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Abstract:
American National Standards Institute/American Nuclear Society national standards 8.1 and 
8.24 provide guidance on the requirements and recommendations for establishing confidence 
in the results of computerized models used to support operation with fissionable materials. By 
design the guidance is not prescriptive, leaving freedom to the analysts to determine how the 
various sources of uncertainties are to be statistically aggregated. Due to the involved use of 
statistics entangled with heuristic recipes, the resulting safety margins are often difficult to 
interpret. Also, these technical margins are augmented by additional administrative margins, 
which are required to ensure compliance with safety standards or regulations, eliminating the 
incentive to understand their differences. With the new resurgent wave of advanced nuclear 
systems, e.g., advanced reactors, fuel cycles, and fuel concepts, focused on economizing 
operation, there is a strong need to develop a clear understanding of uncertainties and their 
consolidation methods to reduce them in manners that can be scientifically defended. In 
response, the current studies compare the analyses behind four notable methodologies for 
upper subcriticality limit estimation that have been documented in the nuclear criticality safety 
literature: the parametric, non-parametric, Whisper, and TSURFER methodologies. 
Specifically, the work offers a deep dive into the various assumptions of the noted 
methodologies, their adequacy, and their limitations to provide guidance on developing 
confidence for the emergent nuclear systems, expected to be challenged by the scarcity of 
experimental data. To limit the scope, the current work will focus on the application of these 
methodologies to criticality safety experiments, where the goal is to calculate a bias, a bias 
uncertainty, and tolerance limit for keff in support of determining an upper subcriticality limit 
for nuclear criticality safety. 
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I. INTRODUCTION
In the context of nuclear criticality safety, American National Standards Institute/American 
Nuclear Society (ANSI/ANS) national standards 8.1 [1] and 8.24 mandate [2] that analysts 
establish safety margins that are reasonable and justifiable. In order to ensure reliability of the 
models employed for a given application, it is essential to validate its simulated results using 
similar/relevant benchmark experiments. However, model validation is challenged when relevant 
experiments are lacking, as is often the case with first-of-a-kind nuclear systems. Moreover, the 
resulting safety margins may be difficult to interpret due to the involved use of statistics. Therefore, 
this research endeavors to investigate different consolidation methodologies, which are 
documented in the nuclear criticality safety literature, by means of comparative analysis. This 
study aims to assess their assumptions, adequacy, and limitations, and thereby provides guidance 
on developing confidence for the emergent nuclear systems, expected to be challenged by the 
scarcity of experimental data.

The premise of model validation is to select a finite set of experimental conditions which are 
considered sufficient to cover application conditions. This criterion involves the use of a metric 
that measures the relevance of an experiment (also referred to as similarity or representativity by 
different researchers [3], [4]) to the application. For example, a prefect relevance score may be 
assigned to the application itself if employed as an experiment. Since the relevance is typically 
measured as an integral quantity valued between -1.0 and 1.0 (or between 0.0 and 1.0 in an absolute 
sense), the experimental conditions with relevance scores close to 1.0 are preferable. Among many 
relevance metrics proposed by different researchers, 𝑐𝑘 similarity index has been widely used in 
the neutronics community, since it represents the correlation on the response space merged with 
the sensitivity/uncertainty (S/U) techniques and perturbation theory [3], [5], [6]. 

Since no experiment has a perfect relevance score in practice, another criterion must be determined 
to use for mapping observed discrepancies, referred to hereinafter as the experimental biases. From 
a finite set of experiments to the application conditions, analysts have to incur additional bias to 
hedge against lower experimental relevance scores. Without a justifiable mapping methodology of 
the experimental biases to the application conditions, the analyst must assign additional 
conservative margins, often done in a heuristic manner.

Furthermore, the experimental bias for a given response, e.g., critical eigenvalue, power history, 
void fraction, isotopic concentrations, etc., is expected to assume a wide range of values due to the 
various sources of uncertainties in the consolidation process. This situation is depicted in Figure 
1, which shows the measured response value 𝑦𝑚, the corresponding calculated value 𝑦𝑐, the 
unknown true response value 𝑦true, and 𝑦best the best estimate after fusing code-simulated results 
with their associated measurements. The deviation between the true and measured value is 
attributed to experimental uncertainties, and that between the true and predicted value is due to 
uncertainties in the model. 
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Figure 1. Eigenvalue prediction

Although the uncertainties originating from multiple sources can be classified in various ways, 
this work focuses on the criterion that classifies these uncertainties into two groups by their 
reducibility, i.e., epistemic (also referred to as reducible or systematic) and aleatory (irreducible 
or random). The distinction between epistemic and aleatory uncertainties can sometimes be less 
clear and could lead to misleading results. For example, the measurement uncertainty is often 
treated as aleatory because of the random nature of measurement equipment. Nonetheless, it could 
be still possible to improve this uncertainty by using more sensitive equipment, cross-validation 
with other groups of researchers or facilities, recalibration of equipment, etc. 

Assuming one has fused all experimental and simulation results and successfully corrected for the 
epistemic sources of uncertainties, the next step in model validation is to quantify all possible 
remaining deviations between the measurements and the best-estimate code predictions. These 
deviations are a result of the aleatory uncertainties as well as a part of the epistemic uncertainties 
that is not covered by the available experiments. These deviations can be described by a probability 
density function (PDF) for the variable 𝑑𝑦 = 𝑦𝑚 ― 𝑦best, representing the errors that could not be 
reduced by the experimental/analytic consolidation process. Estimating this PDF denotes the core 
objective of model validation as it is required to properly set safety limits and identify the domain 
of model validation. For the sake of the effective discussion, this PDF will be denoted hereinafter 
as the PDF of non-covered deviations, or NCD PDF, where “non-coverage” implies that the 
deviations are not explained by the experiments. 

The mainstream statistical methods assume that the NCD PDF is normal, which reduces the 
inference problem to the estimation of two statistical features, i.e., the mean and standard deviation. 
Further, because a normal PDF theoretically stretches indefinitely in both directions, the choice of 
a bias must be based on the selection of an upper limiting value (or lower, depending on the sign 
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of the bias)1, denoted by tolerance limit, that covers a preset portion of the PDF. If a PDF is 
perfectly known, one can estimate the upper/lower tolerance limit that corresponds to a given 
coverage level 𝑝, say 𝑝 = 95%. This tolerance limit represents the range within which the true 
value is expected to lie with a probability of 𝑝%. Said differently, there remains a probability of 
(1 ― 𝑝)% that the true value falls outside of this coverage. For the eigenvalue response, this 
tolerance limit serves as the basis for setting an upper subcriticality limit (USL) on all code 
predictions, often supplemented by an additional administrative margin as shown in Figure 2.

