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Abstract:

American National Standards Institute/American Nuclear Society national standards 8.1 and
8.24 provide guidance on the requirements and recommendations for establishing confidence
in the results of computerized models used to support operation with fissionable materials. By
design the guidance is not prescriptive, leaving freedom to the analysts to determine how the
various sources of uncertainties are to be statistically aggregated. Due to the involved use of
statistics entangled with heuristic recipes, the resulting safety margins are often difficult to
interpret. Also, these technical margins are augmented by additional administrative margins,
which are required to ensure compliance with safety standards or regulations, eliminating the
incentive to understand their differences. With the new resurgent wave of advanced nuclear
systems, e.g., advanced reactors, fuel cycles, and fuel concepts, focused on economizing
operation, there is a strong need to develop a clear understanding of uncertainties and their
consolidation methods to reduce them in manners that can be scientifically defended. In
response, the current studies compare the analyses behind four notable methodologies for
upper subcriticality limit estimation that have been documented in the nuclear criticality safety
literature: the parametric, non-parametric, Whisper, and TSURFER methodologies.
Specifically, the work offers a deep dive into the various assumptions of the noted
methodologies, their adequacy, and their limitations to provide guidance on developing
confidence for the emergent nuclear systems, expected to be challenged by the scarcity of
experimental data. To limit the scope, the current work will focus on the application of these
methodologies to criticality safety experiments, where the goal is to calculate a bias, a bias
uncertainty, and tolerance limit for k.4 in support of determining an upper subcriticality limit
for nuclear criticality safety.

Keywords: Similarity Index, Uncertainty Quantification, Upper Subcritical Limit, Model
Validation, Criticality Safety.
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I. INTRODUCTION

In the context of nuclear criticality safety, American National Standards Institute/American
Nuclear Society (ANSI/ANS) national standards 8.1 [1] and 8.24 mandate [2] that analysts
establish safety margins that are reasonable and justifiable. In order to ensure reliability of the
models employed for a given application, it is essential to validate its simulated results using
similar/relevant benchmark experiments. However, model validation is challenged when relevant
experiments are lacking, as is often the case with first-of-a-kind nuclear systems. Moreover, the
resulting safety margins may be difficult to interpret due to the involved use of statistics. Therefore,
this research endeavors to investigate different consolidation methodologies, which are
documented in the nuclear criticality safety literature, by means of comparative analysis. This
study aims to assess their assumptions, adequacy, and limitations, and thereby provides guidance
on developing confidence for the emergent nuclear systems, expected to be challenged by the
scarcity of experimental data.

The premise of model validation is to select a finite set of experimental conditions which are
considered sufficient to cover application conditions. This criterion involves the use of a metric
that measures the relevance of an experiment (also referred to as similarity or representativity by
different researchers [3], [4]) to the application. For example, a prefect relevance score may be
assigned to the application itself if employed as an experiment. Since the relevance is typically
measured as an integral quantity valued between -1.0 and 1.0 (or between 0.0 and 1.0 in an absolute
sense), the experimental conditions with relevance scores close to 1.0 are preferable. Among many
relevance metrics proposed by different researchers, ¢, similarity index has been widely used in
the neutronics community, since it represents the correlation on the response space merged with
the sensitivity/uncertainty (S/U) techniques and perturbation theory [3], [5], [6].

Since no experiment has a perfect relevance score in practice, another criterion must be determined
to use for mapping observed discrepancies, referred to hereinafter as the experimental biases. From
a finite set of experiments to the application conditions, analysts have to incur additional bias to
hedge against lower experimental relevance scores. Without a justifiable mapping methodology of
the experimental biases to the application conditions, the analyst must assign additional
conservative margins, often done in a heuristic manner.

Furthermore, the experimental bias for a given response, e.g., critical eigenvalue, power history,
void fraction, isotopic concentrations, etc., is expected to assume a wide range of values due to the
various sources of uncertainties in the consolidation process. This situation is depicted in Figure
1, which shows the measured response value y,,, the corresponding calculated value y,, the
unknown true response value yi.,e, and ypes: the best estimate after fusing code-simulated results
with their associated measurements. The deviation between the true and measured value is
attributed to experimental uncertainties, and that between the true and predicted value is due to
uncertainties in the model.
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Figure 1. Eigenvalue prediction

Although the uncertainties originating from multiple sources can be classified in various ways,
this work focuses on the criterion that classifies these uncertainties into two groups by their
reducibility, i.e., epistemic (also referred to as reducible or systematic) and aleatory (irreducible
or random). The distinction between epistemic and aleatory uncertainties can sometimes be less
clear and could lead to misleading results. For example, the measurement uncertainty is often
treated as aleatory because of the random nature of measurement equipment. Nonetheless, it could
be still possible to improve this uncertainty by using more sensitive equipment, cross-validation
with other groups of researchers or facilities, recalibration of equipment, etc.

Assuming one has fused all experimental and simulation results and successfully corrected for the
epistemic sources of uncertainties, the next step in model validation is to quantify all possible
remaining deviations between the measurements and the best-estimate code predictions. These
deviations are a result of the aleatory uncertainties as well as a part of the epistemic uncertainties
that is not covered by the available experiments. These deviations can be described by a probability
density function (PDF) for the variable dy = y,,, — Vpest, representing the errors that could not be
reduced by the experimental/analytic consolidation process. Estimating this PDF denotes the core
objective of model validation as it is required to properly set safety limits and identify the domain
of model validation. For the sake of the effective discussion, this PDF will be denoted hereinafter
as the PDF of non-covered deviations, or NCD PDF, where “non-coverage” implies that the
deviations are not explained by the experiments.

The mainstream statistical methods assume that the NCD PDF is normal, which reduces the
inference problem to the estimation of two statistical features, i.e., the mean and standard deviation.
Further, because a normal PDF theoretically stretches indefinitely in both directions, the choice of
a bias must be based on the selection of an upper limiting value (or lower, depending on the sign



of the bias)!, denoted by tolerance limit, that covers a preset portion of the PDF. If a PDF is
perfectly known, one can estimate the upper/lower tolerance limit that corresponds to a given
coverage level p, say p = 95%. This tolerance limit represents the range within which the true
value is expected to lie with a probability of p%. Said differently, there remains a probability of
(1 —p)% that the true value falls outside of this coverage. For the eigenvalue response, this
tolerance limit serves as the basis for setting an upper subcriticality limit (USL) on all code
predictions, often supplemented by an additional administrative margin as shown in Figure 2.
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Figure 2. USL non-covered deviations PDF, and tolerance limit

Although outside the scope of this work, it is also important to note that the previous discussion
assumed that one knows the NCD PDF perfectly. In practice, the confidence is reported using a
double-hedging approach, e.g., 99%/95%, denoting that with 99% confidence the true value would
fall into this coverage which is expected to contain 95% of the data population. This double-
hedging is required to account for uncertainties in the estimated features, i.e., the standard
deviation and the mean, which are calculated based on the limited number of samples from the
PDF. Details on this double-hedging approach may be found in an earlier publication [7] and an
NRC technical report [8].

This study is structured as follows: First, the basic concepts of validation in criticality safety,
including various types of uncertainty sources in experimental biases, the concept of relevance,
and USL estimation in Section II. Next, Section III investigates performance of the noted
methodologies by conducting a numerical experiment with simplified toy models. Concluding
remarks and further research are summarized in Section IV. Appendix I-IV provides a brief

"'In order to ensure safety, the practice of estimating safety margins typically involves the consideration of only
underestimated k,; with overestimated k. being excluded. Therefore, the tolerance limit used in this work is limited
to a single-sided (or one-sided) confidence interval.
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summary of the four noted methodologies, and discusses their assumptions, adequacy, and
additional observations made.



II. BACKGROUND AND RELEVANCE

As the bias and bias uncertainty are key elements to determine USL, this section presents a brief
background on three relevant topics: a) classification of various sources of uncertainty; b) the
concept of relevance employed for benchmark selection, and c) an overview of the USL estimation
process. The material in this section may be found in the literature, however, compiled here to help
set the stage for the following discussions.

I1I.A. Uncertainty Classification

This subsection discusses the various sources of uncertainties that control the spread of the noted
NCD PDF, including experimental, benchmark, and calculational uncertainties as shown in Figure
3. Regarding the measurement uncertainties assigned number (4), they originate from the
unavoidable errors from the measurement process, e.g., those resulting from the aleatory nature of
radiation detection instruments. They could also manifest in the form of epistemic errors in the
experimental setup due to, for example, equipment misalignment, errors in model specification,
poor calibration, etc.

Similarly, benchmark uncertainties, assigned (3) in Figure 3, contain both aleatory and epistemic
sources of errors. For example, aleatory errors originate from model parameters that specify
geometry and composition resulting from the manufacturing process. Further, if the calculational
model employed is probabilistic, e.g., Monte Carlo-based, then the predicted value is expected to
have another random error component. The benchmark uncertainties may be lumped with the
measurement uncertainties for a number of reasons: a) they cannot be controlled?, due to their
aleatory nature, similar to other experimental conditions, e.g., ambient conditions; b) since the
benchmark models are carefully designed, these uncertainties are much smaller than other sources
of calculational uncertainties such as nuclear cross-sections uncertainties; and c) they are
independent of other experimental uncertainties. In the remainder of the text, we will denote both
benchmark and experimental uncertainties as evaluation uncertainties as noted in Figure 3.

The calculational uncertainties, resulting from modeling assumptions, numerical approximations,
and input model parameter uncertainties, all can be treated as epistemic. The current study focuses
on epistemic parameter uncertainties assigned number (2)for two reasons. First, recent advances
in high fidelity simulation have provided a clear venue for reducing the first two sources, allowing
analysts to set a fixed upper limit on their contributions, akin to an administrative margin. For the
sake of the effective discussion, these two sources are lumped together as solution uncertainties
and are assigned number @ Second, model parameters, i.e., nuclear cross-sections, continue to
be the major source of uncertainty in neutronic calculations, representing the primary driver in
criticality safety calculations [9]-[12].

2 Although Monte-Carlo uncertainty technically can be controlled by using more cycles and particles, the use of a
high-fidelity model in this study has resulted in its uncertainty of approximately 10 pcm. This level of uncertainty is
regarded as sufficiently accurate, and any further improvement in accuracy may entail a considerable computational
burden.
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Figure 3. Uncertainty sources and classification

I1.B. Experimental Relevance

Experimental relevance is a key requirement to reduce uncertainties. As pointed out earlier, the
regulator allows the licensee to seek an inference technique to reduce the impact of epistemic
uncertainties on the calculated biases. If such inference is not completed, one would be forced to
propagate the cross-sections uncertainties, often resulting in a widely spread PDF for the calculated
response, i.e., with high standard deviation. Reducing cross-sections uncertainties is however a
challenging endeavor, since the number of cross-sections is much larger than the number of
available experiments, i.e., under-determined problem.

To explain this, first note that the systematic bias resulting from the cross-sections uncertainties is
not a universal constant value; instead, it changes based on the sensitivities of the response with
respect to the cross-sections. Therefore, the estimated sensitivities are expected to be different for
each experiment as well as the application [13]. As will be shown later, the bias is simply the inner
product between the gradient vector and the cross-section error vector. For illustration purposes,
we assume the norm of the gradient is unity, making the projection equal to the bias.

