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Abstract 

Knowledge of how heat flows anisotropically in van der Waals (vdW) materials is crucial 

for thermal management of emerging 2D materials devices and design of novel anisotropic 

thermoelectric materials. Despite the importance, anisotropic heat transport in vdW materials 

is yet to be systematically studied and is often presumably attributed to anisotropic speeds of 

sound in vdW materials due to soft interlayer bonding relative to covalent in-plane networks of 

atoms. In this work, we investigate the origins of the anisotropic heat transport in vdW materials, 

through time-domain thermoreflectance (TDTR) measurements and first-principles 

calculations of anisotropic thermal conductivity of three different phases of MoTe2. MoTe2 is 

ideal for the study due to its weak anisotropy in the speeds of sound. We find that even when 

the speeds of sound are roughly isotropic, the measured thermal conductivity of MoTe2 along 

the c-axis is 5-8 times lower than that along the in-plane axes. We derive meaningful 

characteristic heat capacity, phonon group velocity, and relaxation times from our first 

principles calculations for selected vdW materials (MoTe2, BP, h-BN, and MoS2), to assess the 

contributions of these factors to the anisotropic heat transport. Interestingly, we find that the 

main contributor to the heat transport anisotropy in vdW materials is anisotropy in heat capacity 

of the dominant heat-carrying phonon modes in different directions, which originates from 

anisotropic optical phonon dispersion and disparity in the frequency of heat-carrying phonons 

in different directions. The discrepancy in frequency of the heat-carrying phonons also leads to 

~2 times larger average relaxation times in the cross-plane direction, and partially explains the 

apparent dependence of the anisotropic heat transport on the anisotropic speeds of sound. This 

work provides insight into understanding of the anisotropic heat transport in vdW materials. 
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Main Text 

Van der Waals (vdW) materials (e.g., graphite, transition metal dichalcogenides, 

black phosphorus) consist of covalently bonded two-dimensional atomic layers (i.e., basal 

planes) that are weakly bound by van der Waals forces, forming layered crystal structures in the 

hexagonal, orthorhombic, monoclinic and triclinic crystal families. One consequence of the 

layered crystal structures is that the optical [1,2], electronic [3], thermal [4,5] and thermoelectric 

[6,7] properties of vdW materials can be highly anisotropic. For example, the in-plane thermal 

conductivities (Λa and Λb) along the crystallographic directions a and b in the basal planes are 

usually much higher than the cross-plane thermal conductivity (Λc) along the crystallographic 

direction c across the basal planes. The thermal conductivity anisotropy ratios of these vdW 

materials can be as high as ≈ 300 (e.g., Λa/Λc ≈ 300 in graphite) while in-plane anisotropy only 

reaches <3 (e.g., Λa/Λb ≈ 3 in black phosphorus). In this regard, the anisotropic thermal 

properties have been explored for novel applications of vdW materials, e.g., as directional heat 

spreaders [8] for thermal management of electronic devices and for more efficient 

thermoelectric energy conversion along particular directions [6,9]. Thus, it is crucial to 

understand the origins of the anisotropic heat transport.  

Fundamentally, anisotropic heat transport in vdW materials is due to collective effects 

of all phonon modes (of different frequencies and directions). To illustrate this point, consider 

the thermal conductivity in any principal direction i, i (or in the tensor form i =i,i), given 

by [10],  

   𝛬௜ =෌ 𝐶௤௤
𝑣௤
ଶcosଶ𝜃௤,௜𝜏௤                            (1) 

where Cq, vq, and q are modal heat capacity, group velocity, and relaxation time of each phonon 
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mode q in the first Brillouin zone with different wavevectors and polarizations, and θq,i is the 

angle between the propagation direction of phonon mode q and the direction of applied 

temperature flux i. Here, we explicitly express ൫𝐯௤ ∙ 𝒊൯
ଶ
 as 𝑣௤

ଶcosଶ𝜃௤,௜ to isolate the effects of 

propagation direction from the amplitude of phonon velocity. We consider q as determined in 

the relaxation time approximation [11] and thus it does not have explicit directional dependence. 

Transport lifetimes determined by full solution of the Boltzmann transport equation can vary 

depending on the direction of the applied temperature gradient. This ultimately leads to the 

same Eq. (1) except with lifetime calculated along direction i. As suggested by Eq. (1) heat is 

carried in direction i not only by phonons strictly propagating in direction i but also in large 

part by phonons propagating in all directions in a convoluted manner. Hence, there is no easy 

way to simplify Eq. (1) such that the different directional thermal conductivities depend only 

on the bulk material properties along their respective directions (e.g., speeds of sounds in high-

symmetry crystallographic directions), and as a result, it is hard to isolate the contributions of 

individual properties to heat transport anisotropy.  

