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ABSTRACT
We introduce a new parallel algorithm for solving sparse LU factorization
of planar matrices, which commonly arise in the finite element
method for 2D PDEs. Existing scalablemethods, such as themultifrontal
approach with subtree-to-subcube mapping by Gupta et al. [1] and
right-looking with 3D mapping by Sao et al. [2], fail to achieve
optimal communication costs for thesematrices. Our new algorithm
combines 3Dmapping and subtree-to-subcubemapping tominimize
communication costs while allowing trade-offs between extramemory
and reduced communication. We demonstrate that our proposed
algorithm attains the communication lower bound up to a factor
of O (log log𝑛) in the memory-optimal case and up to a factor of
O (log 𝑃) in the memory-independent case for an 𝑛-dimensional
planar sparse matrix on 𝑃 processors.
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1 INTRODUCTION
Our goal is to understand the minimum data transfer required
between different processors to perform LU factorization of planar
sparse matrices—matrices associated with planar graphs. We often
encounter such matrices in the finite element method for solving
two-dimensional PDEs, making them crucial in engineering and
science. In 2004, Irony and Toledo [3] established the communication
limits for distributed memory matrix multiplication as:

𝑊 = Ω
(
𝐹/

√
𝑀

)
, (1)

where𝑊 represents per-process communication volume, 𝐹 indicates
per-process floating-point operations performed, and 𝑀 denotes
per-process memory. Researchers have developed algorithms that
achieve these limits for dense matrix operations, including LU and
QR factorization [4]. However, its unclear whether Equation (1)
applies to general sparse computations. For instance, the sparse
LU factorization algorithm can achieve these limits for sparse
matrices with three or higher dimensions [5]. Yet, no known parallel
sparse LU factorization algorithmmeets this lower bound for planar
problems. To address this gap, we propose a novel algorithm that
achieves the communication-lower bounds for sparse LU factorization
of planar sparse matrices.

Two scalable approaches for sparse LU factorization exists: the
multifrontal approach with subtree-to-subcube mapping proposed
by Gupta et al. [1], and the right-looking 3D mapping approach
proposed by Sao, Vuduc and Li [2]. Both methods employ the
elimination-tree structure for computation mapping but differ in
mapping subtrees to smaller grids. For sparse matrices with three
and higher dimensions, both approaches are communication-optimal.
However, neithermethod reaches the lower bound for communication
Equation (1) in the case of planar sparse matrices. Specifically, for
a planar model problem derived from the finite difference method
on a 2D grid of size 𝑛 = 𝑚 ×𝑚, the subtree-to-subcube and 3D
approaches fall short by factors of

√
log𝑛 and log𝑛, respectively.

Although the 3D approach can reduce communication complexity
by using extra memory, compared to the multifrontal approach, it
still fails to meet memory-dependent lower bounds of Equation (1).

We propose a hybrid algorithm that combines the strengths
of the 3D mapping and subtree-to-subcube approaches. Our key
insight is that replicating data up to a factor of log𝑛 for higher-level
subtrees does not increase the overall memory cost, and enables
us to optimize communication. Specifically, we use 3D mapping
to factor higher-level subtrees, taking advantage of the memory-
communication trade-off, and apply subtree-to-subcube mapping
to lower levels of the elimination tree. Our algorithm achieves the
communication lower bound within a factor of log log𝑛 without
increasing asymptoticmemory cost, outperforming existingmethods.
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Figure 1: Different subtree to process mapping strategy for
the sparse LU factorization

Our algorithm achieves an optimal trade-off between memory and
communication. Specifically, it reduces communication volume by
a factor of

√
𝑐/log 𝑐 while increasing memory usage by a factor of 𝑐 ,

where 𝑐 is a tunable parameter. Additionally, the algorithm attains
the communication lower bound, unconstrained by memory, up to
a factor of log 𝑃 .