From calculus, the gradient points in the direction of maximum change and its magnitude measures
the rate of change along that direction; it is an n dimensional vector whose components are the
first-order derivatives of a given response with respect to n cross-sections. Since the cross-section
true error vector is unknown, one can only assess the impact on the response by analyzing all
possible cross-section variations within their prior uncertainties.

Simply increasing the dimension of the experimental domain to extend this idea would still fail to
infer the correct bias needed for the application. This is because each experiment’s bias is
determined by the inner product of its own gradient with the cross-section error vector. Taking the
average of these biases does not determine application bias, because the experimental gradients
are essentially blind to the application gradient. Hence, it is important to select experiments whose
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experimental gradients pointing approximately in the same direction as the application gradient.
Note that the error vector cannot be explicitly determined due to the under-determined nature of
the inference problem. Mathematically, the observed deviation between each experiment and its
associated calculated value is approximately given by:

Vi — Ve = AxTVy; P (1)
and the sought bias for the application is given by:
T17+,2PP

These equations imply that the ratio of any experiment’s bias and the application bias is
approximately equal to the ratio of the norms of the experiment and application gradient vectors.
This relationship is exact (under the linearity assumption) if the unknown components of the cross-
section error vectors along both gradients are the same, which is possible if the two gradients are
pointing in the same direction.

Another important consequence of the above equation is that each experiment allows the analyst
to estimate the component of the cross-section error vector along the gradient of that experiment.
When the number of experiments is equal to or higher than the number of cross-sections, one may
be able to correct for the entire cross-section error vector without having to know the application
gradient. This is possible when the gradients from all the experiments provide coverage for the
entire cross-section space, i.e., they have n independent components along the n dimensions of the
cross-section space.

The concept of experimental similarity based on the S/U techniques has been widely adopted in
the neutronic community because the responses vary nearly linearly within the range of cross-
sections uncertainties. Mathematically, the ¢, similarity is described as follows:

_ VyeXpTCaVyapp
Cr = \/VyexpTcavyexp\/vyappTCavyapp 3)

where C, is the prior covariance matrix, acting as a weighting structure.

This index is widely used to determine if a critical experiment is similar to an application.
According to Oak Ridge National Laboratory (ORNL) criticality safety validation experience and
a previous work experience with the SCALE S/U tools, the generally accepted criterion states that
an experiment can sufficiently represent an application model with the ¢, value larger than 0.9,
while critical experiments with ¢, values of between 0.8 and 0.9 can be considered only marginally
similar, and use of experiments with cj values less than 0.8 are discouraged [14].

Note that the similarity expression in Eq. (3) is standardized, meaning that two experiments with
the same relevance could have different response deviations because their gradients have different
norms, i.e., magnitude. Thus, one must account for that when combining experimental biases to
calculate the application bias, instead of simply averaging the experimental biases from equally
relevant experiments. The simple averaging will be adequate only if the experiments have the same
exact gradient norms which is not accounted for by three of the methodologies studied in this work,
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i.e., the parametric, non-parametric, and Whisper methodologies. Lastly, as mentioned earlier, it
is infeasible to pick an experiment that has a perfect relevance score, hence the NCD PDF,
describing the deviations between measured and best-estimate predictions, must be inflated to
account for non-perfect relevance.

With no experimental coverage for the orthogonal component, one must rely on basic uncertainty
propagation to estimate the impact of cross-sections uncertainties on the responses of interest. This
implies that while the experiments can reduce the cross-sections epistemic uncertainties along the
covered subspace, they fail to provide any inference on the components belonging to the non-
covered subspace. To further reduce response uncertainties, additional experiments must be
sensitive to new directions along the non-covered subspace. For realistic inference problems, the
non-covered subspace is much higher in dimensionality than the covered subspace due to the
infeasibility of conducting many experiments. The implication is that the NCD PDF should not be
directly employed to calculate the application bias; instead, it must be inflated to account for the
prior parameter uncertainties belonging to the non-covered cross-section subspace. This is another
important observation that we will recall in future discussions of the various methodologies used
for bias mapping from the experimental to application conditions.

II.C. USL Calculation

The previous discussion has helped set the stage for introducing the four different methodologies
surveyed in this study for determining a code’s USL. These methodologies are referred to as the
parametric [15], non-parametric [15], Whisper [16], and TSURFER [17] methodologies. Before
reviewing these methodologies, we recall the definitions of calculational margin (CM), and margin
of subcriticality (MOS) from the American National Standard ANSI/ANS-8.24-2017 [2]. The CM
is defined as an allowance for the bias and bias uncertainty plus considerations of uncertainties
related to interpolation, extrapolation, and trending of the bias. The MOS is an allowance beyond
CM to ensure subcriticality.

A closely related term is often used in the criticality literature is the lower tolerance limit (LTL).
The LTL is closely related to the concept of CM; it is defined in terms of the bias PDF, assumed
to be negative, implying that the code calculations under-predict the true value of k. The
estimated bias is thus a negative number with a spread that describes the uncertainty in its estimated
value. The LTL is defined as a single-sided lower limit for the bias PDF. As will be shown later in
the discussion, most methodologies define the CM in the same way, and hence the two terms are
essentially the same for most methodologies.

Note that the definitions of bias and bias uncertainties are more prescriptive than the CM and MOS.
The bias is clearly defined as the systematic deviation resulting from epistemic uncertainty sources,
such as cross-section errors, systematic measurement errors, numerical and modeling errors. And
the bias uncertainty results from the aleatory nature of the measurement, the benchmark model
parameters, e.g., geometry and composition, the probabilistic nature of the calculations, if any, as
well as the non-covered epistemic uncertainties resulting from cross-sections. Throughout this
work, the solutional uncertainties, i.e., modeling and numerical, uncertainties -- assigned number
(D) in Figure 3 -- will be treated separately via the MOS term.
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The bias and bias uncertainties may be viewed as two fundamental quantities, based on which the
CM and MOS can be calculated, i.e., the CM and MOS are functions of the bias and bias
uncertainties. Recalling from the previous discussion that a key component of model validation is
to set a tolerance limit that covers a certain preset portion of the NCD PDF. Before discussing how
this is done, it is important to note that the goal here is to rely on using samples of experimental
biases to identify the NCD PDF. This is a well-known problem in statistics called the inference
problem. The other more commonly known problem is the sampling problem, where one knows
the PDF and is interested in generating samples from it. The sampling and inference problems are
the equivalent of the forward and inverse problems in applied mathematics, details on the
mechanics of both problems may be found in an earlier publication [18].

Generally, the inference problem may be solved in two notably different approaches, the so-called
parametric and non-parametric approaches. The parametric approach as the name suggests relies
on knowing the type of the PDF, allowing one to parametrize the tolerance limit in terms of the
PDF’s features, e.g., the mean value and standard deviation for a normally distributed PDF. With
the features determined, the tolerance limit can be seamlessly calculated with an allowance made
for uncertainties in the estimated features. This represents the basic idea of the parametric approach
as well as the TSURFER methodology [19].

In the non-parametric approach, the tolerance limit is related directly to the samples by first
employing a sampling approach to construct another related PDF, called the extreme value (EV)
PDF of kh order. The EV PDF has the majority of its mass concentrated at the tail end -- hence the
name extreme -- of the original PDF, implying that a majority of its samples would be higher than
sought tolerance limit for the original PDF. This is always possible by increasing the order of the
EV PDF as will be discussed later. This is the basic idea of the non-parametric approach.

Before diving into the details, Table 1 lists the sources of uncertainties, see Figure 3, captured by
the CM and MOS for each of the methodologies. This table implies that all methodologies employ
CM to capture the epistemic cross-sections uncertainties (2), the benchmark uncertainties (3), as
well as the measurements uncertainties (4); and the MOS captures the solution uncertainties (1).
The Whisper methodology, however employs additional margins for the first three sources under
the MOS. Details on how this is performed will be given in later sections.

Table 1. Uncertainties employed for USL calculation

USL calculation

CM calculation MOS calculation

Parametric/ ( @ N )* @ N @ @

Non-parametric

Whisper (@+)B3®+® O+@+3+®

TSURFER @+0B)+® @®

* Implicit effect of this uncertainty
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I11. NUMERICAL EXPERIMENTS

To help compare the various methodologies, USL is estimated focusing two cases: 1) a toy model
where the true bias values are known, to reveal the mechanics of the various methodologies and to
test the adequacy of their assumptions, and 2) nuclear criticality benchmark models to validate the
performance of the four methodologies for actual nuclear engineering applications. The detailed
USL estimation process and the observations based on the key assumptions behind the noted four
methodologies are discussed through Appendix I-IV.

ITI.A. USL Calculations with a Toy Model

The toy problem includes two correlated input variables, representing the cross-sections, and one
aleatory term aggregating the composition, geometry, measurement uncertainties, possible Monte
Carlo calculational uncertainties (since these sources are independent, it is not of primary
importance to separate them into different terms for the sake of this study). All the reference values
and the range of variations for the epistemic and aleatory parameters are selected to be similar in
magnitude to the uncertainties encountered in typical neutronic criticality problems. The resulting
response errors and variations are manufactured to be in the ballpark of reported eigenvalue
uncertainties. The benchmark model is given by:

kpn=a"x+k.+e€

or in matrix form for 40 different experiments,

x® +aPx@ 4 ky + 6
‘ a; 1)x(l) +a Z)X(Z) +key+ €y
m40

aSex® + a$ )x(z) + keao + €40

where k,,,; and k; represents the measured and the reference calculated responses of the i model,

(j) is the /! coefficient, and ¢; is an aleatory error term which cannot be explained by the input

parameters x( and x(2) representing the cross-sections in this toy model. Note that the reference
values for the input parameters are assumed to be zero, and their uncertainties are assumed to
follow a normal distribution with zero mean and 1% standard deviation. An example correlation

coefficient of 0.4 is selected for the parameters, for which the corresponding correlation matrix g

c R?*2 can be written as:

R=[04 1ol

where the off-diagonal terms imply a positive correlation. The sensitivity coefficients for each

model, aU)s are selected such that the input parameters uncertainties lead to 1-2% change in the

responses. Each row of coefficients emulates the concept of a sensitivity profile, i.e., the gradient
of the response with respect to the input parameters.

The measured responses are assumed to follow a normal distribution with a unity mean and
standard deviation of 150 pcm. To help evaluate the performance of the various methodologies, a
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virtual approach is devised wherein the true parameter values are used to generate the mean value
W @]

xtrue xtrue
[0.0084 —0.0021] are selected from the pool of random samples shown in Figure 4, and the

reference values of the experiments, k., are back-calculated as,

of the measurements. Specifically, the true values for the parameters Xiye = [

.1 2)_(2
kci =1.0- al( )xgrae + ag )xgrge
The application response’s calculated value is modeled as:
kPP = 0.9856 + 1.6151x(1) — 0.4038x2

This results in an estimated value of 1.0 using the true values of the input parameters, and produces
a response uncertainty of 1500 pcm. This model yields a true bias of 1440 pcm meaning that the
model underestimates the true value of k. by approximately one standard deviation of the prior
uncertainty.
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Figure 4. Toy model’s parameters prior uncertainty

The error term, €, representing the benchmark uncertainties, is randomly sampled to have standard
deviation of 200 pcm, leading to an evaluation uncertainty o,; of:

Oci = |0Z + 05, = 250 pcm

Recall that the evaluation uncertainty aggregates both the benchmark uncertainty and the
measurement uncertainty.