Many prior studies [12-18], however, have made attempts to understand anisotropic 

heat transport in vdW materials in this way. For example, anisotropy in in-plane thermal 

conductivity (i.e., Λa/Λb) is often attributed to anisotropy in speeds of sound in the in-plane 

direction (e.g., 𝑐௔̅
ଶ 𝑐௕̅

ଶ⁄  ), due to good agreement between Λa/Λb and 𝑐௔̅
ଶ 𝑐௕̅

ଶ⁄   along the high-

symmetry a and b directions according to the kinetic theory of phonons [12-14]. (Note that the 

average speed of sound 𝑐௜̅ is gives a relatively simplistic measure of the effects of the more 

rigorous mode phonon velocities 𝑣௤ in Eq. (1). It is often defined, here and elsewhere [13,18], 

as 𝑐௜̅
ଶ=

ଵ

ଷ
∑𝑐௜,ఈ

ଶ , where ci,α is the speed of sound of acoustic branch  (typically two transverse 
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and one longitudinal acoustic branch) along the high-symmetry crystallographic direction i, 

typically sampled near the Brillouin zone center.) However, as indicated in Eq. (1), the thermal 

conductivity in a high-symmetry direction should not only depend on the low-frequency 

phonons propagating along the direction, but on all phonons with some component of its 

velocity in this direction. Hence, the good agreement between 𝑐௔̅
ଶ 𝑐௕̅

ଶ⁄   and Λa/Λb may be 

coincidence, and other properties (e.g., phonon heat capacity and relaxation time) may also 

contribute to the anisotropy of heat transport. In fact, calculations using the Peierls-Boltzmann 

transport equation [5,19] and estimations from an anisotropic Callaway model [20] suggest that 

phonon relaxation times for phonons with wavevectors primarily in the ab plane can be 

substantially higher than those with wavevectors primarily along the c axis, and thus contribute 

to thermal conductivity anisotropy [19,21].  

In this paper, we identify the main contributing material properties to the anisotropic 

heat transport, through time-domain thermoreflectance (TDTR) measurements and first-

principles calculations of the anisotropic heat transport in three vdW layered phases of MoTe2. 

We choose MoTe2 for our studies because it has three stable phases with different crystal 

structures but similar speeds of sound along high-symmetry directions, and thus is a good 

platform to investigate the roles of phonon relaxation time and heat capacity to the anisotropic 

phonon transport in vdW materials. We find that contradictory to common beliefs, the thermal 

conductivity anisotropy in vdW materials is primarily originated from anisotropy in the mode 

heat capacity of phonons contributing to heat transport in respective directions. In this context, 

we further discuss how phonon velocities and relaxation times contribute to the thermal 

conductivity anisotropy. Our work provides valuable insights into the origins of anisotropic heat 
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transport. 

We examine all three phrases of MoTe2, i.e., hexagonal MoTe2 of the P63/mmc group 

(2H-MoTe2), orthorhombic MoTe2 of the Pmn21 group (Td-MoTe2) and monoclinic MoTe2 of 

the P21/m group (1T′-MoTe2). Section S1 of Supplementary Material (SM) give descriptions of 

the crystal structures these phases. We note that 2H-MoTe2 and 1T′-MoTe2 are 

thermodynamically stable at 300 K, while a phase transition from the 1T′ phase to the Td phase 

occurs at ≈ 250 K [22]. In this work, heat transport anisotropies are discussed for 2H phase and 

1T′ phase at 300 K, and for Td phase at 80 K. Due to crystal symmetry, only the 1T′ and Td 

phases exhibit anisotropy in the thermal conductivity in the basal plane. We carefully verify the 

existence of the MoTe2 phases in our samples at 300 K and 80 K, and determine orientations 

for our measurements by Raman spectroscopy, see Figures S1(c) and (d) in Section S1 of SM.  

We measured the in-plane thermal conductivity (Λa, Λb) and cross-plane thermal 

conductivity (Λc) of all three phases of MoTe2 by beam-offset TDTR and TDTR, respectively. 