 
Figure 2. USL non-covered deviations PDF, and tolerance limit

Although outside the scope of this work, it is also important to note that the previous discussion 
assumed that one knows the NCD PDF perfectly. In practice, the confidence is reported using a 
double-hedging approach, e.g., 99%/95%, denoting that with 99% confidence the true value would 
fall into this coverage which is expected to contain 95% of the data population. This double-
hedging is required to account for uncertainties in the estimated features, i.e., the standard 
deviation and the mean, which are calculated based on the limited number of samples from the 
PDF. Details on this double-hedging approach may be found in an earlier publication [7] and an 
NRC technical report [8]. 

This study is structured as follows: First, the basic concepts of validation in criticality safety, 
including various types of uncertainty sources in experimental biases, the concept of relevance, 
and USL estimation in Section II. Next, Section III investigates performance of the noted 
methodologies by conducting a numerical experiment with simplified toy models. Concluding 
remarks and further research are summarized in Section IV. Appendix I-IV provides a brief 

1 In order to ensure safety, the practice of estimating safety margins typically involves the consideration of only 
underestimated keff, with overestimated keff being excluded. Therefore, the tolerance limit used in this work is limited 
to a single-sided (or one-sided) confidence interval.
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summary of the four noted methodologies, and discusses their assumptions, adequacy, and 
additional observations made.
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II. BACKGROUND AND RELEVANCE
As the bias and bias uncertainty are key elements to determine USL, this section presents a brief 
background on three relevant topics: a) classification of various sources of uncertainty; b) the 
concept of relevance employed for benchmark selection, and c) an overview of the USL estimation 
process. The material in this section may be found in the literature, however, compiled here to help 
set the stage for the following discussions. 

II.A. Uncertainty Classification

This subsection discusses the various sources of uncertainties that control the spread of the noted 
NCD PDF, including experimental, benchmark, and calculational uncertainties as shown in Figure 
3. Regarding the measurement uncertainties assigned number ④, they originate from the 
unavoidable errors from the measurement process, e.g., those resulting from the aleatory nature of 
radiation detection instruments. They could also manifest in the form of epistemic errors in the 
experimental setup due to, for example, equipment misalignment, errors in model specification, 
poor calibration, etc. 

Similarly, benchmark uncertainties, assigned ③ in Figure 3, contain both aleatory and epistemic 
sources of errors. For example, aleatory errors originate from model parameters that specify 
geometry and composition resulting from the manufacturing process. Further, if the calculational 
model employed is probabilistic, e.g., Monte Carlo-based, then the predicted value is expected to 
have another random error component. The benchmark uncertainties may be lumped with the 
measurement uncertainties for a number of reasons: a) they cannot be controlled2, due to their 
aleatory nature, similar to other experimental conditions, e.g., ambient conditions; b) since the 
benchmark models are carefully designed, these uncertainties are much smaller than other sources 
of calculational uncertainties such as nuclear cross-sections uncertainties; and c) they are 
independent of other experimental uncertainties. In the remainder of the text, we will denote both 
benchmark and experimental uncertainties as evaluation uncertainties as noted in Figure 3.

The calculational uncertainties, resulting from modeling assumptions, numerical approximations, 
and input model parameter uncertainties, all can be treated as epistemic. The current study focuses 
on epistemic parameter uncertainties assigned number ②for two reasons. First, recent advances 
in high fidelity simulation have provided a clear venue for reducing the first two sources, allowing 
analysts to set a fixed upper limit on their contributions, akin to an administrative margin. For the 
sake of the effective discussion, these two sources are lumped together as solution uncertainties 
and are assigned number ①. Second, model parameters, i.e., nuclear cross-sections, continue to 
be the major source of uncertainty in neutronic calculations, representing the primary driver in 
criticality safety calculations [9]–[12]. 

2 Although Monte-Carlo uncertainty technically can be controlled by using more cycles and particles, the use of a 
high-fidelity model in this study has resulted in its uncertainty of approximately 10 pcm. This level of uncertainty is 
regarded as sufficiently accurate, and any further improvement in accuracy may entail a considerable computational 
burden. 
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*
 zero for deterministic models

Figure 3. Uncertainty sources and classification

II.B. Experimental Relevance

Experimental relevance is a key requirement to reduce uncertainties. As pointed out earlier, the 
regulator allows the licensee to seek an inference technique to reduce the impact of epistemic 
uncertainties on the calculated biases. If such inference is not completed, one would be forced to 
propagate the cross-sections uncertainties, often resulting in a widely spread PDF for the calculated 
response, i.e., with high standard deviation. Reducing cross-sections uncertainties is however a 
challenging endeavor, since the number of cross-sections is much larger than the number of 
available experiments, i.e., under-determined problem. 

To explain this, first note that the systematic bias resulting from the cross-sections uncertainties is 
not a universal constant value; instead, it changes based on the sensitivities of the response with 
respect to the cross-sections. Therefore, the estimated sensitivities are expected to be different for 
each experiment as well as the application [13]. As will be shown later, the bias is simply the inner 
product between the gradient vector and the cross-section error vector. For illustration purposes, 
we assume the norm of the gradient is unity, making the projection equal to the bias.  

From calculus, the gradient points in the direction of maximum change and its magnitude measures 
the rate of change along that direction; it is an 𝑛 dimensional vector whose components are the 
first-order derivatives of a given response with respect to 𝑛 cross-sections. Since the cross-section 
true error vector is unknown, one can only assess the impact on the response by analyzing all 
possible cross-section variations within their prior uncertainties.

Simply increasing the dimension of the experimental domain to extend this idea would still fail to 
infer the correct bias needed for the application. This is because each experiment’s bias is 
determined by the inner product of its own gradient with the cross-section error vector. Taking the 
average of these biases does not determine application bias, because the experimental gradients 
are essentially blind to the application gradient. Hence, it is important to select experiments whose 



- 9 -

experimental gradients pointing approximately in the same direction as the application gradient. 
Note that the error vector cannot be explicitly determined due to the under-determined nature of 
the inference problem. Mathematically, the observed deviation between each experiment and its 
associated calculated value is approximately given by:

𝑦𝑚𝑖 ― 𝑦𝑐𝑖 = Δ𝑥𝑇∇𝑦exp
𝑖 (1)

and the sought bias for the application is given by:

Δ𝑥𝑇∇𝑦app
(2)

These equations imply that the ratio of any experiment’s bias and the application bias is 
approximately equal to the ratio of the norms of the experiment and application gradient vectors. 
This relationship is exact (under the linearity assumption) if the unknown components of the cross-
section error vectors along both gradients are the same, which is possible if the two gradients are 
pointing in the same direction. 