With two correlated parameters, the prior epistemic uncertainty, o, is calculated as (this is
corresponding to the propagated cross-sections uncertainty),

— 2 2
Ts: = \/ (afl)ox@)) + (a§2)0x<2>) + 2a§1)a§2)Cov(ax(l),ax(z))
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The representative calculated responses with their associated prior epistemic uncertainties, the
measured responses with their uncertainties, and the biases of each benchmark with the evaluation
uncertainties are graphically illustrated in Figure 5.

Calculated response Measured response Bias distribution
with epistemic uncertainty with measurement uncertainty with evaluation uncertainty

0.9 (,95 1 5 1.1 0.9 0.95 1 1.05 1.1 L(H]E -0.01 N 0 0.01
Rl.’ﬁ klﬂff bias, 7
Figure 5. Calculated response, measured responses, and bias distributions

The USLs calculated by each methodology with 95% confidence are listed in Table 2. Note that
the non-parametric margin m,,, is assumed to be zero since it is an adhoc parameter that cannot
be statistically justified, resulting in an additional conservative for the calculated bias. Table 2
indicates that the Whisper methodology evaluates USL more conservatively than the other
methodologies, while the TSURFER methodology provides the highest USL. The detailed CM
and Whisper MOS calculations for 95% confidence, i.e., with coverage parameter p=1.65 for a
normal distribution, are as follows:

Table 2. Toy model USL results for 95% confidence

CM MOS USL(= 1.0 — CM — MOS)
Parametric 1516 pcm 500 pcm 0.9798
Non-parametric 2409 pcm 500 pcm 0.9709
Whisper 2023 pcm 678 pcm 0.9730
TSURFER 1618 pcm 500 pcm 0.9788

Since the true application response is known for the toy model, we can quantify how far the USLs
of the different methodologies are from the true application response. Focusing on the CM only
since it is calculated based on the bias, we compare its value for the various methodologies without
the MOS, since the choice of the latter is more arbitrary as it includes the effects of unknown
modeling uncertainties. Figure 6 shows the results in the form of a PDF for the calculated bias.
The blue wide-spread PDF denotes the prior knowledge about the application bias. The red PDF
denotes the best-estimate knowledge after fusing the experimental and calculated values. This PDF
is the one calculated by TSURFER and represents the true posteriori PDF according to Bayes
theorem. The goal here is to estimate LTL for this PDF such that 95% of the values are above the
LTL. The implication is that one could assert with 95% confidence that the true value of the bias
will not be less than the LTL value. Based on this LTL value, the USL is calculated. For this toy
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model, the true application bias is given by 1440 pcm which is the same as the mean value of the
TSURFER posteriori PDF. The spread of the posteriori PDF is due to the aleatory uncertainty from
the benchmark model and the measurements as explained earlier. Based on this PDF, TSURFER
calculated an LTL at 1618 pcm which covers 95% of the PDF, as follows

CMr = — Br + 00, = 1440 + 1.65 X 108 = 1618 pcm

Bias and 95% Lower tolerance limit (LTL)
17 | | T

|
Prior App PDF
Adjusted PDF
True App bias
Param LTL
Non-param LTL
= == Whisper LTL
== == TSURFER LTL

True App: -1440

Whisper: 2023 (99.99%)

Posterior mean: -1440
Posterior uncert : 108

Prior uncert : 1500

1 T v ] \ | | ] | |
-3000 -2500 -2000 -1500 -1000 =500 0 500 1000 1500

Bias from prior km (pem)

Figure 6. Toy model application PDF and estimated LTLs

For the parametric methodology, the inverse-variance weighted average f3,, is -636 pcm, setting
the non-conservative parameter to be zero. The pooled variance g, consists of two parts, one

accounting for the weighted standard deviation and the other for the spread of the calculated
responses. The evaluation uncertainty for all the models is selected to be 250 pcm, yielding the
same value for the weighted standard deviation. By adding the impact of the response spread, the
pooled variance increases to 535 pcm which is approximately two times larger than the evaluation
uncertainty. Therefore, the final parametric CM is calculated such as

CM, = — B, + 0o, + A, = 636 + 1.65 X 535 + 0 = 1516 pcm
which is slightly lower than the true value for the 95% LTL, giving a coverage of 76%.

For the non-parametric methodology, only the minimum negative bias of -1529 is employed (recall
the non-parametric margin is assumed to be zero for this analysis since it is heuristically
determined, also it will result in even more conservative CM value), yielding CM value of:

CM,,, = — min {k,, — kp,} + 00, + My + Ay = 1529 + 1.65 X 535 + 0 + 0 = 2409 pcm

Recall that Whisper builds an EV-like PDF by generating samples from the various bias PDFs,
shown in Figure 5, and taking their maximum. In the toy problem, this EV-like PDF will be heavily
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influenced by the two most negatively biased PDFs in the right graph of Figure 5. This follows
because most of the samples generated from the other PDFs will be less than the samples generated
from the two most biased PDFs. Since these two PDFs are heavily overlapped, their samples may
be approximately considered iid, i.e., they are effectively being sampled from the same PDF, and
hence their maximum will be equivalent to the generation of a 2" order EV PDF. For a normal
distribution, the 95% confidence interval for 95% coverage using a 2" order EV PDF is given by
1.95. Thus, for this toy model, the EV multiplier v is approximately given by 1.95. The Whisper
CM is approximated by the non-parametric bias and the evaluation uncertainty with the EV
multiplication factor such that

CM,, = m + Ay, = — min {ke, — km,} + voe + Ay, = 1529 + 1.95 X 250 + 0 = 2017 pcm

which approximates the actual value calculated by Whisper. We note that both the non-parametric
and Whisper CM values produce LTL values that provides nearly 100% coverage of the posteriori
PDF, which is much higher than the 95% coverage reported by the two methodologies.

In the above example, although the analysis includes 40 experiments, only two experiments that
correspond to the two left-most biased PDFs in the right plot of Figure 5 have influenced the final
CM value, resulting in a multiplier of v = 1.95. This begs the question of how the multiplier value
would change with an increasing number of overlapping experiments, a situation that is expected
when the analyst employs a large database of experiments. Therefore, the Whisper CM is re-
evaluated assuming that k experiments have overlapped, and this is repeated with increasing the
value of k; the results are shown in Figure 7.
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Figure 7. k™ order EV multiplier value

This trend shows that as the number of overlapping bias PDFs increases, the multiplier value will
also monotonically increase. This behavior is undesirable because it implies one would have less
confidence as the number of experiments with similar bias results are included in the analysis.
According to basic statistical inference techniques, e.g., Bayesian inference, the confidence should
increase when similar measurements are assimilated. To limit this increase, Whisper employs a
heuristic weighting procedure, as denoted by Egs. (15)-(17), which establishes an upper limit on
the multiplier value. Specifically, at exactly 25 experiments, the multiplier is affixed to a value of

-16 -



2.87 which corresponds to 99.79% one-sided tolerance limit of a standard normal distribution.
This implies that the reported confidence of 95% would be lower than the actual confidence when
the experiments biases are very similar, a situation that is very common when including large
number of highly relevant experiments.

The previous discussion was motivated by our observation that the most biased PDFs are the ones
controlling the Whisper CM value. To further validate this observation, we repeat the calculation
of the CM for three different cases. In the first case, all the bias PDFs are assumed to have the
same weights. The second case zeros all the weights except for the two most biased PDFs and the
third uses the standard cj-based weights as employed by Whisper.

Before concluding this section, we recall that the MOS calculations were not explicitly mentioned
in the toy problem because three of the methodologies employ a fixed value as an additional margin
that hedges against unknown modeling uncertainties, and only Whisper provides a procedure for
estimating the additional MOS which is given by:

MOS; = go), = 1.65 X 108 = 178 pcm
where the 108 represents the spread of the posteriori TSURFER PDF.

III.B. USL Calculations with Pu-Solution Benchmarks

This section studies various USL calculation methodologies using a suite of 29 Pu-solution
benchmarks containing 15 g/L. While selecting their application, two key factors are considered:
1) whether an application has distinct features, e.g., fuel type, geometry, material compositions
including fuel enrichment, etc., from those of the experiments, 2) whether the c;, values estimated
with this application are sufficiently high, e.g., greater than 0.85. Given these criteria, the MIX-
SOL-THERM-002-001 benchmark with calculated k. of 1.0015 is selected as the application
model, which is distinguishable from the experiments in fuel type and maintains high ¢, values
ranging from 0.85 to 0.92.

The benchmark uncertainties were estimated via a Monte Carlo approach, by sampling the
composition and geometry parameters within a small margin of uncertainty, 0.5% - 1.0%. The
resulting eigenvalue uncertainties were in the range of 160-250 pcm, which varied according to
the experiment and the assumed composition and geometry uncertainties. To simplify the
treatment, a fixed value of 200 pcm is assumed to represent the evaluation uncertainties for all
experiments, including the Monte Carlo uncertainties. The detailed information about this set of
the benchmarks including c,, Whisper weights, and the measurement uncertainties can be found
in Table 3.