Details of TDTR and beam-offset TDTR can be found in Methods and Section S2 in SM. We 

performed TDTR and beam-offset TDTR measurements using a wide range of modulation 

frequencies (0.2 MHz < f < 10 MHz) and 1/e2 laser beam radii (2.5 μm < w0 < 25 μm) to ensure 

that the reported thermal conductivity is not affected by experimental artifacts due to non-

equilibrium phonons [23-26], see Section S3 in SM for discussion on frequency and spot size 

dependence of our measurements. The uncertainty of our measurements is around 15 %. We 

also note that accurate Λc of MoTe2 can only be derived from TDTR measurements performed 

using a sufficiently low f. For example, prior measurements of Λc of 2H-MoTe2 by Yan et al. 

[27] using a high modulation frequency of f ≈ 10 MHz, similar to our measurements at the same 
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f, is  40% lower than the intrinsic values reported in this work. 

We show our in-plane thermal conductivity (Λa, Λb) and cross-plane thermal 

conductivity (Λc) measurements of 2H-MoTe2 and 1T′-MoTe2 as a function of temperature in 

Figures 1(a) and 1(b), respectively. For comparison, we also include prior first-principles 

calculations of MoTe2 [28] and prior measurements of other bulk vdW materials (i.e., graphite 

[29], BP [5], MoS2 [4], MoSe2 [4], WS2 [4], WSe2 [4,30], and WTe2 [31]), also plotted as a 

function of temperature. For 2H-MoTe2, our measured Λc and Λa agree reasonably well with 

the first principles calculations by Lindroth et al. [28], see Figure 1. We find that both Λc and 

Λa of 2H-MoTe2 exhibit a T-1 temperature dependence, which suggests that phonon scatterings 

are dominated by Umklapp processes along both crystallographic orientations. For 1T′-MoTe2 

and Td-MoTe2, measured Λ is substantially smaller than that of 2H-MoTe2, likely due to 

stronger scattering of acoustic phonons by optical phonons in their more complex crystal 

structures [32,33]. The strong scattering of acoustic phonons is further demonstrated in the 

weak, glass-like temperature dependence of Λa, Λb, and Λc of 1T′-MoTe2 and Td-MoTe2, which 

is consistent with the prior measurements by Yan et al. [27], see Figure 1. Similar weak 

temperature dependence of Λ was found in other complex, low-symmetry (monoclinic or 

orthorhombic) crystals, e.g., NaNbO3 [34], CsBiNb2O7 [35] and clathrates [36,37]. Interestingly, 

we do not observe any abrupt changes of Λ in the temperature range of the phase transition of 

1T′-MoTe2 at 250 K. The continuous Λ suggests that the slightly different crystal structures of 

1T′- and Td-MoTe2 do not significantly affect phonon scattering in the materials.  

We show the cross-plane (black) and in-plane (red) anisotropy in the measured Λ of 

2H, 1T′, and Td-MoTe2 in Figure 1(c). We find that while the in-plane anisotropy in Λ does not 
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depend on temperature, temperature dependence is observed for the cross-plane anisotropy. 

Since the phonon dispersion is not expected to change significantly with temperature, little 

temperature dependence of the anisotropic heat transport should be observed if this is governed 

by anisotropy in the speeds of sound alone. Thus, the observed temperature dependence of the 

anisotropy further suggests that, in additional to speeds of sound, other factors may be 

contributing to thermal transport anisotropy. 

 

Figure 1. (a) Temperature dependence of in-plane thermal conductivity Λa and Λb 

measurements of 2H-, 1T′-, and Td-MoTe2 (solid black symbols, this work), compared to prior 

measurements of graphite (open circles, [29]), BP (red squares, [5]), WTe2 (open black triangles, 

[31]) and other vdW materials (as labelled, [4]). Solid circles and solid diamonds represent Λa 

and Λb, respectively. (b) Temperature dependence of cross-plane thermal conductivity Λc 

measurements of 2H-, 1T′- and Td-MoTe2 (solid black symbols, this work), compared to the 

previous measurements of 2H-MoTe2 (open squares, [27]), 1T′ and Td-MoTe2 (open diamonds, 

[27]), graphite (open circles, [29]), BP (red squares, [5]), WSe2 (orange down triangles, [30]) 
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and other vdW materials (as labelled, [4]). (c) Temperature dependence of anisotropy of 

selected vdW materials, derived from measurements in (a) and (b). Red symbols are in-plane 

anisotropy, while black symbols are cross-plane anisotropy. In all figures, the dashed lines are 

first principles calculations of 2H-MoTe2 by Lindroth et al. [28], and the dot-dash vertical lines 

indicate the phase transition temperature at ≈ 250 K. 

