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1 INTRODUCTION

We introduce a new parallel algorithm for solving sparse LU factorization Our goal is to understand the minimum data transfer required

of planar matrices, which commonly arise in the finite element

method for 2D PDEs. Existing scalable methods, such as the multifrontal

approach with subtree-to-subcube mapping by Gupta et al. [1] and
right-looking with 3D mapping by Sao et al. [2], fail to achieve
optimal communication costs for these matrices. Our new algorithm
combines 3D mapping and subtree-to-subcube mapping to minimize
communication costs while allowing trade-offs between extra memory
and reduced communication. We demonstrate that our proposed
algorithm attains the communication lower bound up to a factor
of O (loglog n) in the memory-optimal case and up to a factor of
O (log P) in the memory-independent case for an n-dimensional
planar sparse matrix on P processors.
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between different processors to perform LU factorization of planar
sparse matrices—matrices associated with planar graphs. We often
encounter such matrices in the finite element method for solving
two-dimensional PDEs, making them crucial in engineering and
science. In 2004, Irony and Toledo [3] established the communication
limits for distributed memory matrix multiplication as:

w=0 (F/\/]\_/I), (1)

where W represents per-process communication volume, F indicates
per-process floating-point operations performed, and M denotes
per-process memory. Researchers have developed algorithms that
achieve these limits for dense matrix operations, including LU and
QR factorization [4]. However, its unclear whether Equation (1)
applies to general sparse computations. For instance, the sparse
LU factorization algorithm can achieve these limits for sparse
matrices with three or higher dimensions [5]. Yet, no known parallel
sparse LU factorization algorithm meets this lower bound for planar
problems. To address this gap, we propose a novel algorithm that
achieves the communication-lower bounds for sparse LU factorization
of planar sparse matrices.

Two scalable approaches for sparse LU factorization exists: the
multifrontal approach with subtree-to-subcube mapping proposed
by Gupta et al. [1], and the right-looking 3D mapping approach
proposed by Sao, Vuduc and Li [2]. Both methods employ the
elimination-tree structure for computation mapping but differ in
mapping subtrees to smaller grids. For sparse matrices with three
and higher dimensions, both approaches are communication-optimal.
However, neither method reaches the lower bound for communication
Equation (1) in the case of planar sparse matrices. Specifically, for
a planar model problem derived from the finite difference method
on a 2D grid of size n = m X m, the subtree-to-subcube and 3D
approaches fall short by factors of y/log n and log n, respectively.
Although the 3D approach can reduce communication complexity
by using extra memory, compared to the multifrontal approach, it
still fails to meet memory-dependent lower bounds of Equation (1).

We propose a hybrid algorithm that combines the strengths
of the 3D mapping and subtree-to-subcube approaches. Our key
insight is that replicating data up to a factor of log n for higher-level
subtrees does not increase the overall memory cost, and enables
us to optimize communication. Specifically, we use 3D mapping
to factor higher-level subtrees, taking advantage of the memory-
communication trade-off, and apply subtree-to-subcube mapping
to lower levels of the elimination tree. Our algorithm achieves the
communication lower bound within a factor of log log n without
increasing asymptotic memory cost, outperforming existing methods.
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Figure 1: Different subtree to process mapping strategy for
the sparse LU factorization

Our algorithm achieves an optimal trade-off between memory and
communication. Specifically, it reduces communication volume by
a factor of v/c/log ¢ while increasing memory usage by a factor of c,
where c is a tunable parameter. Additionally, the algorithm attains
the communication lower bound, unconstrained by memory, up to
a factor of log P.

2 BACKGROUND

Sparse LU factorization: Sparse LU factorization solves the equation
Ax = b by factoring matrix A into lower and upper triangular
matrices L and U. We then use forward and back substitution to
compute the solution x = U~!L™1b. The L and U factors are denser
than matrix A due to non-zeros introduced during factorization. We
use a fill-in-reducing ordering to minimize fill-ins during factorization,
as they depend on variable elimination order.

Nested dissection reordering: Nested dissection (ND) is an efficient
graph partitioning method for ordering sparse matrices. Given the
graph G = (V, E) associated with the sparse matrix A, ND finds a
vertex separator S that divides V into C; US U Cy, where C; and Cy
have no edges between them. Factoring C; and C, creates new non-
zeros only in S. The matrix is then permuted, indexing vertices in §
after those in C; and Cy, which allows the elimination of S following
C1 and Cy. This dependency forms an elimination tree (etree), and
the process recursively continues for C; and Cy, forming a multi-
level etree as shown in Figure 1. During factorization, separator
blocks become dense due to fill-ins. The computation and memory
needed to compute and store the L and U factors depend on the
size of the largest separator block.