Table 3. Employed benchmarks specification

Measured, k;, Calculated, k. Bias (k¢ — k) Weight
ke Om | ke Oc 0s B e Ck w
PU-SOL-THERM-003-001 | 1.0000 | 0.0047 |1.0014 |0.0020 |0.0087 |0.0014 [0.0051 |0.8802 |0.9566
PU-SOL-THERM-003-002 | 1.0000 | 0.0047 | 1.0009 |0.0020 |0.0087 |0.0009 [0.0051 |0.8761 |0.9522
PU-SOL-THERM-003-003 | 1.0000 | 0.0047 |1.0042 |0.0020 |0.0087 |0.0042 [0.0051 |0.8688 |0.9442
PU-SOL-THERM-003-004 | 1.0000 | 0.0047 |1.0034 |0.0020 |0.0087 |0.0034 |0.0051 |0.8668 |0.9421

Benchmark name
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PU-SOL-THERM-003-007 | 1.0000 |0.0047 |1.0057 |0.0020 |0.0087 |0.0057 |0.0051 |0.8787 |0.9550
PU-SOL-THERM-003-008 | 1.0000 |0.0047 |1.0043 |0.0020 |0.0087 |0.0043 |0.0051 |0.8757 |0.9517
PU-SOL-THERM-004-001 | 1.0000 |0.0047 |1.0025 |0.0020 |0.0087 |0.0025 |0.0051 |0.9084 |0.9873
PU-SOL-THERM-004-002 | 1.0000 |0.0047 |0.9975 |0.0020 |0.0087 |-0.0025 |0.0051 |0.9074 |0.9862
PU-SOL-THERM-004-003 | 1.0000 |0.0047 |0.9998 |0.0020 |0.0087 |-0.0002 |0.0051 |0.9020 |0.9803
PU-SOL-THERM-004-004 | 1.0000 |0.0047 |0.9980 |0.0020 |0.0087 |-0.0020 |0.0051 |0.8963 |0.9741
PU-SOL-THERM-004-005 | 1.0000 |0.0047 |0.9980 |0.0020 |0.0087 |-0.0020 |0.0051 |0.9040 |0.9825
PU-SOL-THERM-004-006 | 1.0000 |0.0047 |1.0003 |0.0020 |0.0087 |0.0003 |0.0051 |0.9038 |0.9823
PU-SOL-THERM-004-007 | 1.0000 |0.0047 |1.0050 |0.0020 |0.0087 |0.0050 |0.0051 |0.9000 |0.9782
PU-SOL-THERM-004-008 | 1.0000 |0.0047 |1.0000 |0.0020 |0.0086 |0.0000 |0.0051 |0.8972 |0.9751
PU-SOL-THERM-004-009 | 1.0000 |0.0047 |0.9996 |0.0020 |0.0086 |-0.0004 |0.0051 |0.8895 |0.9667
PU-SOL-THERM-004-010 | 1.0000 |0.0047 |1.0013 |0.0020 |0.0086 |0.0013 |0.0051 |0.8707 |0.9463
PU-SOL-THERM-004-012 | 1.0000 |0.0047 |1.0022 |0.0020 |0.0086 |0.0022 |0.0051 |0.9006 |0.9788
PU-SOL-THERM-004-013 | 1.0000 |0.0047 |0.9991 |0.0020 |0.0086 |-0.0009 |0.0051 |0.9008 |0.9790
PU-SOL-THERM-005-001 | 1.0000 |0.0047 |1.0012 |0.0020 |0.0087 |0.0012 |0.0051 |0.8990 |0.9771
PU-SOL-THERM-005-002 | 1.0000 |0.0047 |1.0018 |0.0020 |0.0086 |0.0018 |0.0051 |0.8953 |0.9730
PU-SOL-THERM-005-003 | 1.0000 |0.0047 |1.0024 |0.0020 |0.0086 |0.0024 |0.0051 |0.8915 |0.9689
PU-SOL-THERM-005-004 | 1.0000 |0.0047 |1.0040 |0.0020 |0.0086 |0.0040 |0.0051 |0.8822 |0.9588
PU-SOL-THERM-005-005 | 1.0000 |0.0047 |1.0053 |0.0020 |0.0086 |0.0053 |0.0051 |0.8717 |0.9474
PU-SOL-THERM-005-006 | 1.0000 |0.0047 |1.0048 |0.0020 |0.0086 |0.0048 |0.0051 |0.8607 |0.9354
PU-SOL-THERM-005-008 | 1.0000 |0.0047 |0.9981 |0.0020 |0.0086 |-0.0019 |0.0051 |0.8955 |0.9733
PU-SOL-THERM-005-009 | 1.0000 |0.0047 |1.0011 |0.0020 |0.0086 |0.0011 |0.0051 |0.8901 |0.9674
PU-SOL-THERM-006-001 | 1.0000 |0.0035 |0.9995 |0.0020 |0.0086 |-0.0005 |0.0040 |0.9201 |1.0000
PU-SOL-THERM-006-002 | 1.0000 |0.0035 |1.0008 |0.0020 |0.0086 |0.0008 |0.0040 |0.9161 |0.9957
PU-SOL-THERM-006-003 | 1.0000 |0.0035 |1.0004 |0.0020 |0.0086 |0.0004 |0.0040 |0.9077 |0.9865

Like the toy problem, Figure 8 plots the calculated responses with their epistemic cross-sections
uncertainties and the measured responses with their evaluation uncertainties. The maximum and
minimum cross-sections uncertainties are 873 and 860 pcm, respectively; and the evaluation
uncertainty is 510 pcm for all the benchmarks except for the last three benchmarks whose
evaluation uncertainty is 400 pcm due to lower reported measurement uncertainties.
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Figure 8. Calculated response, measured responses, and bias distributions

The USLs for the four methodologies are calculated and provided in Table 4. With the same
argument in Section III.A, the non-parametric margin is set to be zero.

Table 4. Pu-Solution USL results for 95% confidence

CM MOS USL(=1.0 — CM — MOS)
Parametric 900 pcm 500 pcm 0.9860
Non-parametric 1153 pcm 500 pcm 0.9835
Whisper 1448 pcm 1123 pcm 0.9743
TSURFER 785 pcm 500 pcm 0.9871

In this case study, the parametric methodology’s inverse-variance weighted bias is positive, so the
non-conservative bias adjustment A,, is selected to cancel it out, as discussed earlier. The
parametric CM is calculated as

CM, =— B, + @op + Ay, = —139 + 1.65 X 547 + 139 = 900 pcm
And the non-parametric methodology CM is given by:
CM,,, = — min {k, — ke } + 00, + My + Ay = 253 + 1.65 X 977 + 0 + 0 = 1153 pcm
And the MOS for the Whisper is calculated as
MOS,; = go), = 1.65 X 373 = 615 pcm
Lastly, the TSURFER CM is calculated as
CMy =—fr + 00, + Ay, =—78+1.65 x 373 + 78 = 615 pcm

Unlike the toy model study, the true application response remains unknown. Nevertheless, if one
solely relies on the prior uncertainties as shown in Figure 9, the Whisper-determined USL is
equivalent to a 99.9% confidence because 99.9% of the area under the prior PDF is above the
reported USL limit.
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Figure 9. Mix-Sol-Therm benchmark application and estimated USLs

Similar to the toy problem, a simple exercise was repeated to compare the impact of Whisper
weights, by comparing three cases with equal weights, limiting to the analysis to the most biased
ten PDFs, and including all experiments with the c,-based weights. Figure 10 shows that similar
CM values are obtained for the three cases, indicating that the CM values is weakly sensitive to
the Whisper’s weighting procedure.
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Figure 10. Impact of benchmark and weight selection on extreme value

Given these results, we perform an additional experiment to determine whether the ¢, weighting
can effectively reduce the impact of the most negatively biased experiments. To achieve that, the
models/benchmarks are grouped in two different ways: the blue groups in both plots of Figure 11
have a low bias, but different ¢, values, and the red groups have different biases (including the
most biased ones), but similar ¢, values.
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Figure 11. Bias and ¢, value scatter plot

For each group, one experiment is singled out and its weight is gradually reduced to zero to
estimate the impact of the ¢ weighting and the most negative biases on the calculated CM values.
The two graphs on the left of Figure 12 single out one experiment at a time based on the ¢, value,
and the ones on the right are based on the most negative bias. For example, the dark red plot on
the bottom left graph singles out the 13" experiment with ¢, = 0.9 and gradually reduces its weight.
The graphs on the right perform the same experiment but single out the experiments based on their
biases. For example, the blue graph on the bottom right singles out the 8™ experiment whose bias
is -253 pcm. This is the experiment with the most negative bias and is expected to have the biggest
influence on the results. Results indicate that the weighting procedure does have an impact, albeit
negligible, on the calculated CM value.
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II.C. One-At-a-Time Experiment Validation

To help validate the performance of the four methodologies, a simple numerical experiment is
employed taking advantage of the available benchmark models and their reported measurements.
A single benchmark model is singled out as the application, and its true bias is compared to the
CM and MOS values calculated by the four methodologies. An ideal performance would be one
in which the true bias is similar in magnitude to the calculated bias and is upper bounded by the
sum of the CM and MOS values. A library of 62 uranium-fueled benchmark experiments is
employed, wherein the noted procedure is repeated 62 times, selecting a different experiment as
the application in each time. The detailed information about the experiments is in Table 5.

Table S. Benchmark Models Specification

Measured, k;,, Calculated, k. Bias (k; — ki)