To assess whether the anisotropy in the thermal conductivity is mainly due to 

anisotropy in speeds of sound as previously suggested [12-16], we compare the in-plane (Λa/Λb) 

and cross-plane (Λa/Λc) anisotropy in our thermal conductivity measurements of 2H- and 1T′-

MoTe2 at 300 K and Td-MoTe2 at 80 K, to the anisotropy in speeds of sound in Table 1. We 

derived the average speeds of sound from our first principles calculations (see Methods and 

Table S1 in Section S4 of SM for our calculated values of speeds of sound for all phases of 

MoTe2) using 𝑐௜̅
ଶ=

ଵ

ଷ
∑𝑐௜,ఈ

ଶ  (We note that other expressions of average speeds of sound have 

been in the literature, see Refs. [15-17,38]. Here, we choose this expression as it is the most 

commonly used. Choosing other expressions for 𝑐௜̅ does not affect the conclusions drawn here, 

see Table S2 in Section S4 of SM). We find that in the basal planes, Λa/Λb approximates to 

𝑐௔̅
ଶ 𝑐௕̅

ଶ⁄  for both 1T′-MoTe2 and Td-MoTe2 phases. However, across the basal planes, 𝑐௔̅
ଶ 𝑐௖̅

ଶ⁄  and 

𝑐௕̅
ଶ 𝑐௖̅

ଶ⁄  are < 2.2, while the anisotropy of the thermal conductivity (i.e., Λa/Λc and Λb/Λc) can 

range up to  8, see Table 1.  

The distinctive behavior between anisotropy in and across the basal planes is not 

unique to MoTe2. To illustrate the stark difference between the in-plane and cross-plane 

anisotropy, we compile the cross-plane (black symbols) and in-plane (red symbols) thermal 

conductivity anisotropies for a wide range of vdW materials as a function of 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ , in Figure 
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2. We derive the average speeds of sound of the materials from our calculations and prior first 

principles calculations of phonon dispersions and experimental measurements of elastic 

stiffness constants, see Section S4 of SM for the details. We fit the compiled thermal 

conductivity measurements with power-law functions of the corresponding 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ  , i.e., 

௸೔

௸ೕ
=𝐴 ൬

௖೔̅
మ

௖ೕ̅
మ൰

௡

, where the prefactor A and exponent n are fitting parameters. We summarize the 

fitted values of A and n in Table 2. Interestingly, we find that while the heat transport anisotropy 

both in and across basal planes is proportional to 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ , a prefactor of 3.7 instead of unity is 

observed in the cross-plane direction, see Figure 2 and Table 2.  

Table 1. Measured anisotropic thermal conductivity and averages of speeds of sound from 

first-principles calculations in 2H-, 1T’- and Td-MoTe2 

Properties 
2H-MoTe2 (300 K) 1T’-MoTe2 (300 K) Td-MoTe2 (80 K) 

a axis c axis a axis b axis c axis a axis b axis c axis 

Λi (W m-1 K-1) 19  2.5  6.8 7.2 0.95 6.2 6.8 1.1 

Λa/Λb - 0.94 0.91 

Λa/Λc 7.6 7.2 5.6 

ic (m s-1) 2702 2592 2786 2674 1909 2762 2741 1934 

𝑐௔̅
ଶ 𝑐௕̅

ଶ⁄  - 1.09 1.02 

𝑐௔̅
ଶ 𝑐௖̅

ଶ⁄  1.08 2.13 2.04 

Table 2. Prefactors (A) and exponents (n) for power law fits to measurements (Figure 2) and 

calculations (Figure 3) of anisotropy of thermal conductivity (Λi/Λj), effective heat capacity 

(Ci,eff/Cj,eff), average group velocity (𝑣̅௜
ଶ 𝑣̅௝

ଶൗ ), and average relaxation time (𝜏௜̅ 𝜏௝̅⁄ ). 