Sparse LU factorization of planar sparse matrices: We consider
a two-dimensional grid with dimensions n = m X m as our model
problem for the paper. The top-level separator for this graph has

a dimension of m = /n. In general, for any planar graph with n
vertices, one can find a balanced separator of size O(+y/n) due to the
planar-separator theorem([6].
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Computational cost and required memory: The total number
of floating-point operations (asymptotically) in the LU factorization
is the same as the cost of factoring the top-level separator F =
O(m3) = O(n®/2). At the i-th level of the etree, we have 2! separators,
each with a dimension of approximately W . Therefore, storing
LU factors at the i-th level requires memory for 2i/n/2i x W =n
floats. With approximately log n levels in the etree, the total memory
needed for storing the L and U factors is approximately n log n floats.
Multifrontal with subtree-to-subcube mapping: We show the
multifrontal method, which uses a subcube-to-subtree mapping,
in Figure 1. This method divides the elimination tree into subtrees
and maps them to smaller 2D processor grids. At the top level of the
elimination tree, we solve a dense problem with size m = \Vn using a
2D grid of VP x VP processors, where P is the total processor count.
As we move down the elimination tree, the subtrees and process
grid dimensions become smaller while the number of subtrees
increases. At level i, we have 2! separators, each with dimension
O(W). We solve each separator in parallel on a 2D grid with
dimensions 4/P/2! X 4/P/2!. This process continues until we reach
logP levels. In the final level, each of the P processors solves a
problem of size ~ n/P. As we descend the etree, communication
decreases for each processor. The top level has n/VP per-process
communication, while level i has n/V2iP. The total per-process
communication, Wy, ¢(n, P), is given by the following equation:

Wy (n,P) = O (n/\/ﬁ) @)

Right-looking 3D sparse LU factorization: In the 2D distributed
right-looking LU factorization, where we distribute all the LU
factors using a block-cyclic manner. This method balances load
using 2D block-cyclic distribution, making it suitable for graphs
with arbitrary shapes. However, for planar cases, it requires W =

o (n logn/ \/ﬁ) asymptotic communication, which is not optimal.

The 3D mapping: To address the limitations of the 2D approach,
we proposed a 3D algorithm that employs a 3D process grid, as
illustrated in Figure 1. We arrange P processes into P, 2D process
grids, each with dimension Pyy = Px X Py, such that P = Pyy X P,.
In the lowest level, we factorize problems of size n/P; in each of
the P, 2D grids. As we ascend the tree, the 3D algorithm merges
2D grids into 3D grids rather than extending a 2D grid to a larger
2D grid as in the subtree-to-subtree mapping. This approach allows
us to factorize higher-level separators using a 2.5D factorization
algorithm, reducing the communication costs of right-looking LU
factorization by a factor of \P;, resulting in

Wiq = O (nlogn/y/PE 3)

However, this approach increases memory requirements by replicating
data in each 2D grid, leading to

Msg = MpqO (1 + P/logn) 4)

When P, = O(log n), the asymptotic memory requirement remains
unchanged. In this scenario, the per-process communication cost is
Wsgq = ny/logn/ VP, which, although improved, is still not optimal.
Communication lower bounds of LU factorization of planar
matrix: For the model problem of size n on P processes, the per-

process floating operations F equal O (n3/ 2 /P), and the per-process
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memory (M) equals O (nlog n/P). The communication lower bounds
for this computation using Equation (1) are given by:

o(n,P) = © (n/\Plogn). )

It is worth noting that the 3D algorithm can achieve W3; = Wy
by setting P, = log® n. However, this adjustment increases the
asymptotic memory to M = nlog® n/P and shifts the lower bound
of Equation (1) to W /log n. As a result, the 3D algorithm remains
off by a factor of log n from the memory-dependent
communication lower bound.