Benchmark name
ke Om ke Oc O B O,
HEU-SOL-THERM-013-001 1.0012 0.0026 0.9976 0.0010 0.0078 -0.0037 0.0028
LEU-COMP-THERM-010-013 1.0000 0.0021 0.9977 0.0010 0.0070 -0.0023 0.0023
LEU-COMP-THERM-017-008 | 1.0000 0.0031 0.9978 0.0010 0.0064 -0.0022 0.0033
LEU-COMP-THERM-002-001 | 0.9997 0.0020 0.9976 0.0010 0.0078 -0.0021 0.0022
LEU-COMP-THERM-010-008 | 1.0000 0.0021 0.9979 0.0010 0.0067 -0.0021 0.0023
LEU-COMP-THERM-001-006 | 0.9998 0.0030 0.9977 0.0010 0.0067 -0.0021 0.0032
LEU-COMP-THERM-002-004 | 0.9997 0.0020 0.9977 0.0010 0.0075 -0.0020 0.0022
LEU-COMP-THERM-002-005 | 0.9997 0.0020 0.9978 0.0010 0.0073 -0.0020 0.0022
LEU-COMP-THERM-001-007 | 0.9998 0.0030 0.9979 0.0010 0.0066 -0.0019 0.0032
LEU-COMP-THERM-001-002 | 0.9998 0.0031 0.9980 0.0010 0.0068 -0.0018 0.0033
LEU-COMP-THERM-017-012 | 1.0000 0.0031 0.9982 0.0010 0.0063 -0.0018 0.0033
LEU-COMP-THERM-017-010 | 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
LEU-COMP-THERM-017-011 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
LEU-COMP-THERM-001-004 | 0.9998 0.0030 0.9982 0.0010 0.0067 -0.0016 0.0032
HEU-SOL-THERM-001-003 1.0000 0.0025 0.9986 0.0010 0.0124 -0.0014 0.0027
LEU-COMP-THERM-017-013 1.0000 0.0031 0.9987 0.0010 0.0064 -0.0013 0.0033
LEU-SOL-THERM-004-001 0.9994 0.0008 0.9983 0.0010 0.0077 -0.0011 0.0013
LEU-COMP-THERM-017-014 | 1.0000 0.0031 0.9989 0.0010 0.0064 -0.0011 0.0033
LEU-SOL-THERM-004-003 0.9999 0.0009 0.9988 0.0010 0.0074 -0.0011 0.0013
LEU-COMP-THERM-017-003 1.0000 0.0031 0.9993 0.0010 0.0065 -0.0007 0.0033
LEU-COMP-THERM-002-003 | 0.9997 0.0020 0.9990 0.0010 0.0077 -0.0007 0.0022
LEU-COMP-THERM-017-007 | 1.0000 0.0031 0.9994 0.0010 0.0063 -0.0006 0.0033
LEU-COMP-THERM-002-002 | 0.9997 0.0020 0.9991 0.0010 0.0078 -0.0006 0.0022
LEU-COMP-THERM-001-001 | 0.9998 0.0031 0.9992 0.0010 0.0069 -0.0006 0.0033
LEU-COMP-THERM-017-006 | 1.0000 0.0031 0.9995 0.0010 0.0062 -0.0005 0.0033
LEU-SOL-THERM-004-007 0.9996 0.0011 0.9991 0.0010 0.0069 -0.0005 0.0015
LEU-COMP-THERM-017-005 1.0000 0.0031 0.9995 0.0010 0.0062 -0.0005 0.0033
LEU-COMP-THERM-010-005 1.0000 0.0021 0.9999 0.0010 0.0060 -0.0001 0.0023
LEU-SOL-THERM-004-006 0.9994 0.0011 0.9993 0.0010 0.0070 -0.0001 0.0015
LEU-COMP-THERM-010-012 | 1.0000 0.0021 1.0001 0.0010 0.0068 0.0001 0.0023
LEU-COMP-THERM-010-006 | 1.0000 0.0021 1.0001 0.0010 0.0062 0.0001 0.0023
HEU-SOL-THERM-001-006 1.0000 0.0025 1.0004 0.0010 0.0111 0.0004 0.0027
LEU-SOL-THERM-004-005 0.9999 0.0010 1.0003 0.0010 0.0071 0.0004 0.0014
LEU-COMP-THERM-017-002 | 1.0000 0.0031 1.0004 0.0010 0.0065 0.0004 0.0033
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LEU-SOL-THERM-004-002 0.9999 0.0009 1.0004 0.0010 | 0.0075 0.0005 0.0013
LEU-COMP-THERM-017-001 | 1.0000 0.0031 1.0006 0.0010 | 0.0065 0.0006 0.0033
LEU-SOL-THERM-004-004 0.9999 0.0010 1.0007 0.0010 | 0.0072 0.0008 0.0014
LEU-COMP-THERM-010-009 | 1.0000 0.0021 1.0010 0.0010 | 0.0068 0.0010 0.0023
LEU-COMP-THERM-010-010 | 1.0000 0.0021 1.0011 0.0010 | 0.0068 0.0011 0.0023
LEU-COMP-THERM-010-007 | 1.0000 0.0021 1.0012 0.0010 | 0.0066 0.0012 0.0023
LEU-COMP-THERM-010-011 | 1.0000 0.0021 1.0012 0.0010 | 0.0068 0.0012 0.0023
LEU-COMP-THERM-010-003 | 1.0000 0.0021 1.0039 0.0010 | 0.0072 0.0039 0.0023
LEU-COMP-THERM-010-001 | 1.0000 0.0021 1.0044 0.0010 | 0.0072 0.0044 0.0023
LEU-COMP-THERM-010-002 | 1.0000 0.0021 1.0051 0.0010 | 0.0072 0.0051 0.0023
HEU-SOL-THERM-001-010 1.0000 0.0025 0.9897 0.0010 | 0.0108 | -0.0103 0.0027
HEU-SOL-THERM-001-006 1.0000 0.0021 0.9977 0.0010 | 0.0070 | -0.0023 0.0023
HEU-SOL-THERM-001-005 1.0000 0.0031 0.9978 0.0010 | 0.0064 | -0.0022 | 0.0033
HEU-SOL-THERM-001-007 0.9997 0.0020 0.9976 0.0010 | 0.0078 | -0.0021 0.0022
HEU-SOL-THERM-001-003 1.0000 0.0021 0.9979 0.0010 | 0.0067 | -0.0021 0.0023
HEU-SOL-THERM-001-008 0.9998 0.0030 0.9977 0.0010 | 0.0067 | -0.0021 0.0032
HEU-SOL-THERM-001-001 0.9997 0.0020 0.9977 0.0010 | 0.0075 | -0.0020 | 0.0022
HEU-SOL-THERM-001-009 0.9997 0.0020 0.9978 0.0010 | 0.0073 | -0.0020 | 0.0022
HEU-SOL-THERM-001-004 0.9998 0.0030 0.9979 0.0010 | 0.0066 | -0.0019 | 0.0032
HEU-SOL-THERM-001-002 0.9998 0.0031 0.9980 0.0010 | 0.0068 | -0.0018 0.0033
LEU-SOL-THERM-004-001 1.0000 0.0031 0.9982 0.0010 | 0.0063 | -0.0018 0.0033
LEU-SOL-THERM-004-002 1.0000 0.0031 0.9983 0.0010 | 0.0063 | -0.0017 | 0.0033
HEU-SOL-THERM-013-004 1.0000 0.0031 0.9983 0.0010 | 0.0063 | -0.0017 | 0.0033
HEU-SOL-THERM-013-003 0.9998 0.0030 0.9982 0.0010 | 0.0067 | -0.0016 | 0.0032
LEU-SOL-THERM-004-003 1.0000 0.0025 0.9986 0.0010 | 0.0124 | -0.0014 | 0.0027
HEU-SOL-THERM-013-002 1.0000 0.0031 0.9987 0.0010 | 0.0064 | -0.0013 0.0033
LEU-SOL-THERM-004-004 0.9994 0.0008 0.9983 0.0010 | 0.0077 | -0.0011 0.0013
LEU-SOL-THERM-002-002 1.0000 0.0031 0.9989 0.0010 | 0.0064 | -0.0011 0.0033

First, focusing on TSURFER and Whisper methodologies, their resulting CM and MOS are
compared with the true bias of the selected application as shown in Figure 13. The TSURFER
MOS is set to be a fixed value of 500 pcm as in the previous analyses. The results show that the
sum of two margins, i.e., CM and MOS, for both methodologies are larger than the true application
bias represented as the dashed line except for the right most point of TSURFER.
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Next, the CM and USL values for the four methodologies are compared in Figure 14 against the
true bias. Note that in point on the x-axis represents the selection of different experiment as an
application, and all other 61 experiments are employed to estimate the CM and USL values. Only
the positive bias cases are considered important, that’s when the code under predicts the measured
value. The order of the applications on the x-axis is selected by ordering the Whisper CM values
from low to high.
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Figure 14. CM and USL with different application

Note that the parametric and non-parametric CMs on the left do not change significantly regardless
of application selection, because both methodologies evaluate their uncertainty using weighted
statistics which often yields stable results with a large number of experiments. But notice that the
non-parametric CM curve drops once for application HEU-SOL-THERM-001-010. This
application has the highest bias of -1030 pcm and a prior uncertainty of 1080 pcm. This drop occurs
because the non-parametric bias solely depends on the most biased experiment. The parametric
bias is less impacted by the exclusion of this high bias since it relies on a weighted average formula
which is more robust to outliers.

With regard to TSURFER results, the CM values are very close to the true bias, however noticeable
differences can be observed for one experiment when used as the application. For this case, the
non-parametric CM shows a drop of approximately 250 pcm value. TSURFER is not able to
capture this bias which is likely due to the modeling errors that are not factored into the TSURFER
CM calculations. This follows because TSURFER assumes all errors originate from known
epistemic sources of uncertainties, e.g., nuclear cross-sections. To hedge against this unknown
source of errors, TSURFER employs the MOS as an additional margin.

Finally, when comparing the Whisper and non-parametric USL values, it is observed that Whisper
sometimes becomes more conservative than the non-parametric methodology. This occurs after
adding the MOS term which provides an additional margin for the non-covered cross-sections
uncertainties, represented by the residual uncertainty after performing TSURFER-like cross-
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section adjustments. TSURFER accounts for this residual uncertainty in the CM value. As pointed
out earlier, this effectively results in double-counting for the residual nuclear data uncertainties,
hence the lower USL values.

IV. Conclusion and Further Research

The main conclusions may be summarized as follows: 1) The parametric, non-parametric, and
Whisper methodology rely primarily on the subjective ability of the analyst to select experiments
that have biases of approximately equal magnitude to the unknown application bias. The use of
similarity indices like the c;, metric does not guarantee that the application and a given experiment
have the same bias magnitude even if they have perfect similarity. This situation occurs when the
sensitivity profiles are pointing in the same direction but with different magnitude, a situation that
blinds the similarity index. The implication is that all three methodologies can potentially under-
predict the true application bias if the norm of the application’s sensitivity profile is larger in
magnitude than that of the experiments; 2) The non-parametric and Whisper methodologies are
very sensitive to the experiment(s) with the highest bias and/or uncertainty, meaning that the
addition of similar experiments with low uncertainty does not help improve the confidence in the
calculated application bias. For the Whisper methodology, the bias continuously increases with
the number of experiments, implying that the addition of experiments with similar
biases/uncertainties reduces rather than increases the confidence in the calculated application bias
and its uncertainty. To limit this unbounded bias increase, Whisper employs a heuristic
thresholding methodology; 3) The TSURFER methodology is sensitive to the presence of
uncharacterized error sources, referred to as modeling errors, with the sensitivity increasing with
the similarity index, meaning that TSURFER could under-predict the true application bias if the
experiments with high similarity have uncharacterized modeling error sources. Thus, future work
will focus on quantifying uncharacterized error sources using cross validation to optimize
TSURFER methodology, and extend this idea to more complicated problems, where the
dependence between experiment(s) and application is highly nonlinear, that may arise in many
nuclear engineering applications due to the complexity of nuclear system.
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Appendix A. Parametric Methodology

Consider conducting N experiments, each with a different gradient vector, and assume the
application gradient is not included in the analysis. Each experiment records a measured value of
kmn,> a corresponding calculated value of k., and their evaluation uncertainty o, . Let the bias be
given as fB; = k., — k;,,. Thus, each experiment defines its own PDF of expected deviations
between measured and predicted values, defined as a normal distribution with mean value £;,
denoted as the experimental bias, and uncertainty given by the standard deviation o, . As reported
in the literature, the parametric approach calculates the application bias 3, as:

ﬁp:E_m 4)

where

And the pooled variance 0121 is defined as s?, the sum of the weighted variance in k about the mean
and @2, the average variance such as

05 =s%+ 02 (5)

where

N 2 N
Bi—B 1
SZ:N]X1,2< O, p) /Z<‘7_2> ©
A
52 = N@ (72)) ™)

The CM is calculated as the sum of the bias and its uncertainty multiplied by the one-sided
tolerance factor g such as

CM, =— B, + 0oy + Ay (8)
where non-conservative bias adjustment parameter A,,, = max {O,,Bp} is introduced to avoid non-

conservative bias. Finally, the USL for the parametric methodology is given by:

USL, = 1.0 — CM,, — MOS, o
=1.0 + B, — 00, — Ay — 0.005 ©
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These equations are provided in [16], citing an older reference [15], which does not derive nor cite
a statistical justification for these equations, instead they are listed without proof. The goal of this
work is to explain the origin of these equations and judge their adequacy for the bias calculation.

Starting with the mean bias equation, Eq. (4), we make the following observations.

1.

The individual experimental biases represent the systematic deviations between the
measured and calculated eigenvalue, with the spread of each PDF determined by the
aleatory uncertainties resulting from the evaluation procedure, i.e., inclusive of both
benchmark uncertainties and measurement uncertainties.