Another important consequence of the above equation is that each experiment allows the analyst 
to estimate the component of the cross-section error vector along the gradient of that experiment. 
When the number of experiments is equal to or higher than the number of cross-sections, one may 
be able to correct for the entire cross-section error vector without having to know the application 
gradient. This is possible when the gradients from all the experiments provide coverage for the 
entire cross-section space, i.e., they have 𝑛 independent components along the 𝑛 dimensions of the 
cross-section space. 

The concept of experimental similarity based on the S/U techniques has been widely adopted in 
the neutronic community because the responses vary nearly linearly within the range of cross-
sections uncertainties. Mathematically, the 𝑐𝑘 similarity is described as follows:

𝑐𝑘 =
∇𝑦exp𝑇𝑪𝜶∇𝑦app

∇𝑦exp𝑇𝑪𝜶∇𝑦exp ∇𝑦app𝑇𝑪𝜶∇𝑦app (3)

where 𝑪𝜶 is the prior covariance matrix, acting as a weighting structure.

This index is widely used to determine if a critical experiment is similar to an application. 
According to Oak Ridge National Laboratory (ORNL) criticality safety validation experience and 
a previous work experience with the SCALE S/U tools, the generally accepted criterion states that 
an experiment can sufficiently represent an application model with the 𝑐𝑘 value larger than 0.9, 
while critical experiments with 𝑐𝑘 values of between 0.8 and 0.9 can be considered only marginally 
similar, and use of experiments with 𝑐𝑘 values less than 0.8 are discouraged [14]. 

Note that the similarity expression in Eq. (3) is standardized, meaning that two experiments with 
the same relevance could have different response deviations because their gradients have different 
norms, i.e., magnitude. Thus, one must account for that when combining experimental biases to 
calculate the application bias, instead of simply averaging the experimental biases from equally 
relevant experiments. The simple averaging will be adequate only if the experiments have the same 
exact gradient norms which is not accounted for by three of the methodologies studied in this work, 
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i.e., the parametric, non-parametric, and Whisper methodologies. Lastly, as mentioned earlier, it 
is infeasible to pick an experiment that has a perfect relevance score, hence the NCD PDF, 
describing the deviations between measured and best-estimate predictions, must be inflated to 
account for non-perfect relevance. 

With no experimental coverage for the orthogonal component, one must rely on basic uncertainty 
propagation to estimate the impact of cross-sections uncertainties on the responses of interest. This 
implies that while the experiments can reduce the cross-sections epistemic uncertainties along the 
covered subspace, they fail to provide any inference on the components belonging to the non-
covered subspace. To further reduce response uncertainties, additional experiments must be 
sensitive to new directions along the non-covered subspace. For realistic inference problems, the 
non-covered subspace is much higher in dimensionality than the covered subspace due to the 
infeasibility of conducting many experiments. The implication is that the NCD PDF should not be 
directly employed to calculate the application bias; instead, it must be inflated to account for the 
prior parameter uncertainties belonging to the non-covered cross-section subspace. This is another 
important observation that we will recall in future discussions of the various methodologies used 
for bias mapping from the experimental to application conditions. 

II.C. USL Calculation

The previous discussion has helped set the stage for introducing the four different methodologies 
surveyed in this study for determining a code’s USL. These methodologies are referred to as the 
parametric [15], non-parametric [15], Whisper [16], and TSURFER [17] methodologies. Before 
reviewing these methodologies, we recall the definitions of calculational margin (CM), and margin 
of subcriticality (MOS) from the American National Standard ANSI/ANS-8.24-2017 [2]. The CM 
is defined as an allowance for the bias and bias uncertainty plus considerations of uncertainties 
related to interpolation, extrapolation, and trending of the bias. The MOS is an allowance beyond 
CM to ensure subcriticality. 

A closely related term is often used in the criticality literature is the lower tolerance limit (LTL). 
The LTL is closely related to the concept of CM; it is defined in terms of the bias PDF, assumed 
to be negative, implying that the code calculations under-predict the true value of keff. The 
estimated bias is thus a negative number with a spread that describes the uncertainty in its estimated 
value. The LTL is defined as a single-sided lower limit for the bias PDF. As will be shown later in 
the discussion, most methodologies define the CM in the same way, and hence the two terms are 
essentially the same for most methodologies. 

Note that the definitions of bias and bias uncertainties are more prescriptive than the CM and MOS. 
The bias is clearly defined as the systematic deviation resulting from epistemic uncertainty sources, 
such as cross-section errors, systematic measurement errors, numerical and modeling errors. And 
the bias uncertainty results from the aleatory nature of the measurement, the benchmark model 
parameters, e.g., geometry and composition, the probabilistic nature of the calculations, if any, as 
well as the non-covered epistemic uncertainties resulting from cross-sections. Throughout this 
work, the solutional uncertainties, i.e., modeling and numerical, uncertainties -- assigned number 
① in Figure 3 -- will be treated separately via the MOS term.
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The bias and bias uncertainties may be viewed as two fundamental quantities, based on which the 
CM and MOS can be calculated, i.e., the CM and MOS are functions of the bias and bias 
uncertainties. Recalling from the previous discussion that a key component of model validation is 
to set a tolerance limit that covers a certain preset portion of the NCD PDF. Before discussing how 
this is done, it is important to note that the goal here is to rely on using samples of experimental 
biases to identify the NCD PDF. This is a well-known problem in statistics called the inference 
problem. The other more commonly known problem is the sampling problem, where one knows 
the PDF and is interested in generating samples from it. The sampling and inference problems are 
the equivalent of the forward and inverse problems in applied mathematics, details on the 
mechanics of both problems may be found in an earlier publication [18]. 

Generally, the inference problem may be solved in two notably different approaches, the so-called 
parametric and non-parametric approaches. The parametric approach as the name suggests relies 
on knowing the type of the PDF, allowing one to parametrize the tolerance limit in terms of the 
PDF’s features, e.g., the mean value and standard deviation for a normally distributed PDF. With 
the features determined, the tolerance limit can be seamlessly calculated with an allowance made 
for uncertainties in the estimated features. This represents the basic idea of the parametric approach 
as well as the TSURFER methodology [19]. 