2 BACKGROUND
Sparse LU factorization: Sparse LU factorization solves the equation
𝐴𝑥 = 𝑏 by factoring matrix 𝐴 into lower and upper triangular
matrices 𝐿 and 𝑈 . We then use forward and back substitution to
compute the solution 𝑥 = 𝑈 −1𝐿−1𝑏. The 𝐿 and𝑈 factors are denser
than matrix𝐴 due to non-zeros introduced during factorization. We
use a fill-in-reducing ordering tominimize fill-ins during factorization,
as they depend on variable elimination order.
Nested dissection reordering:Nested dissection (ND) is an efficient
graph partitioning method for ordering sparse matrices. Given the
graph 𝐺 = (𝑉 , 𝐸) associated with the sparse matrix 𝐴, ND finds a
vertex separator 𝑆 that divides𝑉 into𝐶1 ∪ 𝑆 ∪𝐶2, where𝐶1 and𝐶2
have no edges between them. Factoring𝐶1 and𝐶2 creates new non-
zeros only in 𝑆 . The matrix is then permuted, indexing vertices in 𝑆
after those in𝐶1 and𝐶2, which allows the elimination of 𝑆 following
𝐶1 and 𝐶2. This dependency forms an elimination tree (etree), and
the process recursively continues for 𝐶1 and 𝐶2, forming a multi-
level etree as shown in Figure 1. During factorization, separator
blocks become dense due to fill-ins. The computation and memory
needed to compute and store the 𝐿 and 𝑈 factors depend on the
size of the largest separator block.
Sparse LU factorization of planar sparsematrices:We consider
a two-dimensional grid with dimensions 𝑛 = 𝑚 ×𝑚 as our model
problem for the paper. The top-level separator for this graph has
a dimension of𝑚 =

√
𝑛. In general, for any planar graph with 𝑛

vertices, one can find a balanced separator of size 𝑂(
√
𝑛) due to the

planar-separator theorem[6].

Computational cost and required memory: The total number
of floating-point operations (asymptotically) in the LU factorization
is the same as the cost of factoring the top-level separator 𝐹 =
O(𝑚3) = O(𝑛3/2). At the 𝑖-th level of the etree, we have 2𝑖 separators,
each with a dimension of approximately

√
𝑛/2𝑖 . Therefore, storing

LU factors at the 𝑖-th level requires memory for 2𝑖
√
𝑛/2𝑖×

√
𝑛/2𝑖 = 𝑛

floats.With approximately log𝑛 levels in the etree, the total memory
needed for storing the L andU factors is approximately𝑛 log𝑛 floats.
Multifrontal with subtree-to-subcube mapping:We show the
multifrontal method, which uses a subcube-to-subtree mapping,
in Figure 1. This method divides the elimination tree into subtrees
and maps them to smaller 2D processor grids. At the top level of the
elimination tree, we solve a dense problemwith size𝑚 =

√
𝑛 using a

2D grid of
√
𝑃 ×

√
𝑃 processors, where P is the total processor count.

As we move down the elimination tree, the subtrees and process
grid dimensions become smaller while the number of subtrees
increases. At level 𝑖 , we have 2𝑖 separators, each with dimension
𝑂(

√
𝑛/2𝑖 ). We solve each separator in parallel on a 2D grid with

dimensions
√
𝑃/2𝑖 ×

√
𝑃/2𝑖 . This process continues until we reach

𝑙𝑜𝑔𝑃 levels. In the final level, each of the 𝑃 processors solves a
problem of size ≈ 𝑛/𝑃 . As we descend the etree, communication
decreases for each processor. The top level has 𝑛/

√
𝑃 per-process

communication, while level 𝑖 has 𝑛/
√

2𝑖𝑃 . The total per-process
communication,𝑊𝑚𝑓 (𝑛, 𝑃 ), is given by the following equation:

𝑊𝑚𝑓 (𝑛, 𝑃 ) = O
(
𝑛/
√
𝑃

)
(2)

Right-looking 3D sparse LU factorization: In the 2D distributed
right-looking LU factorization, where we distribute all the LU
factors using a block-cyclic manner. This method balances load
using 2D block-cyclic distribution, making it suitable for graphs
with arbitrary shapes. However, for planar cases, it requires𝑊 =
O

(
𝑛 log𝑛/

√
𝑃

)
asymptotic communication, which is not optimal.

The 3D mapping: To address the limitations of the 2D approach,
we proposed a 3D algorithm that employs a 3D process grid, as
illustrated in Figure 1. We arrange 𝑃 processes into 𝑃𝑧 2D process
grids, each with dimension 𝑃𝑥𝑦 = 𝑃𝑥 × 𝑃𝑦 , such that 𝑃 = 𝑃𝑥𝑦 × 𝑃𝑧 .
In the lowest level, we factorize problems of size 𝑛/𝑃𝑧 in each of
the 𝑃𝑧 2D grids. As we ascend the tree, the 3D algorithm merges
2D grids into 3D grids rather than extending a 2D grid to a larger
2D grid as in the subtree-to-subtree mapping. This approach allows
us to factorize higher-level separators using a 2.5D factorization
algorithm, reducing the communication costs of right-looking LU
factorization by a factor of

√
𝑃𝑧 , resulting in

𝑊3𝑑 = O
(
𝑛 log𝑛/

√
𝑃𝑃𝑧

)
(3)

However, this approach increasesmemory requirements by replicating
data in each 2D grid, leading to

𝑀3𝑑 = 𝑀2𝑑O (1 + 𝑃𝑧/log𝑛) (4)

When 𝑃𝑧 = 𝑂(log𝑛), the asymptotic memory requirement remains
unchanged. In this scenario, the per-process communication cost is
𝑊3𝑑 = 𝑛

√
log𝑛/

√
𝑃 , which, although improved, is still not optimal.