3 A NEW “3D” SPARSE LU ALGORITHM

In this section, we introduce our new 3D algorithm that combines
3D mapping with subtree-to-subcube mapping techniques to achieve
communication-optimality for planar sparse matrices. Our algorithm
leverages a parameter P, = 2! to divide the process of factorization
into two parts. In the first part, we employ 3D mapping to factor
levels 0 to I, — 1 of the elimination tree. In contrast, the second part
uses subtree-to-subcube mapping to factor levels I, to log P of the
elimination tree. We show this partition in Figure 1. Our goal is to
demonstrate that this novel algorithm achieves a communication

lower bound within a log P, factor. To compute the total communication

cost, we consider the communication in two parts of factorization:
the 3D part, denoted as Wy, and the subtree-to-subcube part,
denoted as Wj,qs. The total communication is the sum of these two
components: Wanc + Wieqf-

Computing Wj.,r: We factor P;-sparse matrices of size ~ n/P,
in parallel with using P/P, processes using subtree to subcube
mapping. Hence, using Equation (2), Wy, is given by:

Wiear (1. P) = Wy (n/P-, P/P7) = O (n//PE;) (©)

Computing Wy: First, recall that we factor a dense LU matrix
of dimension m using the “2.5D” algorithm by Solomonik and
Demmel [7] with P processes. The per-process communication
cost is given by:
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Finally, we determine the total communication cost, Wyeqy, as the
sum of Wane and Wyeqs:

Wnew -

2 _(1+logP,)=0 ("logpz) 9)

VPP,

Per-process memory: The new algorithm’s per-process memory
cost is the same as that of the 3D algorithm. Therefore, the per-
process memory cost is given by Mpew = M3z4.

Analysis of Communication Cost: We analyze the communication
cost of the new 3D algorithm in three cases: the memory-optimal
case, the constrained memory case, and the case with no memory
constraints. For each case, we discuss how to select the best P,.
Memory optimal case M = O (Mp): If we want to maintain
the asymptotic memory requirement per process, we can only set
P, = O(log n). In this case, we calculate the communication cost of
the new 3D algorithm as:

Wane + Wieaf = \/—

Whew(n, P)| M=M,p = o ( log log n) (10)

Plogn
Hence, we conclude that Whe(n, P)| pr=pp,, = Wa(n, P)O (loglog n),
where Wq(n, P) is the theoretical communication lower derived
in Equation (5).Hence, the new 3D algorithm achieves communication
optimality within a factor of O(loglog n) = O(log P;).

Trading extra memory for reduced communication M = cM,p
and 1 < ¢ < P'/3/log n: Using extra memory allows us to decrease
communication time by selecting a P, value larger than log n. When
we set an allowed memory level as M = cM,p, where ¢ is no greater
than P1/3/log n, the optimal P, becomes c log n. Consequently, the
communication time is given by

Waew(n, P)| M=cmyp = (logc +loglogn)|  (11)

n
\cPlogn
as shown in equation (11). The limitation of ¢ < P'/3/log n results
from the condition P, < P}/3.

Memory independent communication bounds: Indefinitely increasing

P, is not viable for reducing communication costs. This is because
the 2.5D LU algorithm performs optimally when P, < P/3, When

W.sp(m, P, P;) = O (m2 \JPP, + m?P P) 7
2! 2) / § e @) P, exceeds this threshold, i.e., P, > P!/3, the m*P, /P term in Equation (7)

becomes dominant. Therefore, in scenarios without memory constraints,
we choose P, = P1/3, resulting in a memory-independent communication
cost given by

When P, < P!/3, we consider only the first term in Equation (8):

Wy sp(m, P, Py) = O (m2 /\/ppz) for P, < P/3 ®)

Using Equation (8), we calculate and sum the per-process communication

in each level i = 0:; — 1 to obtain Wyy. In level i, we perform
factorization on 2' dense matrices in parallel, using 2* groups of
processors. Each matrix in level i has a dimension m; = \/n/Zi,
and we use a total of P* = P/2" processes arranged in a 3D grid
with P} = P,/2'. The per-process communication in level i is given
by Equation (8) as:
Wi = m?/[PIPi = O (n/\/PPZ) .
By summing the per-process communication for all levels, we

obtain:
-1

= > Wiy = nlz/+/PP;
i=0

Wane(n, P)

Whew(n, P)| P,=pl3 = o (n log P/P2/3) . (12)

Thus, in all cases, our proposed 3D algorithm achieves communication
costs within O (log P) factor of optimal for planar sparse matrices.

4 CONCLUSION

We developed a new sparse LU factorization algorithm for planar
matrices that achieves communication optimality by combining
in 3D and subtree-to-subcube mapping. In general, establishing
achievable communication lower bounds for sparse operations can
be difficult, as they depend on the sparsity pattern of the matrix.
By applying similar strategies to related issues, such as sparse
triangular solvers [8] and all-pair shortest path algorithms [9], we
may potentially uncover new insights and develop novel algorithms.
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