In the non-parametric approach, the tolerance limit is related directly to the samples by first 
employing a sampling approach to construct another related PDF, called the extreme value (EV) 
PDF of kth order. The EV PDF has the majority of its mass concentrated at the tail end -- hence the 
name extreme -- of the original PDF, implying that a majority of its samples would be higher than 
sought tolerance limit for the original PDF. This is always possible by increasing the order of the 
EV PDF as will be discussed later. This is the basic idea of the non-parametric approach.

Before diving into the details, Table 1 lists the sources of uncertainties, see Figure 3, captured by 
the CM and MOS for each of the methodologies. This table implies that all methodologies employ 
CM to capture the epistemic cross-sections uncertainties ②, the benchmark uncertainties ③, as 
well as the measurements uncertainties ④; and the MOS captures the solution uncertainties ①. 
The Whisper methodology, however employs additional margins for the first three sources under 
the MOS. Details on how this is performed will be given in later sections. 

Table 1. Uncertainties employed for USL calculation

USL calculation
CM calculation MOS calculation

Parametric/
Non-parametric (② + )* ③ +④ ①

Whisper (② + )* ③ +④ ① + ② + ③ + ④

TSURFER ② + ③ +④ ①
* Implicit effect of this uncertainty
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III. NUMERICAL EXPERIMENTS
To help compare the various methodologies, USL is estimated focusing two cases: 1) a toy model 
where the true bias values are known, to reveal the mechanics of the various methodologies and to 
test the adequacy of their assumptions, and 2) nuclear criticality benchmark models to validate the 
performance of the four methodologies for actual nuclear engineering applications. The detailed 
USL estimation process and the observations based on the key assumptions behind the noted four 
methodologies are discussed through Appendix I-IV.

III.A. USL Calculations with a Toy Model
The toy problem includes two correlated input variables, representing the cross-sections, and one 
aleatory term aggregating the composition, geometry, measurement uncertainties, possible Monte 
Carlo calculational uncertainties (since these sources are independent, it is not of primary 
importance to separate them into different terms for the sake of this study). All the reference values 
and the range of variations for the epistemic and aleatory parameters are selected to be similar in 
magnitude to the uncertainties encountered in typical neutronic criticality problems. The resulting 
response errors and variations are manufactured to be in the ballpark of reported eigenvalue 
uncertainties. The benchmark model is given by:

𝑘𝑚 = 𝑎𝑇𝑥 + 𝑘𝑐 + 𝜖

or in matrix form for 40 different experiments, 

𝑘𝑚1
𝑘𝑚2

⋮
𝑘𝑚40

=

𝑎(1)
1 𝑥(1) + 𝑎(2)

1 𝑥(2) + 𝑘𝑐1 + 𝜖1
𝑎(1)

2 𝑥(1) + 𝑎(2)
2 𝑥(2) + 𝑘𝑐2 + 𝜖2

⋮
𝑎(1)

40 𝑥(1) + 𝑎(2)
40 𝑥(2) + 𝑘𝑐40 + 𝜖40

where 𝑘𝑚𝑖 and 𝑘𝑐𝑖 represents the measured and the reference calculated responses of the ith model, 
𝑎(𝑗)

𝑖  is the jth coefficient, and 𝜖𝑖 is an aleatory error term which cannot be explained by the input 
parameters 𝑥(1) and 𝑥(2) representing the cross-sections in this toy model. Note that the reference 
values for the input parameters are assumed to be zero, and their uncertainties are assumed to 
follow a normal distribution with zero mean and 1% standard deviation. An example correlation 
coefficient of 0.4 is selected for the parameters, for which the corresponding correlation matrix R
∈ ℝ2×2 can be written as:

𝑅 = 1.0 0.4
0.4 1.0

where the off-diagonal terms imply a positive correlation. The sensitivity coefficients for each 
model, 𝑎(𝑗)

𝑖 s, are selected such that the input parameters uncertainties lead to 1-2% change in the 
responses. Each row of coefficients emulates the concept of a sensitivity profile, i.e., the gradient 
of the response with respect to the input parameters.

The measured responses are assumed to follow a normal distribution with a unity mean and 
standard deviation of 150 pcm. To help evaluate the performance of the various methodologies, a 
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virtual approach is devised wherein the true parameter values are used to generate the mean value 
of the measurements. Specifically, the true values for the parameters 𝑥true = 𝑥(1)

true 𝑥(2)
true =

[0.0084 ―0.0021] are selected from the pool of random samples shown in Figure 4, and the 
reference values of the experiments, 𝑘𝑐𝑖, are back-calculated as,

𝑘𝑐𝑖 = 1.0 ― 𝑎(1)
𝑖 𝑥(1)

true + 𝑎(2)
𝑖 𝑥(2)

true

The application response’s calculated value is modeled as:

𝑘app
𝑐 = 0.9856 + 1.6151𝑥(1) ― 0.4038𝑥(2)

This results in an estimated value of 1.0 using the true values of the input parameters, and produces 
a response uncertainty of 1500 pcm. This model yields a true bias of 1440 pcm meaning that the 
model underestimates the true value of keff by approximately one standard deviation of the prior 
uncertainty. 

Figure 4. Toy model’s parameters prior uncertainty

The error term, 𝜖, representing the benchmark uncertainties, is randomly sampled to have standard 
deviation of 200 pcm, leading to an evaluation uncertainty 𝜎𝑒𝑖 of: 

𝜎𝑒𝑖 = 𝜎2
𝜖𝑖

+ 𝜎2
𝑚𝑖

= 250 pcm

Recall that the evaluation uncertainty aggregates both the benchmark uncertainty and the 
measurement uncertainty. 

With two correlated parameters, the prior epistemic uncertainty, 𝜎𝑠𝑖, is calculated as (this is 
corresponding to the propagated cross-sections uncertainty),

𝜎𝑠𝑖 = 𝑎(1)
𝑖 𝜎 

𝑥(1)

2
+ 𝑎(2)

𝑖 𝜎 
𝑥(2)

2
+ 2𝑎(1)

𝑖 𝑎(2)
𝑖 Cov 𝜎 

𝑥(1),𝜎 
𝑥(2)
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The representative calculated responses with their associated prior epistemic uncertainties, the 
measured responses with their uncertainties, and the biases of each benchmark with the evaluation 
uncertainties are graphically illustrated in Figure 5. 