Anisotropy ratios 
Λi/Λj 

measurements 
Ci,eff/Cj,eff 

calculations 

𝑣̅௜
ଶ 𝑣̅௝

ଶൗ  

calculations 

𝜏௜̅ 𝜏௝̅⁄  
calculations 

Fitting 
parameters 

A n A n A n A n 

In-plane 1.0 1.2 2.2 0.16 0.78 0.68 0.77 0.50 
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(i =a; j=b) 
Cross-plane 

(i =a or b; j=c) 
3.7 1.1 8.2 0.12 1.1 0.46 0.37 0.45 

 

  
Figure 2. Anisotropy in thermal conductivity measurements Λi/Λj of a wide range of vdW 

materials [4,5,16,29-31,39] at 300 K (except for 80 K for Td-MoTe2), as a function of 

anisotropy in the speeds of sound 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ . The red symbols represent in-plane anisotropy while 

the black symbols represent cross-plane anisotropy (i = a or b and j = c). Speeds of sound of h-

BN, MoS2, BP, and three phase MoTe2 are from first-principles calculations in this work. Speeds 

of sound of other vdW materials are from prior experiments [40,41] and first-principles 

calculations [28,42-44]. The dashed lines are power law fits (equations in figure). 
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assumptions contradict the fact that phonons of different frequencies [45,46], as well as 

phonons in different acoustic branches [14,47], play quite different roles in heat transport in 

different directions. Thus, 𝑐௜̅
ଶ, which is calculated only from the speeds of sound, do not fully 

capture the physics of the heat transport anisotropy. 

To identify the origins of the heat transport anisotropy both in and across the basal 

planes, we propose a simple framework to assess the roles of anisotropies in phonon heat 

capacity, group velocity, and relaxation times to the heat transport anisotropy. In this framework, 

we approximate the thermal conductivity in direction i, i, as 

𝛬௜=𝐶௜,ୣ୤୤𝑣̅௜
ଶ𝜏௜̅                     (2) 

where Ci,eff, 𝑣̅௜  and 𝜏௜̅  are the effective heat capacity, average group velocity and average 

relaxation time, respectively, in direction i, calculated from the modal heat capacities (Cq), 

phonon velocities (vq), and relaxation times (q) of phonon mode q, over all phonons in the first 

Brillouin zone (FBZ): 

𝑣̅௜
ଶ =

∑𝑣௤
ଶ𝐶௤cos

ଶ𝜃௤,௜𝜏௤

∑𝐶௤cos
ଶ𝜃௤,௜𝜏௤

 
(3a) 

𝜏௜̅ =
∑𝜏௤𝑣௤

ଶ𝐶௤cos
ଶ𝜃௤,௜

∑𝑣௤
ଶ𝐶௤cos

ଶ𝜃௤,௜
 

(3b) 

𝐶௜,eff =෍ 𝐶௤cos
ଶ𝜃௤,௜

ఠ೔,cut

଴
 (3c) 

More weight is put on phonons that contribute more significantly to heat transport in direction 

i, i.e., have larger wavevector components along i. For 𝑣̅௜ and 𝜏௜̅, remaining components of 

mode-dependent thermal conductivity in direction i are used as the weights, see Eq. (3) for the 

equations for the parameters. For Ci,eff, we include only predominant heat-carrying phonons 
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with frequencies less than a cutoff frequency, i,cut which is determined by thermal 

conductivity accumulation with frequency reaching 95% of heat transport in direction i, see 

Section S5 in SM for more details including the determination of i,cut  values. As Ci,eff is 

different from the total heat capacity, Ci,eff cannot be independently measured by differential 

scanning calorimetry. Note that although heat capacity is a scalar property, Ci,eff depends on the 

heat flow direction through the cos2q,i term and the fact that heat is carried in different 

directions primarily by different phonons. Again, we determine vq, q and Cq from first 

principles calculations, see Methods.  

 Our framework, while not rigorously derived, can capture the essential physics of 

anisotropic heat transport as governed by anisotropies in phonon heat capacity, group velocity, 

and relaxation times. First, for a special case of all phonons in an isotropic material having the 

same phonon velocity v (simple Debye approximation) and relaxation time , Eq. (2) correctly 

reduces to 
ଵ

ଷ
𝐶௥௘ௗ𝑣

ଶ𝜏, where Cred equals 95% of the total lattice heat capacity, as expected from 

the kinetic theory of phonons. Moreover, calculations of Eq. (2) correctly approximate to the 

first principles calculations of the anisotropic thermal conductivity of selected vdW materials 

(h-BN, MoS2, MoTe2 and BP) along crystallographic directions of a, b, and c, with a root-mean-

square deviation of only 23 %, see Figure S7 in the Section S5 of the SM. This agreement, 

despite the simplicity of our framework, suggests that the model successfully captures the 

essential physics of anisotropic heat transport. 

