5]). To obtain the
intrinsic Aq, Ap, and A., we used a sufficiently low modulation frequency (f'= 0.2 MHz) for all
measurements, see Section S3 in SM for full discussion on frequency and spot size dependence
of our measurements.
First-principles calculations

Theoretical calculations were performed with first-principle ab initio density
functional theory (DFT) using Vienna Ab Initio Simulation Package (VASP) [61,62]. DFT
calculations were performed within the projector augmented wave (PAW) method [63] with the
generalized gradient approximation (GGA) according to Perdew, Burke, and Ernzerhof [64].
Twelve valence electrons for Mo (4p%,5s!,4d°), and 6 for Te (5s°, 5p*) were used in the PAW
potentials. All the crystal structures were fully relaxed (both positions and volume) by
employing a conjugate gradient scheme until the forces on every atom were minimized to be
less than 0.005 eV/A. A well-converged energy cutoff of 550 eV along with Gamma centered
k point grids of 15x15x5, 7x15x%3, and 15x7%3 were used for structure relaxation of 2H, 1T,
and Td phases, respectively. The inter-layer vdW interactions were treated by Grimme’s DFT-
D2 method [65]. Temperature dependence of the lattice parameters were not considered in our
calculations, due to its negligible effect on the lattice thermal conductivity and the heat transport

anisotropy, see Section S6 in the SM for more details.
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Harmonic interatomic force constants (IFCs) of MoTe; allotropes are calculated
within the finite difference method as implemented in the phonopy code [66,67]. Phonon
calculations for 2H, 1T’, and Td phases were performed on 5x5 x2 (300 atoms), 3x5%2 (360
atoms), and 5%3x2 (360 atoms) supercells using only the Gamma point. To obtain accurate
phonon frequencies, a high energy cutoff of 600 eV and a strict energy convergence criterion
of 10 eV were used. Anharmonic IFCs of MoTe, were calculated on the 5x5%2, 3x4x1, and
4x3x1 supercells for 2H, 1T’, and Td phases respectively. For the displaced supercell
configurations, atomic interactions were truncated at 5.5 A cut-off distance for all three phases.
An energy cutoff of 500 eV, an energy convergence criterion of 1077 eV, and Gamma point only
Brillouin zone sampling were used.

The calculated harmonic and anharmonic IFCs were used to calculate phonon
relaxation times (lowest order quantum perturbation theory) and the lattice thermal conductivity
by solving phonon Boltzmann transport equations, as implemented in the ShengBTE package
[68-70]. In our calculations, resistance from three-phonon scattering and isotopic disorder
scattering [71] from natural isotope mass variations are included. For the lattice thermal
conductivity and relaxation rates reported here, a Gaussian smearing width of 1.0 was used to
approximate the energy conserving delta functions for each scattering process. Brillouin zone
integrations were performed on 19x19x8, 12x24x8, and 24x12x8 sampling grids for 2H, 1T,

and Td phases, respectively.
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