The calculation of the mean value in Eq. (4) emulates the Bayesian estimation of the
mean of an assumed super distribution for all possible experimental biases. This
assumption is not correct because this distribution is not a proper distribution, i.e., it is
ill-defined, for the following reasons. Recall the discussion on the systematic bias
dependence on the inner product between the cross-section error vector and the
experiment gradient. Building a histogram of the experimental biases implies building
a PDF that describes the distribution of biases from all conducted (or possible to
conduct) experiments. This PDF however reflects the distribution of experiments
selected by the analyst, i.e., they are not random. If indeed the experiments are selected
randomly, i.e., with gradients that are randomly pointing in the cross-section space, the
resulting PDF will simply have a zero mean, since all directions are equally probable
to be selected at random. Moreover, this PDF is expected to have a finite range from a
maximal negative value when the experiment gradient is opposite in direction to the
cross-sections error vector, and passing through zero when the gradient is orthogonal
to the error vector, and up to a maximum value when the gradient is parallel to the error
vector. The maximum negative and positive limits depend on the norm of the gradients
for the selected experiments. If the analyst selects experiments with high relevance
score, the resulting PDF will have a mean value that is close to the application bias.
Therefore, the shape of this PDF is entirely based on the decisions made by the analyst,
implying that the mean value of this PDF will also be heavily impacted by the selected
experiments, ranging from a situation where the mean is entirely non-informing about
the true application bias to being maximally informing when all experiments have
perfect relevance score.

Assuming all experiments have similar aleatory spread, i.e., g, = constant, the mean
value reduces to a simple average formula of all the experiments’ biases. As noted
earlier, this is acceptable only if all experiments have the same norm for their gradient
vectors, which is unlikely to be the case. Thus, this averaging could have unpredictable
results. Consider for example a situation where the selected experiments have near
perfect relevance score to the application. However, the normed application’s gradient
has a magnitude that is larger than any of the experiments’ gradients. The result is that
the true application bias would be bigger the mean bias calculated from the experiments,
which is an undesirable scenario. This situation is depicted in the numerical section,
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where multiple experiments with nearly equal relevance have a wide range of bias
values.

Considering the formula used for the standard deviation for the bias, Eq. (5), which
takes advantage of a famous theorem from statistics, called variance decomposition
theorem or total variance theorem, sometimes referred to by practitioners as pooled
variance. This theorem states that the variance may be decomposed into two terms,
variance of the means and mean of the variances. This theorem is useful when
analyzing a superset of data composed of multiple datasets, each with its own mean
and variance, and the goal is to calculate the variance of the superset. The theorem
states that one can achieve that by first calculating a superset mean, which represents
the mean of all the means of the individual datasets. Next, one calculates the variance
of the means of the datasets around the calculated superset mean, denoted by the
variance of the means, represented by Eq. (6). Next, one calculates the average of the
variances of the individual datasets, denoted by the mean of the variances. One can
show that the variance of the means plus the mean of the variances is equal to the
variance of all the data in the superset. In our context, each dataset represents the PDF
of the bias from an individual experiment, and the superset is the ill-defined PDF of all
possible experiments. This definition is problematic because:

a. The first term, the variance of the means, captures the variance of the
experiments selected by the analyst. If these experiments have similar biases,
they will underestimate the true bias uncertainty for the application, and if they
are very different, they could overestimate the true value. Again, this is all
because the hypothesized PDF for which the mean and standard deviation are
calculated is ill-defined.

b. The second term, the mean of the variances, is inconsistent with the formula
given by variance decomposition theorem, and its definition cannot be traced
to a source in the literature. This formula tries to calculate the average standard
deviation as the inverse of the average confidence, which is different from direct
calculations of the average variance. In Bayesian statistics, the inverse variance
is often denoted as the confidence. The idea of using confidence instead of
variance is a direct result of Bayesian updating when one is trying to estimate
the mean value of a given distribution, inferred from multiple samples from the
distribution [18]. The definition in Eq. (7) resembles the Bayesian update
formula but it contains an additional N factor. The reference [15] which
originally proposed this formula does not provide a justification for it. In other
parts of this reference, a classical textbook is cited [20], which does not contain
this formula; instead it contains the Bayesian update formula. The Bayesian
formula is designed to increase confidence in the estimated mean as more
samples are added. Eq. (7) is problematic because if one of the experiments has
very low uncertainty, resulting from extremely careful measurements and
benchmarking practices, the resulting variance will approach zero in the limit
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of one perfect measurement, and the resulting application bias will be solely
determined by this experiment, which may not even have a high relevance score.
This means that for the benchmark uncertainties are being effectively treated as
epistemic rather than aleatory uncertainties.

Despite these issues, the parametric approach produces conservative results from a safety analysis
viewpoint as long as the following two conditions are satisfied: a) the aleatory uncertainties for
the different experiments are similar in magnitude, ensuring that the bias is not influenced by a
single or few experiments (due to the incorrect use of the confidence rather than variance to
calculate the average variance); and b) the selected experiments have a wide range of biases,
covering the range of variations from prior cross-sections uncertainties, thereby resulting in large
enough bias uncertainty, which raises no red flags about its adequacy for the application conditions.
If these two conditions are satisfied, then the parametric approach would calculate a mean bias and
a standard deviation that are representative of the epistemic uncertainties resulting from the cross-
sections. Due to the pooled variance formula in Eq. (5), it is also effectively capturing the
evaluation uncertainties.

A key challenge with the parametric approach is that as analysts transition to using high fidelity
simulation tools, the biases for the existing body of benchmark experiments are expected to get
smaller, much smaller than the range implied by the prior cross-sections uncertainties. The
resulting application bias and bias uncertainty will be smaller, rendering them under-conservative
for the application conditions. With a lack of relevant experiments, which is common for first-of-
a-kind nuclear systems, the licensor will require additional conservative margin. However, from
the practitioner’s perspective, excessively large margin may restrict design freedom and lower
system economy, which is undesirable because it does not provide a venue for taking credit for the
epistemic uncertainties.

Recalling Table 1, the parametric approach effectively accounts for the systematic bias resulting
from cross-sections (2), and also the aleatory sources (3) and (4), as long as the aleatory sources
have the same magnitudes across the pool of available experiments. The solutions uncertainties
(D) are captured under the MOS margin.
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Appendix B. Non-parametric Methodology

The CM for the non-parametric methodology is the same as in Eq. (8) except that the bias is
determined as the minimum bias of all the benchmarks biases, and an additional non-parametric
margin m,,, is heuristically added if the number of benchmarks involved is small. The CM for the

non-parametric methodology can be written as:

CM,,, = — min {kci — kmi} + 00, + Ay, + My, (10)

The USL for the non-parametric methodology is:
USLy, = 1.0 — CM,,,, — MOS,,,,
= 1.0 + min{ke, — kp,} — 00 — Ay — My, — 0.005 (11)

The basic non-parametric methodology may be stated as follows: given the ability to randomly
generate samples from an unknown PDF, determine the number of samples and a corresponding
upper tolerance limit that covers a preset portion of the PDF with preset confidence. Note that this
problem statement assumes that the PDF is unknown, i.e., it cannot be parametrized in terms of
the PDF’s features, like the mean and standard deviation. The non-parametric approach solves this
inference problem by employing a sampling-based approach to construct a related extreme value
EV PDF. Figure 15 graphically demonstrates how the EV PDF may be constructed.

T T
Original PDF

[ =1
[
I -9

= == 95% confidence

Figure 15. Extreme value statistics example

Assume first that the original PDF type is known to be a gamma distribution but its parameters are
unknown, and one is interested in estimating its upper tolerance limit corresponding to 95%
coverage. The idea is to first pick an order, say &, which implies the need to generate k£ samples
from the original PDF, and to take their extreme value, i.e., maximum, representing a single sample
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of the k™ order EV PDF3. If the type of the original PDF distribution is known, one can exactly
determine the form of the EV PDF either analytically or via exhaustive numerical experiments.

The EV PDF has an interesting behavior; its mass keeps on shifting to the right with increasing
the order, i.e., with more samples from the original PDF. If one is interested in finding an upper
tolerance limit for the original PDF, say with 95% coverage, shown as the grey vertical dashed
line, then one simply needs to find an EV PDF whose mass is mostly above this limit. We say
“mostly” because it is impossible to find an EV PDF whose entire mass is above the tolerance
limit, simply because the EV PDF is expected to have a tail stretching to the smallest values
attained by the original PDF, e.g., negative infinity for a normal distribution. Thus, one needs to
find the minimum £ that renders a preset portion of the EV PDF above the sought tolerance limit.
Assume for example that one finds that the k™ order EV PDF shown in purple has 3% of its area
below the 95% upper tolerance limit (the grey dashed vertical line) for the original PDF. This
means that if one generates a single EV sample (obtained by sampling k samples from the original
PDF and taking the maximum), there will be 97% chance that the EV sample will be higher than
the 95% tolerance limit. Thus, one can state with 97% confidence that k samples are sufficient to
determine a 95% upper tolerance limit for the original PDF. Clearly as the number of affordable
samples from the original PDF increases, the confidence in the upper limit could be increased,
never reaching 100%.

This simple example can be easily generalized when the type of the original PDF is not known.
The mathematical argument would be as follows: first calculate the probability that £ samples from
the original PDF would be less than the p% tolerance limit. Since all the samples are independent,
this probability is p*. Then 1 — p* must be the probability that at least one of the samples (i.e., the
maximum) is greater than the p% tolerance limit. Thus, one can state that with 1 — p* confidence
the maximum of k independent samples drawn from the original PDF could be used as a p% upper
tolerance limit. The most widely known result of EV PDF is the famous Wilks’s formula which
states that for k = 59 and p = 95%, one can determine a 95%/95% upper tolerance limit for any
distribution, as long as one can draw independent samples from the same distribution. Said
differently, if the original PDF is not known, the maximum of 59 randomly generated samples, all
drawn from the same distribution, would serve as a 95% upper tolerance limit with 95% confidence.
The key challenge with this approach is that many samples would be needed to develop high
confidence in the tolerance limit.

Note that the basic non-parametric approach does not require one to estimate the original PDF’s
features, e.g., mean value and standard deviation for a normal distribution; instead the tolerance
limit can be determined directly. This also means that if the features can be readily estimated, it
would be moot to try the non-parametric approach, simply because there are known formulas
and/or tables for determining the tolerance limit as a function of the features. If one proceeds with

3 While other literature defines “k% order” as the statistics seeking A" smallest or k™ largest (order) value of given
PDF(s), in this manuscript “k™ order”” means by the extreme value of k samples from PDF(s).
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the non-parametric approach, they would be able to obtain the same results obtained with the
parametric approach, since in this case the type of the original PDF is known.

Also note that all samples must be independent and generated from the same PDF, i.e., the original
PDF for which a tolerance limit is sought. Mathematically, the samples are denoted as iid samples,
short for independent samples from identical distributions, in our case, this means generating
samples from the “same” distribution. This requirement is important for two reasons, first to ensure
that the EV PDF samples can be related to the tolerance limit of the original PDF generating the
samples, and second to ensure that the EV PDF progressively moves to the right with higher orders.
To demonstrate, consider Figure 16, where one attempts to generate the 3 order EV PDF using
three different PDFs (i.e., an incorrect application of EV theorem because the samples are no
longer iid). In the first case represented by the top two plots for PDFs with low overlap, the EV
PDF will be heavily biased by the third PDF, i.e., the most extreme of the three, which essentially
reduces to sampling only the third PDF. On the other hand, as the PDFs get closer to each other,
as shown in the two bottom plots, the EV PDF will start to shift towards the right, reducing back
to the iid case. More importantly, with different PDFs used to generate the samples, it is no longer
clear which tolerance limit is being estimated. The relevance of this observation will become clear
when we discuss the Whisper methodology.