In Figure 3, we show the anisotropy ratios of the derived Ci,eff, 𝑣̅௜, and 𝜏௜̅ across (for 

directions a and c or directions b and c) and along (for directions a and b) the basal planes 

against the respective 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ  from the same first-principles calculations. We fit the anisotropy 
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ratios with power-law functions and compare the fitted values of the prefactor A and exponent 

n for the effective heat capacity, average phonon velocity, and average relaxation times in Table 

2. Though the fitting is far from perfect, the crude trend is sufficient to isolate the contributions 

of heat capacity, phonon velocity, and relaxation times to the thermal conductivity anisotropy.  

 

Figure 3. Anisotropy ratios of Ci,eff, 𝑣̅௜, and 𝜏௜̅ (a) across (for directions a/c or b/c) and (b) 

along (for directions a/b) the basal planes. The values are calculated from our first-principles 

calculations using Eq. (3). Solid lines are fitted power laws with prefactors A and exponent n 

listed in Table 2.  

We draw a few observations from the plots of Ci,eff, 𝑣̅௜, and 𝜏௜̅ in Figure 3 and the 

values of A and n in Table 2. First, we find that while the anisotropy in effective heat capacity 

(Ci,eff) is roughly independent of 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ   in both cross-plane and in-plane directions, the 

prefactor in the cross-plane direction is ~ 4 times larger than that in the in-plane direction, see 

Table 2. The factor of ~ 4 corresponds well with the prefactor of 3.7 that we observe from the 
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cross-plane anisotropy in the thermal conductivity measurements in Figure 2, suggesting that 

anisotropy in the thermal conductivity primarily originates from anisotropy in heat capacity.  

To further understand the large anisotropy in the cross-plane direction, we closely 

examine the first principles calculations of 1T′-MoTe2, which has similar speeds of sound in 

three crystallographic directions a, b, and c. We calculate and plot the accumulative heat 

capacity of 1T′-MoTe2 along direction i (i.e., a, b, and c), 𝐶௜,acc(𝜔) = ෌ 𝐶௤cos
ଶ𝜃௤,௜

ఠ

଴
, as a 

function of frequency ω in Figure 4(a). We plot both the absolute values Ci.acc(𝜔)  and the 

normalized values Ci.acc(𝜔)/Ci.tot, where Ci.tot is the summation of Cqcos2q,i over all phonons 

in the materials as labelled in Figure 4(a). In the plot, we also include the cutoff frequency i,cut 

in directions a, b, and c, and the corresponding Ci.eff/Ci.tot. We identify two factors contributing 

to the large cross-plane anisotropy in Ci,eff. First, we find that Ci.tot is substantially smaller in the 

cross-plane direction, see Figure 4(a). Specifically, Ca,tot = 0.91 J cm-3 K, Cb,tot = 0.50 J cm-3 K, 

and Cc,tot = 0.14 J cm-3 K, respectively. Ci.tot is higher along the basal planes because there are 

more high-energy phonon modes propagating along basal planes in the anisotropic FBZ of vdW 

materials, as discussed and demonstrated previously in anisotropic Debye models for layered 

materials [20,48]. Second, we find that while  50 % of thermally excited phonons contribute 

to heat transport in both a and b directions, only 18 % contribute to heat transport in the c 

direction, see the ratios of Ci.eff/Ci.tot in Figure 4(a). Contradictory to heat transport in the basal 

planes, heat is carried predominantly by low-frequency phonons across the basal planes [45] 

and high-frequency phonons that carry a large amount of heat are strongly scattered in the cross-

plane direction, as suggested in prior first-principles calculations of BP [19] and MoS2 [45]. 

The disparity in the frequency of the heat-carrying phonons along and across the basal planes 
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further leads to large heat capacity anisotropy.  

The second observation we have from Figure 3 is that for both in-plane and cross-

plane directions, 𝑣̅௜
ଶ𝜏௜̅ 𝑣̅௝

ଶൗ 𝜏௝̅  is roughly proportional to 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ  . Thus, the apparent linear 

dependence of the thermal conductivity anisotropy on 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ  originates from the anisotropy in 

both 𝑣̅௜
ଶ and 𝜏௜̅ not just 𝑣̅௜

ଶ alone. For 𝑣̅௜
ଶ, we find that the exponent n  0.5 and not unity, i.e., 

𝑣̅௜
ଶ scales with 𝑐௜̅ instead of 𝑐௜̅

ଶ. One possible explanation to the deviation is that materials 

with high ci usually have more phonons with higher energies that are not thermally excited 

compared to materials with low ci, and thus the weaker dependence on 𝑐௜̅. Interestingly, we find 

that 𝜏௜̅/𝜏௝̅ have similar dependence on 𝑐௜̅
ଶ 𝑐௝̅

ଶൗ  as 𝑣̅௜
ଶ/𝑣̅௝

ଶ. This is consistent with the empirical 

relationship for Umklapp scattering of phonons, 𝜏 ∝ 𝑣ଶ [49]. 