Figure 5. Calculated response, measured responses, and bias distributions

The USLs calculated by each methodology with 95% confidence are listed in Table 2. Note that 
the non-parametric margin 𝑚𝑛𝑝 is assumed to be zero since it is an adhoc parameter that cannot 
be statistically justified, resulting in an additional conservative for the calculated bias. Table 2 
indicates that the Whisper methodology evaluates USL more conservatively than the other 
methodologies, while the TSURFER methodology provides the highest USL. The detailed CM 
and Whisper MOS calculations for 95% confidence, i.e., with coverage parameter 𝜚≅1.65 for a 
normal distribution, are as follows:

Table 2. Toy model USL results for 95% confidence

CM MOS USL( = 1.0 ― CM ― MOS)
Parametric 1516 pcm 500 pcm 0.9798

Non-parametric 2409 pcm 500 pcm 0.9709
Whisper 2023 pcm 678 pcm 0.9730

TSURFER 1618 pcm 500 pcm 0.9788

Since the true application response is known for the toy model, we can quantify how far the USLs 
of the different methodologies are from the true application response. Focusing on the CM only 
since it is calculated based on the bias, we compare its value for the various methodologies without 
the MOS, since the choice of the latter is more arbitrary as it includes the effects of unknown 
modeling uncertainties. Figure 6 shows the results in the form of a PDF for the calculated bias. 
The blue wide-spread PDF denotes the prior knowledge about the application bias. The red PDF 
denotes the best-estimate knowledge after fusing the experimental and calculated values. This PDF 
is the one calculated by TSURFER and represents the true posteriori PDF according to Bayes 
theorem. The goal here is to estimate LTL for this PDF such that 95% of the values are above the 
LTL. The implication is that one could assert with 95% confidence that the true value of the bias 
will not be less than the LTL value. Based on this LTL value, the USL is calculated. For this toy 
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model, the true application bias is given by 1440 pcm which is the same as the mean value of the 
TSURFER posteriori PDF. The spread of the posteriori PDF is due to the aleatory uncertainty from 
the benchmark model and the measurements as explained earlier. Based on this PDF, TSURFER 
calculated an LTL at 1618 pcm which covers 95% of the PDF, as follows

CM𝑇 = ― 𝛽𝑇 + 𝜚𝜎𝑘′
= 1440 + 1.65 × 108 = 1618 pcm

Figure 6. Toy model application PDF and estimated LTLs

For the parametric methodology, the inverse-variance weighted average 𝛽𝑝 is -636 pcm, setting 
the non-conservative parameter to be zero. The pooled variance 𝜎𝑝 consists of two parts, one 
accounting for the weighted standard deviation and the other for the spread of the calculated 
responses. The evaluation uncertainty for all the models is selected to be 250 pcm, yielding the 
same value for the weighted standard deviation. By adding the impact of the response spread, the 
pooled variance increases to 535 pcm which is approximately two times larger than the evaluation 
uncertainty. Therefore, the final parametric CM is calculated such as

CM𝑝 = ― 𝛽𝑝 + 𝜚𝜎𝑝 + Δ𝑚 = 636 + 1.65 × 535 + 0 = 1516 pcm

which is slightly lower than the true value for the 95% LTL, giving a coverage of 76%. 

For the non-parametric methodology, only the minimum negative bias of -1529 is employed (recall 
the non-parametric margin is assumed to be zero for this analysis since it is heuristically 
determined, also it will result in even more conservative CM value), yielding CM value of:

CM𝑛𝑝 = ― min 𝑘𝑐𝑖 ― 𝑘𝑚𝑖 + 𝜚𝜎𝑝 + 𝑚𝑛𝑝 + Δ𝑚 = 1529 + 1.65 × 535 + 0 + 0 = 2409 pcm

Recall that Whisper builds an EV-like PDF by generating samples from the various bias PDFs, 
shown in Figure 5, and taking their maximum. In the toy problem, this EV-like PDF will be heavily 



- 16 -

influenced by the two most negatively biased PDFs in the right graph of Figure 5. This follows 
because most of the samples generated from the other PDFs will be less than the samples generated 
from the two most biased PDFs. Since these two PDFs are heavily overlapped, their samples may 
be approximately considered iid, i.e., they are effectively being sampled from the same PDF, and 
hence their maximum will be equivalent to the generation of a 2nd order EV PDF. For a normal 
distribution, the 95% confidence interval for 95% coverage using a 2nd order EV PDF is given by 
1.95. Thus, for this toy model, the EV multiplier 𝜈 is approximately given by 1.95. The Whisper 
CM is approximated by the non-parametric bias and the evaluation uncertainty with the EV 
multiplication factor such that

CM𝑤 = 𝑚 + Δ𝑚 ≈ ― min 𝑘𝑐𝑖 ― 𝑘𝑚𝑖 + 𝜈𝜎𝑒 + Δ𝑚 = 1529 + 1.95 × 250 + 0 = 2017 pcm

which approximates the actual value calculated by Whisper. We note that both the non-parametric 
and Whisper CM values produce LTL values that provides nearly 100% coverage of the posteriori 
PDF, which is much higher than the 95% coverage reported by the two methodologies. 

In the above example, although the analysis includes 40 experiments, only two experiments that 
correspond to the two left-most biased PDFs in the right plot of Figure 5 have influenced the final 
CM value, resulting in a multiplier of 𝜈 = 1.95. This begs the question of how the multiplier value 
would change with an increasing number of overlapping experiments, a situation that is expected 
when the analyst employs a large database of experiments. Therefore, the Whisper CM is re-
evaluated assuming that k experiments have overlapped, and this is repeated with increasing the 
value of k; the results are shown in Figure 7. 

Figure 7. kth order EV multiplier value

This trend shows that as the number of overlapping bias PDFs increases, the multiplier value will 
also monotonically increase. This behavior is undesirable because it implies one would have less 
confidence as the number of experiments with similar bias results are included in the analysis. 
According to basic statistical inference techniques, e.g., Bayesian inference, the confidence should 
increase when similar measurements are assimilated. To limit this increase, Whisper employs a 
heuristic weighting procedure, as denoted by Eqs. (15)-(17), which establishes an upper limit on 
the multiplier value. Specifically, at exactly 25 experiments, the multiplier is affixed to a value of 
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2.87 which corresponds to 99.79% one-sided tolerance limit of a standard normal distribution. 
This implies that the reported confidence of 95% would be lower than the actual confidence when 
the experiments biases are very similar, a situation that is very common when including large 
number of highly relevant experiments. 

The previous discussion was motivated by our observation that the most biased PDFs are the ones 
controlling the Whisper CM value. To further validate this observation, we repeat the calculation 
of the CM for three different cases. In the first case, all the bias PDFs are assumed to have the 
same weights. The second case zeros all the weights except for the two most biased PDFs and the 
third uses the standard 𝑐𝑘-based weights as employed by Whisper. 