Individual PDFs Extreme value PDF

3rd PDF mean

3rd PDF
b | === 3rd order EV
3rd PDF mean

Casel

Individual PDFs Extreme value PDF

3rd order EV
= 3rd PDF mean

Case Il

Figure 16. Extreme value statistics with different PDFs

Next, consider that one is interested in estimating p% upper tolerance with q% confidence for the
application bias. The goal is to determine N the minimum number of experiments to achieve that.
A straightforward application of non-parametric methodology requires one to assume that there
exists an unknown PDF from which biases are sampled, allowing one to determine the sought
tolerance limit. If this assumption is acceptable, one simply solves the following equation for N,
q = 1 — p"N. This assumption however is problematic as discussed earlier because this hypothetical
PDF is ill-defined. As discussed in the previous section, there is no such a PDF that describes all
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possible experiments, simply because it is up to the analyst to select what experiments to include
and how relevant they are to the application. The situation is different from its common use in
other engineering applications, such as manufacturing where one is interested in estimating a
tolerance limit for a clearly defined process implying a well-defined PDF. For example, consider
an enrichment plant configured to produce low-enriched fuel pellets at a nominal enrichment of
4%. Due to the inherent uncertainties in the process, the fuel pellets’ enrichments are expected to
have a PDF with a mean value of 4% and some spread. The distribution of the fuel pellets
enrichment describes a PDF for which a tolerance limit can be calculated by sampling N pellets.

Applying the non-parametric methodology to samples that are not iid, i.e., generated from different
experiments, challenges the basic assumption of the EV PDF. As an example, assume that the
analyst selects experiments that have a relevance score above a minimum threshold, e.g., 0.85. In
this case, the spread of the resulting PDF will be determined by both the spread of the relevance
score as well as the spread of the norms of the experimental gradients, see the earlier discussion
surrounding Eq. (1). Thus, for this approach to be effective, the norm of the application gradient
needs to be in the same order of magnitude as that of the experiments. If it is higher, then the
calculated tolerance will be under-predicting the real tolerance for the application bias. A better
approach would be to scale down the biases by their corresponding gradients’ norms. If one lowers
the minimum threshold for experimental relevance, the resulting PDF would be wider, thus
conservatively impacting the calculated tolerance for the application bias. In response to this non-
standard use of the EV theorem, the non-parametric methodology, as used in the nuclear criticality
safety literature, includes an additional term to the tolerance limit, representing the variance of the
bias from all available experiments, i.c., the error term go,, appearing in Eq. (10).

It is thus concluded here that the basic non-parametric approach has the following advantages and
disadvantages. It allows analysts to estimate an upper tolerance limit for the application bias with
minimal knowledge about the various sources of uncertainties. In doing so, one must ensure that
the application gradient is similar in magnitude to the experiments, which is possible with expert
judgment. If one could employ an experimental relevance score, the calculated tolerance would be
closer to the true value for the application bias, allowing one to drop the additional conservative
term go,,. If no knowledge about the application is included, the resulting tolerance is determined
by the worst experimental bias plus an additional term capturing the variance of the experimental
biases go,,. Finally, it does not allow the analyst to take credit for the irreducible sources of
uncertainties.

Recalling the sources of uncertainties, it hedges for the epistemic uncertainties, source (2), as it is
based on the worst systematic bias, and the evaluation uncertainties, sources (3) and (4), as it
employs the pooled variance as an additional term in the CM definition. Recall the pooled variance
contains a term that averages the evaluation uncertainties from all experiments. Finally, it accounts
for the solution uncertainties, source (1) in the MOS term.
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Appendix C. Whisper Methodology

The Whisper methodology has been developed by Los Alamos National Laboratory researchers
[16]. It is promoted to provide the following features: a) it hybridizes the use of parametric and
non-parametric methodologies; b) it relies on the concept of EV theorem and uses calculated
tolerance to set the CM; c) it employs a heuristic formula to reduce the number of samples
generated from low-relevance experiments in an attempt to reduce their impact on the calculated
tolerance limit; and finally d) it employs TSURFER-based approach to determine the non-covered
uncertainties which are used to set the MOS.

The full implementation may be found in the following reference [16], however a brief overview
of the steps is given here. First, it generates an EV-like PDF which is used to calculate a tolerance
value m, covering preset area ¢, say 95%, under the EV-like PDF. We explain later why we use
the qualifier “like” when describing Whisper’s EV PDF and the associated tolerance. The CM is
determined as:

CM,, =m+A, (12)

The MOS for the Whisper methodology can be represented by a sum of three terms, i.e., margin
for software error (in our notation, the solution uncertainties, source (1)), margin for the non-
covered nuclear cross-sections uncertainties, and margin for the application. As per the expert
opinion, the margin for software is set to be 0.005 and the margin for non-covered cross-sections
is calculated by the TSURFER methodology, such that

MOS,; = 00, (13)

where 0, 1s the residual, i.e., non-covered, uncertainty for the application response, resulting from
a TSURFER-based adjustment procedure. The USL for the Whisper methodology can be written
as

usL,, = 1.0 — CM,, — MOS,, (14)
=1.0—-m—A,,—0.005 -0y,

Markedly different from the basic non-parametric methodology, Whisper generates an EV-like
PDF using samples that are not iid, this is because they are generated from different PDFs. Each
PDF represents one experiment with the PDF assumed known, i.e., in the normal case the
experimental bias sets the PDF’s mean value and the evaluation uncertainty sets the PDF’s
standard deviation. Then it calculates an EV-like PDF of k" order, with k being the effective EV
order, i.e., the number of the overlapping extreme experiments (Details on how this is performed
will be given in the numerical sections). Since the original PDFs are fully characterized, Whisper
explicitly constructs the & order EV-like PDF, which can be done analytically if the original PDFs
are normal, or it can be done numerically for general PDFs. Finally, it defines the tolerance limit
m as the value that covers a preset portion of the EV-like PDF.
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Further, Whisper employs a linear heuristic method for two reasons: first, to diminish the number
of samples generated from low relevance experiments by assigning a weight w that varies linearly
with the relevance score, meaning that only w% of its generated samples are used to construct the
EV-like PDF for each experiment. Another more subtle reason is to limit the impact of the number
of experiments with similar biases on the calculated tolerance. When an increasing number of
experiments with similar biases are included, the resulting EV-like PDF will continue shifting its
mass to more extreme values, raising the tolerance, as shown in Figure 16. This is counter-intuitive
as one should develop higher confidence in the bias when an increasing number of experiments
provide similar bias results, a basic premise of any statistical inference methodology. Whisper sets
a maximum threshold on the weights to ensure the calculated tolerance does not increase
indefinitely with the number of experiments. The selected function for the required weight is

Wreq = Wmin + Wpenalty(1 - Ck,max) (15)

where Wi, and Wy enqiry, are heuristic constants that are set to be 25 and 100, respectively, for this
analysis, and ¢, ;4 1S the maximum cy, value of the selected benchmark experiments. The sum of
individual weight factors w; should be the same as the required weight w,.., calculated in Eq. (15)

such that
Wieq = Z wi (16)
i

and the individual weight factors also satisfy the following linear relation with an appropriately
selected acceptance ¢y, Cj g, Such that

(17)

Ck,i - Ck,acc
Ck,max - Ck,acc

w; = max {0,

An exemplary numerical test is conducted to explain the impact of this weighting procedure with
the benchmark experiments in Section III.C. Figure 17 shows how different cut-off values (¢, qcc)

discard experiments.
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Figure 17. Change in ¢, ... with different application selection
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These results imply that the ¢y, 4. works as a heuristic cutoff of the linear relationship between the
Whisper weights and ¢, values. In this analysis, a high value of ¢y 4., Temoves the experimental
bias PDFs with lower relevance resulting in the reduction of calculated CM. As pointed out earlier,
the cutoff procedure is mainly designed to hedge against the monotonic increase in the CM value
with the increased number of experiments, see Figure 7. Results indicate that going from a high
cutoff value of 0.94 down to a cutoff value of 0.81 reduces the CM value by approximately 500
pcm. Also, notice that within each group, the CM values are fairly constant indicating lack of
sensitivity to the specific non-zero weight values used by Whisper for each group, an observation
that was supported by earlier numerical experiments.

Finally, Whisper employs the bias uncertainty to calculate the residual uncertainty in the
application response which is used to set the MOS. The idea is to report as MOS the aleatory
uncertainties from both the non-covered cross-section subspace as well as the evaluation
uncertainties.

Focusing on Whisper’s CM calculations, the following observations are made.

1. Recall that the non-parametric methodology’s real power is that it can create an EV PDF
that progressively moves towards the tail end of the original PDF. This is possible if one
can generate multiple iid samples from the same PDF and take their maximum values, thus
ensuring that the increased samples will push the EVs further towards the tail end of the
original PDF. As demonstrated earlier, this logic does not apply when one samples from
different PDFs, losing the ability to compare samples from the same PDF. If the PDFs have
low overlap (see Figure 16), the EVs will be dominated by the PDF with the highest values,
e.g., for normal PDFs, the PDF with the highest standard deviation and/or highest mean
value will dominate the EV PDF. This will be demonstrated numerically.

2. When sampling from a single PDF, the goal is to construct an EV PDF whose mass is
concentrated above an upper tolerance limit that is already fixed -- albeit unknown -- by
the original PDF. If the original PDF was known, one would not need to calculate an EV
PDF, because the tolerance limit would be fully determined by the original PDF. Recall
that the key power of the non-parametric approach is that allows one to estimate a tolerance
limit when the original PDF is unknown.

3. Consider two experiments, one with a very high relevance score and low average bias,
represented by the red PDF in Figure 18, and another with lower relevance and higher
average bias. One can consider that each experiment represents a group of closely grouped
experiments with approximately the same bias and spread. For simplicity, assume the
weights for the two groups of experiments are 1.0 and 0.5 respectively. The EV PDF will
have 50% of its samples generated from the high relevance PDF(s) and the other 50% from
the low relevance PDF(s). This is because 50% of the low relevance samples will be
eliminated by the Whisper weighting procedure. The resulting extreme PDF will thus have
two modes as shown. Note that each mode is simply a scaled version of the original PDFs.
If no weighting is employed, then the EV PDF will simply reduce to the original low
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relevance PDF. Consider the tolerance limit corresponding to the case with no weighting,
shown as the black vertical bar. The area above this bar is say 5%. The area above the same
bar under the Whisper-weighted PDF will be slightly lower than 5%. Hence, to obtain the
same confidence, the tolerance limit obtained from the Whisper-weighted EV-like PDF
will move slightly to the left to cover the same area.