Communication lower bounds of LU factorization of planar
matrix: For the model problem of size 𝑛 on 𝑃 processes, the per-
process floating operations 𝐹 equal O

(
𝑛3/2/𝑃

)
, and the per-process
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memory (𝑀) equalsO (𝑛 log𝑛/𝑃). The communication lower bounds
for this computation using Equation (1) are given by:

𝑊Ω(𝑛, 𝑃 ) = Ω
(
𝑛/

√
𝑃 log𝑛

)
. (5)

It is worth noting that the 3D algorithm can achieve𝑊3𝑑 = 𝑊Ω
by setting 𝑃𝑧 = log3 𝑛. However, this adjustment increases the
asymptotic memory to𝑀 = 𝑛 log3 𝑛/𝑃 and shifts the lower bound
of Equation (1) to𝑊Ω/log𝑛. As a result, the 3D algorithm remains
off by a factor of log𝑛 from the memory-dependent
communication lower bound.

3 A NEW “3D” SPARSE LU ALGORITHM
In this section, we introduce our new 3D algorithm that combines
3Dmappingwith subtree-to-subcubemapping techniques to achieve
communication-optimality for planar sparsematrices. Our algorithm
leverages a parameter 𝑃𝑧 = 2𝑙𝑧 to divide the process of factorization
into two parts. In the first part, we employ 3D mapping to factor
levels 0 to 𝑙𝑧 − 1 of the elimination tree. In contrast, the second part
uses subtree-to-subcube mapping to factor levels 𝑙𝑧 to log 𝑃 of the
elimination tree. We show this partition in Figure 1. Our goal is to
demonstrate that this novel algorithm achieves a communication
lower boundwithin a log 𝑃𝑧 factor. To compute the total communication
cost, we consider the communication in two parts of factorization:
the 3D part, denoted as 𝑊𝑎𝑛𝑐 , and the subtree-to-subcube part,
denoted as𝑊𝑙𝑒𝑎𝑓 . The total communication is the sum of these two
components:𝑊𝑎𝑛𝑐 +𝑊𝑙𝑒𝑎𝑓 .
Computing𝑊𝑙𝑒𝑎𝑓 : We factor 𝑃𝑧-sparse matrices of size ≈ 𝑛/𝑃𝑧
in parallel with using 𝑃/𝑃𝑧 processes using subtree to subcube
mapping. Hence, using Equation (2),𝑊𝑙𝑒𝑎𝑓 is given by:

𝑊𝑙𝑒𝑎𝑓 (𝑛, 𝑃 ) = 𝑊𝑚𝑓 (𝑛/𝑃𝑧 , 𝑃/𝑃𝑧 ) = O
(
𝑛/

√
𝑃𝑃𝑧

)
(6)

Computing𝑊𝑎𝑛𝑐 : First, recall that we factor a dense LU matrix
of dimension 𝑚 using the “2.5D” algorithm by Solomonik and
Demmel [7] with 𝑃 processes. The per-process communication
cost is given by:

𝑊2.5𝐷 (𝑚, 𝑃, 𝑃𝑧 ) = O
(
𝑚2/

√
𝑃𝑃𝑧 +𝑚2𝑃𝑧/𝑃

)
(7)

When 𝑃𝑧 ≤ 𝑃1/3, we consider only the first term in Equation (8):

𝑊2.5𝐷 (𝑚, 𝑃, 𝑃𝑧 ) = O
(
𝑚2/

√
𝑃𝑃𝑧

)
for 𝑃𝑧 ≤ 𝑃1/3 (8)

Using Equation (8), we calculate and sum the per-process communication
in each level 𝑖 = 0:𝑙𝑧 − 1 to obtain𝑊𝑎𝑛𝑐 . In level 𝑖 , we perform
factorization on 2𝑖 dense matrices in parallel, using 2𝑖 groups of
processors. Each matrix in level 𝑖 has a dimension 𝑚𝑖 =

√
𝑛/2𝑖 ,

and we use a total of 𝑃𝑖 = 𝑃/2𝑖 processes arranged in a 3D grid
with 𝑃𝑖𝑧 = 𝑃𝑧/2𝑖 . The per-process communication in level 𝑖 is given
by Equation (8) as:

𝑊 𝑖
𝑎𝑛𝑐 = 𝑚2

𝑖 /

√
𝑃𝑖𝑃𝑖𝑧 = O

(
𝑛/

√
𝑃𝑃𝑧

)
.