Before concluding this section, we recall that the MOS calculations were not explicitly mentioned 
in the toy problem because three of the methodologies employ a fixed value as an additional margin 
that hedges against unknown modeling uncertainties, and only Whisper provides a procedure for 
estimating the additional MOS which is given by: 

MOS𝑑 = 𝜚𝜎𝑘′
= 1.65 × 108 = 178 pcm

where the 108 represents the spread of the posteriori TSURFER PDF. 

III.B. USL Calculations with Pu-Solution Benchmarks
This section studies various USL calculation methodologies using a suite of 29 Pu-solution 
benchmarks containing 15 g/L. While selecting their application, two key factors are considered: 
1) whether an application has distinct features, e.g., fuel type, geometry, material compositions 
including fuel enrichment, etc., from those of the experiments, 2) whether the 𝑐𝑘 values estimated 
with this application are sufficiently high, e.g., greater than 0.85. Given these criteria, the MIX-
SOL-THERM-002-001 benchmark with calculated keff of 1.0015 is selected as the application 
model, which is distinguishable from the experiments in fuel type and maintains high 𝑐𝑘 values 
ranging from 0.85 to 0.92. 

The benchmark uncertainties were estimated via a Monte Carlo approach, by sampling the 
composition and geometry parameters within a small margin of uncertainty, 0.5% - 1.0%. The 
resulting eigenvalue uncertainties were in the range of 160-250 pcm, which varied according to 
the experiment and the assumed composition and geometry uncertainties. To simplify the 
treatment, a fixed value of 200 pcm is assumed to represent the evaluation uncertainties for all 
experiments, including the Monte Carlo uncertainties. The detailed information about this set of 
the benchmarks including 𝑐𝑘, Whisper weights, and the measurement uncertainties can be found 
in Table 3.

Table 3. Employed benchmarks specification

Measured, 𝒌𝒎 Calculated, 𝒌𝒄 Bias (𝒌𝒄 ― 𝒌𝒎) Weight
Benchmark name

keff 𝜎𝑚 keff 𝜎𝜖 𝜎𝑠 𝛽 𝜎𝑒 𝑐𝑘 𝑤
PU-SOL-THERM-003-001 1.0000 0.0047 1.0014 0.0020 0.0087 0.0014 0.0051 0.8802 0.9566
PU-SOL-THERM-003-002 1.0000 0.0047 1.0009 0.0020 0.0087 0.0009 0.0051 0.8761 0.9522
PU-SOL-THERM-003-003 1.0000 0.0047 1.0042 0.0020 0.0087 0.0042 0.0051 0.8688 0.9442
PU-SOL-THERM-003-004 1.0000 0.0047 1.0034 0.0020 0.0087 0.0034 0.0051 0.8668 0.9421
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PU-SOL-THERM-003-007 1.0000 0.0047 1.0057 0.0020 0.0087 0.0057 0.0051 0.8787 0.9550
PU-SOL-THERM-003-008 1.0000 0.0047 1.0043 0.0020 0.0087 0.0043 0.0051 0.8757 0.9517
PU-SOL-THERM-004-001 1.0000 0.0047 1.0025 0.0020 0.0087 0.0025 0.0051 0.9084 0.9873
PU-SOL-THERM-004-002 1.0000 0.0047 0.9975 0.0020 0.0087 -0.0025 0.0051 0.9074 0.9862
PU-SOL-THERM-004-003 1.0000 0.0047 0.9998 0.0020 0.0087 -0.0002 0.0051 0.9020 0.9803
PU-SOL-THERM-004-004 1.0000 0.0047 0.9980 0.0020 0.0087 -0.0020 0.0051 0.8963 0.9741
PU-SOL-THERM-004-005 1.0000 0.0047 0.9980 0.0020 0.0087 -0.0020 0.0051 0.9040 0.9825
PU-SOL-THERM-004-006 1.0000 0.0047 1.0003 0.0020 0.0087 0.0003 0.0051 0.9038 0.9823
PU-SOL-THERM-004-007 1.0000 0.0047 1.0050 0.0020 0.0087 0.0050 0.0051 0.9000 0.9782
PU-SOL-THERM-004-008 1.0000 0.0047 1.0000 0.0020 0.0086 0.0000 0.0051 0.8972 0.9751
PU-SOL-THERM-004-009 1.0000 0.0047 0.9996 0.0020 0.0086 -0.0004 0.0051 0.8895 0.9667
PU-SOL-THERM-004-010 1.0000 0.0047 1.0013 0.0020 0.0086 0.0013 0.0051 0.8707 0.9463
PU-SOL-THERM-004-012 1.0000 0.0047 1.0022 0.0020 0.0086 0.0022 0.0051 0.9006 0.9788
PU-SOL-THERM-004-013 1.0000 0.0047 0.9991 0.0020 0.0086 -0.0009 0.0051 0.9008 0.9790
PU-SOL-THERM-005-001 1.0000 0.0047 1.0012 0.0020 0.0087 0.0012 0.0051 0.8990 0.9771
PU-SOL-THERM-005-002 1.0000 0.0047 1.0018 0.0020 0.0086 0.0018 0.0051 0.8953 0.9730
PU-SOL-THERM-005-003 1.0000 0.0047 1.0024 0.0020 0.0086 0.0024 0.0051 0.8915 0.9689
PU-SOL-THERM-005-004 1.0000 0.0047 1.0040 0.0020 0.0086 0.0040 0.0051 0.8822 0.9588
PU-SOL-THERM-005-005 1.0000 0.0047 1.0053 0.0020 0.0086 0.0053 0.0051 0.8717 0.9474
PU-SOL-THERM-005-006 1.0000 0.0047 1.0048 0.0020 0.0086 0.0048 0.0051 0.8607 0.9354
PU-SOL-THERM-005-008 1.0000 0.0047 0.9981 0.0020 0.0086 -0.0019 0.0051 0.8955 0.9733
PU-SOL-THERM-005-009 1.0000 0.0047 1.0011 0.0020 0.0086 0.0011 0.0051 0.8901 0.9674
PU-SOL-THERM-006-001 1.0000 0.0035 0.9995 0.0020 0.0086 -0.0005 0.0040 0.9201 1.0000
PU-SOL-THERM-006-002 1.0000 0.0035 1.0008 0.0020 0.0086 0.0008 0.0040 0.9161 0.9957
PU-SOL-THERM-006-003 1.0000 0.0035 1.0004 0.0020 0.0086 0.0004 0.0040 0.9077 0.9865

Like the toy problem, Figure 8 plots the calculated responses with their epistemic cross-sections 
uncertainties and the measured responses with their evaluation uncertainties. The maximum and 
minimum cross-sections uncertainties are 873 and 860 pcm, respectively; and the evaluation 
uncertainty is 510 pcm for all the benchmarks except for the last three benchmarks whose 
evaluation uncertainty is 400 pcm due to lower reported measurement uncertainties. 
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Figure 8. Calculated response, measured responses, and bias distributions

The USLs for the four methodologies are calculated and provided in Table 4. With the same 
argument in Section III.A, the non-parametric margin is set to be zero. 