Unit weight Whisper weight
: A : . T \ \ T T

High relevance PDF High relevance PDF
Low relevance PDF | 7 Low relevance PDF |
EV PDF EV PDF

Tolerance limit r Tolerance limit

Figure 18. Impact of relevance on tolerance limit

4. With experiments with perfect (or very high) relevance scores employed, the differences
in their biases will be mainly determined by the magnitude of their gradients. As explained
earlier, if all the experiments have the same relevance but different biases, the application
bias will be determined by the experiment with the highest gradient norm. This does not
guarantee whether this bias will under or over predict the true application bias without
comparing the application gradient norm to the norms of the experiments’ gradients. This
is not checked by Whisper. Instead, the highest bias is expected to impact the tolerance
limit obtained by Whisper. As explained earlier, if the application has a gradient of higher
magnitude than the experiment with the highest bias, the calculated bias would under-
predict the true bias. The parametric approach hedges for this scenario by employing the
pooled variance, which is expected to be big enough, as calculated over many experiments.
Whisper does not hedge for this scenario, except based on the analyst’s best judgment of
selecting experiments with sensitivities of the same magnitude as those of the application.

5. Assuming one employs two experiments with the same relevance score, but with two
different evaluation uncertainties, the tolerance limit will be determined by the PDF with
the higher evaluation uncertainties. This is because the Whisper weighting employs a
relevance score that does not account for the evaluation uncertainties; instead, it is based
on the prior cross-sections uncertainties only. Thus, if one conducts the same experiment
twice, with one being unreasonably high uncertainty, the Whisper tolerance will be
determined by the less accurate measurements which is undesirable from practical
considerations. This forces the analyst to design a heuristic criterion to reject experiments
before calculating the tolerance limit.
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Therefore, Whisper employs CM to account for the systematic bias from cross-sections
uncertainties, source @, because it effectively uses the most conservative bias to set the tolerance
limit. In doing so, it does not explicitly account for the difference in magnitude between the
experimental and application gradients, however by a) employing the pooled variance’s first term;
the standard deviation of the biases around their mean value, b) relying on the expert-judgment of
the analyst to pick experiments with similar sensitivities to those of the application, and c) the
tolerance limit reducing to the most conservative experimental bias like the basic non-parametric
methodology, it can be confidently argued that it calculates a conservative estimate of the
application bias. It also accounts for the evaluation uncertainties (3) and (4) through the use of
pooled variance; the second term, being the mean of the evaluation uncertainties. For MOS, it
employs a TSURFER-based procedure to calculate residual uncertainties, which are composed of
the aleatory evaluation uncertainties, source (3) and (4), and the non-covered cross-sections
uncertainties, a portion of source (2). Because TSURFER relies on the concept of assimilating
measurements and predictions to increase confidence, the final uncertainty in the bias will be less
than the prior uncertainties in (3), (4) and (2). Thus, the Whisper’s MOS will be accounting for a
portion of these sources, which were already accounted for in the CM. This double-counting while
acceptable from safety point of view, cannot be traced to a statistical justification.
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Appendix D. TSURFER Methodology

The TSURFER methodology is parametric; it assumes a Gaussian shape for the PDFs obtained
from each experiment. Unlike the standard implementation presented in Section 0, it allows the
analyst to take credit for the epistemic uncertainties by solving a mathematical adjustment problem
which minimizes L, norm of the sum of two terms to find optimal adjustments for the cross-
sections. The first term minimizes the L, norm of the adjustments of the cross-sections to ensure
their consistency with their prior values, and the second term minimizes the discrepancy between
the measurements and predictions for the selected experimental responses. The premise is that one
can correct for the cross-section errors that belong to the covered subspace. The residual
uncertainties resulting from the non-covered subspace are propagated to the response and are used
as the basis for calculating the tolerance limit. A key difference between TSURFER and the
previous methodologies is that it provides a mathematically justifiable approach to map the biases
from the experimental to the application domain, a mapping process that accounts for the
differences between the experiments’ gradients and the application gradient. The full methodology
may be found in a previous publication [17] and a brief discussion on the TSURFER formulation
is also summarized below.

Considering that there are M available experiments to predict the application k. bias, the
corresponding prior values, i.e., code-calculated, for both the experiments and the application may
be aggregated in a vector k € RM*+1 such that:

k=[k1 kz - kmi1]"

where the last element is the prior application k. The corresponding measurements for the first
M values are designated by another vector m € RM. In this formulation, the last element of m is
set to the prior value of k.4 assumed to have no corresponding experimental value.

The prior cross-sections uncertainties are described by a multivariate joint Gaussian PDF with a
vector of means representing the reference multi-group cross-sections and a covariance matrix
given by:

cov(aq,a1) cov(aq,az) -+ cov(ay,ay,)
_ |cov(az,ar) cov(azaz) - cov(azan) nxn
Caa = : : : ER
cov(anay) cov(a,ay) - cov(a,ary)

The adjusted cross-sections are calculated as the minimizer of the following quadratic form subject
to the linearity constraint k'(a’) = m-:

*

a* = argmin [ — a]TC l[ar — a] + [m' — m]TC,, L, [m —m] (18)
al
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where €y € RMFDXMHD) g the covariance matrix for the measured k.4 The constraint implies
that the adjusted cross-sections av will update the best-estimated values (the components of m')
for all M experiments as well as the application. The last element of the vector m’ is taken to
represent the best-estimate for the application k. value, and the last component of m’ —m is
referred to as the application bias.

The objective function in Eq. (18) may be re-written in terms of the calculated and adjusted k.
values as:

X = [k = k)" Cige [k — k] + [m' — m]" Copn [’ — m]

where y%, is the M-degrees of freedom chi-square value describing the discrepancies between the
prior and adjusted k. values. The Cpj € RM+D>*M+1) matrix denotes the prior covariance matrix
for the calculated k. values given by:

Crk = SkaCaaSha (19)

where Sy € RM+DX" matrix aggregates the first-order sensitivity profiles for all M experiments
and the application.

Assuming that the linearization of the constraint k'(a) = m' is sufficiently accurate within the
limitations of first-order sensitivity theory, the minimizer of't

he objective function in Eq. (18) may be given by:
Ak = — Cip(Crc + Crnm)~1d (20)

where Ak = k' — k and d € RM*1 is the discrepancy vector, d = k —m

The posterior (i.e., post the consolidation of experimental and prior values) covariance matrix for
the k.4 values is given by:

Crore = Crk — Ck(Crre + Conm) 1 Creic (21)

The diagonal elements of this matrix describe the confidence one has in the posterior k.4 values.

The CM (also referred to as the LTL) for the TSURFER methodology can be described by the bias
Pr that is the last element of Ak in Eq. (20) and its uncertainty o, that is the square root of the last
element of C;;, in Eq. (21) such that

CMr = — Br + 00y, (22)
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And the USL is calculated with the MOS by

USLT =1- CMT - MOST
=1+ By — 0o, — 0.005 (23)

Since both TSURFER and Whisper employ the idea of cross-section adjustments, albeit for
different goals, this work presents a more detailed account of how this is achieved. Instead of
focusing on the mathematical details of the minimization problem, the objective is to highlight the
key challenges, which remain unaddressed by the nuclear literature, such as the error compensation
phenomena, the impact of prior covariance data, the impact of low relevance experiments, and the
lack of a formal verification procedure for the calculated application bias, and the impact of
modeling errors. To achieve that, the current work dives deeply into the mechanics of cross-section
adjustments to help solicit the insight needed to guide future work focused on first-of-a-kind
nuclear systems, presenting one of the key contributions of this work. It provides insight on how
to interpret the biases calculated which surprisingly could at times degrade rather than improve
model predictions; a critically needed discussion that is currently absent from the cross-section
adjustment literature.

As mentioned earlier, the regulatory process does not mandate a specific procedure to perform
model validation, however it requires that two independent sources of knowledge be consolidated
as a basis for establishing confidence in model predictions: 1) the measurements collected from
experiments with conditions that are representative of the application, and 2) the model predictions
that simulate the same experimental conditions. The premise, as best supported by the Bayes
theorem, is that the confidence fused from both sources will be higher than the prior confidence
obtained with the simulation only, representing the basic idea behind correcting for the epistemic
sources of uncertainties.

Focusing here on cross-sections prior uncertainties, they are typically high and incomplete
resulting in high uncertainties for the quantities of interest, e.g., eigenvalue. The experiments,
however, are carefully conducted to allow for highly accurate low uncertainty measurements,
providing a venue for the analyst to improve model predictions by analyzing the sources of
uncertainties responsible for the observed deviations between measured and predicted responses.
Because the number of cross-sections is substantially high, it is infeasible to build experiments
that can be used to correct for all sources of cross-sections uncertainties. Hence, it is important to
devise a methodology to measure the value of an experiment via a relevance score. The goal of
these experiments is to regress back the observed deviations to their sources by calculating cross-
section adjustments that minimize the deviations.

The search for the optimal cross-section adjustments is cast as an inverse problem that requires an
optimization search. A successful search for the optimal adjustments ideally implies the ability to
estimate their true values which allows for improved predictions not only for the experimental
conditions but also for the application conditions. This is, however, not an easy endeavor because,
in most realistic situations, the inverse problem is ill-posed, a situation that arises when the number
of cross-sections is much higher than the number of measured experimental responses. The ill-
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posedness presents a formidable challenge for the optimization search resulting in the so-called
error-compensation phenomenon, where the cross-sections are incorrectly over- or under-adjusted,
1.e., as compared to their true unknown errors, leading to the same responses residual, i.e., the post-
adjustment deviations between measured and predicted responses.

This makes an inverse problem challenging to choose which cross-section changes would be
appropriate for the application because there are theoretically an infinite number of cross-section
adjustments that might result in the same degree of agreement between measured and expected
responses. This is due to the fact that the application model is not taken into account while
determining the best-estimates, making it impossible to predict a priori whether the adjusted cross-
sections will result in better or worse model predictions for the application conditions. Although
regularization techniques have been developed to render the optimization search well-posed, this
can only be done by selecting the adjustments that produce a unique solution by enforcing some
mathematical criterion, such as the minimum distance from the best-known prior cross-section
values. Because these regularization techniques are blind to the application conditions, they cannot
ensure that the adjustments will improve the model predictions for the application conditions.

Note that unlike the previous three methodologies, the TSURFER methodology takes credit for
the epistemic sources of uncertainties in the CM calculation, based on a mathematically rigorous
approach for mapping the experimental biases to determine the application bias. As noted earlier,
each experimental bias is heavily influenced not only by the true cross-section error vector but also
by its own gradient norm. The adjustment procedure automatically accounts for the relative
strength of each experiment’s gradient when calculating the optimal cross-section adjustments,
and moreover, employs the application’s gradient to calculate the corresponding bias. This is
fundamentally different from the three previous methodologies which employs the experimental
bias directly as an application bias, lacking a formal approach to perform the needed mapping,
leaving the analyst to heuristically add an additional margin to characterize lack of knowledge
about the uncertainties resulting from the mapping. Finally, if the experiments employed are not
relevant, TSURFER cannot guarantee that the application bias will improve the predictions,
representing a key challenge for any inference technique that tries to reduce uncertainties with
limited measurements.
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