 

Figure 4: (a) Accumulative heat capacity (Ci,acc(𝜔)), in the in-plane directions a (red), b (black) 

and the cross-plane direction c (blue), in absolute (right axis) and normalized (left axis) values. 

The cutoff frequencies i,cut for three directions, and the corresponding Ci.eff(𝜔) /Ci.tot, are 

labelled accordingly. (b) Frequency-dependent relaxation times  of 1T′-MoTe2 from our first-
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principles calculations. The dashed horizontal lines are average relaxation times 𝜏௜̅  derived 

using Eq. (3b). The dotted line shows the  ~ -2 dependence.  

Finally, we consider the effects of the anisotropy in relaxation times to heat transport 

anisotropy. We find that in the cross-plane direction, the prefactor A for the average relaxation 

time is only 0.37, see Table 2, substantially smaller than unity. A < 1 implies that the average 

relaxation time is larger in the cross-plane direction if the speeds of sound are isotropic. The 

larger relaxation times in the cross-plane direction are primarily due to the disparity in the 

frequency of the dominant heat-carrying phonons in the in-plane and cross-plane directions. To 

demonstrate this point, we determine the frequency-dependent relaxation times  from the 

arithmetic mean of modal relaxation times (q) of all phonons with a frequency of   0.1 THz, 

and plot  as function of  in Figure 4(b). We find that  scales with -2, consistent with the 

-dependence of Umklapp processes for low-frequency phonons, derived by Klemens [50]. In 

the same figure, we also include the average relaxation times (𝜏௜̅) we derive using Eq. (3b). The 

average relaxation times in the cross-plane direction (𝜏௖̅) and in-plane directions (𝜏௔̅ and 𝜏௕̅) 

correspond to  of 0.95 THz and 1.60 THz phonons, respectively, suggesting that heat is carried 

mainly by low-frequency phonons across the basal planes. Thus, the disparity in the frequency 

of the heat-carrying phonons along and across basal planes leads to two opposite effects – a 

large anisotropy in Ci.eff(𝜔)  that strengthens the heat transport anisotropy across the basal 

planes and a moderate anisotropy in 𝜏௜̅ that reduces the heat transport anisotropy. 

In summary, we investigated the origins of heat transport anisotropy in vdW layered 

materials through TDTR measurements and first-principles calculations of anisotropic thermal 

conductivity of three different phases of MoTe2. We find that despite a weak anisotropy in the 
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speeds of sound, the thermal conductivity of all three phases of MoTe2 is 5 – 8 times smaller in 

the cross-plane direction. Using a simple framework, we conclude that the heat transport 

anisotropy originates mainly from a large anisotropy in effective heat capacity. Further analysis 

suggests that both the highly anisotropic phonon dispersion of vdW materials and the disparity 

in the frequency of heat-carrying phonons contribute to the large anisotropy in effective heat 

capacity. Interestingly, the disparity in the frequency of heat-carrying phonons also leads to 

larger average relaxation times in the cross-plane direction, and thus reduces the cross-plane 

heat transport anisotropy. Our work provides new insight into the understanding of anisotropic 

heat transport in vdW layered materials.  
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Methods 

Sample characterization 

Our 2H- and 1T′-MoTe2 samples were purchased from HQ-Graphene. For easier 

handling, the 1T′-MoTe2 sample is mounted on a silicon wafer with thermally conducive Ag 
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paint. We verified phases of our samples (i.e., the 2H and 1T′ phases at 300 K and the Td phase 

at 80 K) by Raman spectroscopy. The positions of observed peaks and the ratios of peak 

intensities for the three phases are consistent with those in the literature [51,52]. The splitting 

of the peak at 130 cm-2 into two close peaks indicates that a phase transition from 1T′-MoTe2 

to Td-MoTe2 occured in our measurements [51-54].  

We determined the crystallographic orientations of the 1T′-MoTe2 and Td-MoTe2 by 

polarized Raman spectroscopy [55,56]. The setup is under parallel polarized configuration and 

the incident light is horizontally polarized. We rotated the 1T′-MoTe2 and Td-MoTe2 samples in 

15 degree increments and recorded the Raman signals within 100 cm-1 to 300 cm-1. The 

crystallographic orientations were identified based on the integrated intensities of Ag mode at 

164 cm-1 [55], see Section S1 of SM for more details.  