Table 4. Pu-Solution USL results for 95% confidence

CM MOS USL( = 1.0 ― CM ― MOS)
Parametric 900 pcm 500 pcm 0.9860

Non-parametric 1153 pcm 500 pcm 0.9835
Whisper 1448 pcm 1123 pcm 0.9743

TSURFER 785 pcm 500 pcm 0.9871

In this case study, the parametric methodology’s inverse-variance weighted bias is positive, so the 
non-conservative bias adjustment Δ𝑚 is selected to cancel it out, as discussed earlier. The 
parametric CM is calculated as

CM𝑝 = ― 𝛽𝑝 + 𝜚𝜎𝑝 + Δ𝑚 = ―139 + 1.65 × 547 + 139 = 900 pcm

And the non-parametric methodology CM is given by: 

CM𝑛𝑝 = ― min 𝑘𝑐𝑖 ― 𝑘𝑚𝑖 + 𝜚𝜎𝑝 + 𝑚𝑛𝑝 + Δ𝑚 = 253 + 1.65 × 977 + 0 + 0 = 1153 pcm

And the MOS for the Whisper is calculated as

MOS𝑑 = 𝜚𝜎𝑘′
= 1.65 × 373 = 615 pcm

Lastly, the TSURFER CM is calculated as

CM𝑇 = ― 𝛽𝑇 + 𝜚𝜎𝑘′
+ Δ𝑚 = ―78 + 1.65 × 373 + 78 = 615 pcm

Unlike the toy model study, the true application response remains unknown. Nevertheless, if one 
solely relies on the prior uncertainties as shown in Figure 9, the Whisper-determined USL is 
equivalent to a 99.9% confidence because 99.9% of the area under the prior PDF is above the 
reported USL limit. 
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Figure 9. Mix-Sol-Therm benchmark application and estimated USLs

Similar to the toy problem, a simple exercise was repeated to compare the impact of Whisper 
weights, by comparing three cases with equal weights, limiting to the analysis to the most biased 
ten PDFs, and including all experiments with the 𝑐𝑘-based weights. Figure 10 shows that similar 
CM values are obtained for the three cases, indicating that the CM values is weakly sensitive to 
the Whisper’s weighting procedure.

Figure 10. Impact of benchmark and weight selection on extreme value

Given these results, we perform an additional experiment to determine whether the 𝑐𝑘 weighting 
can effectively reduce the impact of the most negatively biased experiments. To achieve that, the 
models/benchmarks are grouped in two different ways: the blue groups in both plots of Figure 11  
have a low bias, but different 𝑐𝑘 values, and the red groups have different biases (including the 
most biased ones), but similar 𝑐𝑘 values. 
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Figure 11. Bias and ck value scatter plot

For each group, one experiment is singled out and its weight is gradually reduced to zero to 
estimate the impact of the 𝑐𝑘 weighting and the most negative biases on the calculated CM values. 
The two graphs on the left of Figure 12 single out one experiment at a time based on the 𝑐𝑘 value, 
and the ones on the right are based on the most negative bias. For example, the dark red plot on 
the bottom left graph singles out the 13th experiment with 𝑐𝑘 = 0.9 and gradually reduces its weight. 
The graphs on the right perform the same experiment but single out the experiments based on their 
biases. For example, the blue graph on the bottom right singles out the 8th experiment whose bias 
is -253 pcm. This is the experiment with the most negative bias and is expected to have the biggest 
influence on the results. Results indicate that the weighting procedure does have an impact, albeit 
negligible, on the calculated CM value. 

Figure 12. Analysis of Whisper ck-based weighting
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III.C. One-At-a-Time Experiment Validation
To help validate the performance of the four methodologies, a simple numerical experiment is 
employed taking advantage of the available benchmark models and their reported measurements. 
A single benchmark model is singled out as the application, and its true bias is compared to the 
CM and MOS values calculated by the four methodologies. An ideal performance would be one 
in which the true bias is similar in magnitude to the calculated bias and is upper bounded by the 
sum of the CM and MOS values. A library of 62 uranium-fueled benchmark experiments is 
employed, wherein the noted procedure is repeated 62 times, selecting a different experiment as 
the application in each time. The detailed information about the experiments is in Table 5. 

Table 5. Benchmark Models Specification

Measured, 𝒌𝒎 Calculated, 𝒌𝒄 Bias (𝒌𝒄 ― 𝒌𝒎)
Benchmark name

keff 𝜎𝑚 keff 𝜎𝜖 𝜎𝑠 𝛽 𝜎𝑒

HEU-SOL-THERM-013-001 1.0012 0.0026 0.9976 0.0010 0.0078 -0.0037 0.0028
LEU-COMP-THERM-010-013 1.0000 0.0021 0.9977 0.0010 0.0070 -0.0023 0.0023
LEU-COMP-THERM-017-008 1.0000 0.0031 0.9978 0.0010 0.0064 -0.0022 0.0033
LEU-COMP-THERM-002-001 0.9997 0.0020 0.9976 0.0010 0.0078 -0.0021 0.0022
LEU-COMP-THERM-010-008 1.0000 0.0021 0.9979 0.0010 0.0067 -0.0021 0.0023
LEU-COMP-THERM-001-006 0.9998 0.0030 0.9977 0.0010 0.0067 -0.0021 0.0032
LEU-COMP-THERM-002-004 0.9997 0.0020 0.9977 0.0010 0.0075 -0.0020 0.0022
LEU-COMP-THERM-002-005 0.9997 0.0020 0.9978 0.0010 0.0073 -0.0020 0.0022
LEU-COMP-THERM-001-007 0.9998 0.0030 0.9979 0.0010 0.0066 -0.0019 0.0032
LEU-COMP-THERM-001-002 0.9998 0.0031 0.9980 0.0010 0.0068 -0.0018 0.0033
LEU-COMP-THERM-017-012 1.0000 0.0031 0.9982 0.0010 0.0063 -0.0018 0.0033
LEU-COMP-THERM-017-010 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
LEU-COMP-THERM-017-011 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
LEU-COMP-THERM-001-004 0.9998 0.0030 0.9982 0.0010 0.0067 -0.0016 0.0032
HEU-SOL-THERM-001-003 1.0000 0.0025 0.9986 0.0010 0.0124 -0.0014 0.0027