By summing the per-process communication for all levels, we
obtain:

𝑊𝑎𝑛𝑐 (𝑛, 𝑃 ) =
𝑙𝑧−1∑
𝑖=0

𝑊 𝑖
𝑎𝑛𝑐 = 𝑛𝑙𝑧/

√
𝑃𝑃𝑧

Finally, we determine the total communication cost,𝑊𝑛𝑒𝑤 , as the
sum of𝑊𝑎𝑛𝑐 and𝑊𝑙𝑒𝑎𝑓 :

𝑊𝑛𝑒𝑤 = 𝑊𝑎𝑛𝑐 +𝑊𝑙𝑒𝑎𝑓 =
𝑛

√
𝑃𝑃𝑧

(1 + log 𝑃𝑧 ) = O
(
𝑛 log 𝑃𝑧√

𝑃𝑃𝑧

)
(9)

Per-process memory: The new algorithm’s per-process memory
cost is the same as that of the 3D algorithm. Therefore, the per-
process memory cost is given by𝑀new = 𝑀3𝑑 .
Analysis ofCommunicationCost:Weanalyze the communication
cost of the new 3D algorithm in three cases: the memory-optimal
case, the constrained memory case, and the case with no memory
constraints. For each case, we discuss how to select the best 𝑃𝑧 .
Memory optimal case 𝑀 = O (𝑀2𝐷 ): If we want to maintain
the asymptotic memory requirement per process, we can only set
𝑃𝑧 = O(log𝑛). In this case, we calculate the communication cost of
the new 3D algorithm as:

𝑊𝑛𝑒𝑤 (𝑛, 𝑃 ) | 𝑀=𝑀2𝐷 = O
(

𝑛√
𝑃 log𝑛

log log𝑛

)
(10)

Hence, we conclude that𝑊𝑛𝑒𝑤 (𝑛, 𝑃 ) | 𝑀=𝑀2𝐷 = 𝑊Ω(𝑛, 𝑃 )O (log log𝑛),
where𝑊Ω(𝑛, 𝑃 ) is the theoretical communication lower derived
in Equation (5).Hence, the new 3D algorithm achieves communication
optimality within a factor of O(log log𝑛) = O(log 𝑃𝑧 ).
Trading extramemory for reduced communication𝑀 = 𝑐𝑀2𝐷
and 1 < 𝑐 ≤ 𝑃1/3/log𝑛: Using extra memory allows us to decrease
communication time by selecting a 𝑃𝑧 value larger than log𝑛. When
we set an allowed memory level as𝑀 = 𝑐𝑀2𝐷 , where 𝑐 is no greater
than 𝑃1/3/log𝑛, the optimal 𝑃𝑧 becomes 𝑐 log𝑛. Consequently, the
communication time is given by

𝑊𝑛𝑒𝑤 (𝑛, 𝑃 ) | 𝑀=𝑐𝑀2𝐷 = O
(

𝑛√
𝑐𝑃 log𝑛

(log 𝑐 + log log𝑛)
)

(11)

as shown in equation (11). The limitation of 𝑐 ≤ 𝑃1/3/log𝑛 results
from the condition 𝑃𝑧 ≤ 𝑃1/3.
Memory independent communication bounds: Indefinitely increasing
𝑃𝑧 is not viable for reducing communication costs. This is because
the 2.5D LU algorithm performs optimally when 𝑃𝑧 ≤ 𝑃1/3. When
𝑃𝑧 exceeds this threshold, i.e., 𝑃𝑧 > 𝑃1/3, the𝑚2𝑃𝑧/𝑃 term in Equation (7)
becomes dominant. Therefore, in scenarioswithoutmemory constraints,
we choose 𝑃𝑧 = 𝑃1/3, resulting in amemory-independent communication
cost given by

𝑊𝑛𝑒𝑤 (𝑛, 𝑃 ) | 𝑃𝑧=𝑃1/3 = O
(
𝑛 log 𝑃/𝑃2/3

)
. (12)

Thus, in all cases, our proposed 3D algorithm achieves communication
costs within O (log 𝑃) factor of optimal for planar sparse matrices.

4 CONCLUSION
We developed a new sparse LU factorization algorithm for planar
matrices that achieves communication optimality by combining
in 3D and subtree-to-subcube mapping. In general, establishing
achievable communication lower bounds for sparse operations can
be difficult, as they depend on the sparsity pattern of the matrix.
By applying similar strategies to related issues, such as sparse
triangular solvers [8] and all-pair shortest path algorithms [9], we
may potentially uncover new insights and develop novel algorithms.
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