TDTR measurements 

We employed TDTR [57] and beam-offset TDTR [58] to determine the cross-plane 

and in-plane Λ of MoTe2, respectively. In TDTR, a train of 787-nm beam from a mode-locked 

Ti:sapphire laser is split into a pump beam and a probe beam. The pump beam modulated at a 

frequency f is used to heat the sample, while the temperature oscillation at the sample surface 

is then recorded by monitoring the temperature-induced changes in the intensity of the reflected 

probe beam. Λc of samples is derived by comparing the measured signal to an analytical 

solution of a thermal diffusion model. In beam-offset TDTR, the out-of-phase signal (Vout) at a 

delay time of -100 ps is used to extract Λa and Λb. More details of TDTR and beam-offset 

TDTR can be found in literature [57,58] and Section S2 of the SM. 

We carefully ensure that our TDTR and beam-offset TDTR measurements are not 
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affected by non-equilibrium phonons due to heating at high modulation frequencies [59] and 

small laser spot sizes [25]. We observed a strong frequency dependence in the derived Λc of the 

2H-MoTe2 sample, at 300 K and 100 K. We do not observe any obvious spot size dependence 

in all our measurements. These observations are consistent with the results in prior TDTR 

measurements for other vdW materials (e.g., MoS2 [60], WSe2 [4], and BP [5]). To obtain the 

intrinsic Λa, Λb, and Λc, we used a sufficiently low modulation frequency (f = 0.2 MHz) for all 

measurements, see Section S3 in SM for full discussion on frequency and spot size dependence 

of our measurements. 

First-principles calculations  

Theoretical calculations were performed with first-principle ab initio density 

functional theory (DFT) using Vienna Ab Initio Simulation Package (VASP) [61,62]. DFT 

calculations were performed within the projector augmented wave (PAW) method [63] with the 

generalized gradient approximation (GGA) according to Perdew, Burke, and Ernzerhof [64]. 

Twelve valence electrons for Mo (4p6,5s1,4d5), and 6 for Te (5s2, 5p4) were used in the PAW 

potentials. All the crystal structures were fully relaxed (both positions and volume) by 

employing a conjugate gradient scheme until the forces on every atom were minimized to be 

less than 0.005 eV/Å. A well-converged energy cutoff of 550 eV along with Gamma centered 

k point grids of 15×15×5, 7×15×3, and 15×7×3 were used for structure relaxation of 2H, 1T′, 

and Td phases, respectively. The inter-layer vdW interactions were treated by Grimme’s DFT-

D2 method [65]. Temperature dependence of the lattice parameters were not considered in our 

calculations, due to its negligible effect on the lattice thermal conductivity and the heat transport 

anisotropy, see Section S6 in the SM for more details. 
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Harmonic interatomic force constants (IFCs) of MoTe2 allotropes are calculated 

within the finite difference method as implemented in the phonopy code [66,67]. Phonon 

calculations for 2H, 1T′, and Td phases were performed on 5×5 ×2 (300 atoms), 3×5×2 (360 

atoms), and 5×3×2 (360 atoms) supercells using only the Gamma point. To obtain accurate 

phonon frequencies, a high energy cutoff of 600 eV and a strict energy convergence criterion 

of 10-8 eV were used. Anharmonic IFCs of MoTe2 were calculated on the 5×5×2, 3×4×1, and 

4×3×1 supercells for 2H, 1T′, and Td phases respectively. For the displaced supercell 

configurations, atomic interactions were truncated at 5.5 Å cut-off distance for all three phases. 

An energy cutoff of 500 eV, an energy convergence criterion of 10−7 eV, and Gamma point only 

Brillouin zone sampling were used. 

The calculated harmonic and anharmonic IFCs were used to calculate phonon 

relaxation times (lowest order quantum perturbation theory) and the lattice thermal conductivity 

by solving phonon Boltzmann transport equations, as implemented in the ShengBTE package 

[68-70]. In our calculations, resistance from three-phonon scattering and isotopic disorder 

scattering [71] from natural isotope mass variations are included. For the lattice thermal 

conductivity and relaxation rates reported here, a Gaussian smearing width of 1.0 was used to 

approximate the energy conserving delta functions for each scattering process. Brillouin zone 

integrations were performed on 19×19×8, 12×24×8, and 24×12×8 sampling grids for 2H, 1T′, 

and Td phases, respectively. 
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