LEU-COMP-THERM-017-013 1.0000 0.0031 0.9987 0.0010 0.0064 -0.0013 0.0033
LEU-SOL-THERM-004-001 0.9994 0.0008 0.9983 0.0010 0.0077 -0.0011 0.0013

LEU-COMP-THERM-017-014 1.0000 0.0031 0.9989 0.0010 0.0064 -0.0011 0.0033
LEU-SOL-THERM-004-003 0.9999 0.0009 0.9988 0.0010 0.0074 -0.0011 0.0013

LEU-COMP-THERM-017-003 1.0000 0.0031 0.9993 0.0010 0.0065 -0.0007 0.0033
LEU-COMP-THERM-002-003 0.9997 0.0020 0.9990 0.0010 0.0077 -0.0007 0.0022
LEU-COMP-THERM-017-007 1.0000 0.0031 0.9994 0.0010 0.0063 -0.0006 0.0033
LEU-COMP-THERM-002-002 0.9997 0.0020 0.9991 0.0010 0.0078 -0.0006 0.0022
LEU-COMP-THERM-001-001 0.9998 0.0031 0.9992 0.0010 0.0069 -0.0006 0.0033
LEU-COMP-THERM-017-006 1.0000 0.0031 0.9995 0.0010 0.0062 -0.0005 0.0033
LEU-SOL-THERM-004-007 0.9996 0.0011 0.9991 0.0010 0.0069 -0.0005 0.0015

LEU-COMP-THERM-017-005 1.0000 0.0031 0.9995 0.0010 0.0062 -0.0005 0.0033
LEU-COMP-THERM-010-005 1.0000 0.0021 0.9999 0.0010 0.0060 -0.0001 0.0023
LEU-SOL-THERM-004-006 0.9994 0.0011 0.9993 0.0010 0.0070 -0.0001 0.0015

LEU-COMP-THERM-010-012 1.0000 0.0021 1.0001 0.0010 0.0068 0.0001 0.0023
LEU-COMP-THERM-010-006 1.0000 0.0021 1.0001 0.0010 0.0062 0.0001 0.0023
HEU-SOL-THERM-001-006 1.0000 0.0025 1.0004 0.0010 0.0111 0.0004 0.0027
LEU-SOL-THERM-004-005 0.9999 0.0010 1.0003 0.0010 0.0071 0.0004 0.0014

LEU-COMP-THERM-017-002 1.0000 0.0031 1.0004 0.0010 0.0065 0.0004 0.0033



- 23 -

LEU-SOL-THERM-004-002 0.9999 0.0009 1.0004 0.0010 0.0075 0.0005 0.0013
LEU-COMP-THERM-017-001 1.0000 0.0031 1.0006 0.0010 0.0065 0.0006 0.0033
LEU-SOL-THERM-004-004 0.9999 0.0010 1.0007 0.0010 0.0072 0.0008 0.0014

LEU-COMP-THERM-010-009 1.0000 0.0021 1.0010 0.0010 0.0068 0.0010 0.0023
LEU-COMP-THERM-010-010 1.0000 0.0021 1.0011 0.0010 0.0068 0.0011 0.0023
LEU-COMP-THERM-010-007 1.0000 0.0021 1.0012 0.0010 0.0066 0.0012 0.0023
LEU-COMP-THERM-010-011 1.0000 0.0021 1.0012 0.0010 0.0068 0.0012 0.0023
LEU-COMP-THERM-010-003 1.0000 0.0021 1.0039 0.0010 0.0072 0.0039 0.0023
LEU-COMP-THERM-010-001 1.0000 0.0021 1.0044 0.0010 0.0072 0.0044 0.0023
LEU-COMP-THERM-010-002 1.0000 0.0021 1.0051 0.0010 0.0072 0.0051 0.0023
HEU-SOL-THERM-001-010 1.0000 0.0025 0.9897 0.0010 0.0108 -0.0103 0.0027
HEU-SOL-THERM-001-006 1.0000 0.0021 0.9977 0.0010 0.0070 -0.0023 0.0023
HEU-SOL-THERM-001-005 1.0000 0.0031 0.9978 0.0010 0.0064 -0.0022 0.0033
HEU-SOL-THERM-001-007 0.9997 0.0020 0.9976 0.0010 0.0078 -0.0021 0.0022
HEU-SOL-THERM-001-003 1.0000 0.0021 0.9979 0.0010 0.0067 -0.0021 0.0023
HEU-SOL-THERM-001-008 0.9998 0.0030 0.9977 0.0010 0.0067 -0.0021 0.0032
HEU-SOL-THERM-001-001 0.9997 0.0020 0.9977 0.0010 0.0075 -0.0020 0.0022
HEU-SOL-THERM-001-009 0.9997 0.0020 0.9978 0.0010 0.0073 -0.0020 0.0022
HEU-SOL-THERM-001-004 0.9998 0.0030 0.9979 0.0010 0.0066 -0.0019 0.0032
HEU-SOL-THERM-001-002 0.9998 0.0031 0.9980 0.0010 0.0068 -0.0018 0.0033
LEU-SOL-THERM-004-001 1.0000 0.0031 0.9982 0.0010 0.0063 -0.0018 0.0033
LEU-SOL-THERM-004-002 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
HEU-SOL-THERM-013-004 1.0000 0.0031 0.9983 0.0010 0.0063 -0.0017 0.0033
HEU-SOL-THERM-013-003 0.9998 0.0030 0.9982 0.0010 0.0067 -0.0016 0.0032
LEU-SOL-THERM-004-003 1.0000 0.0025 0.9986 0.0010 0.0124 -0.0014 0.0027
HEU-SOL-THERM-013-002 1.0000 0.0031 0.9987 0.0010 0.0064 -0.0013 0.0033
LEU-SOL-THERM-004-004 0.9994 0.0008 0.9983 0.0010 0.0077 -0.0011 0.0013
LEU-SOL-THERM-002-002 1.0000 0.0031 0.9989 0.0010 0.0064 -0.0011 0.0033

First, focusing on TSURFER and Whisper methodologies, their resulting CM and MOS are 
compared with the true bias of the selected application as shown in Figure 13. The TSURFER 
MOS is set to be a fixed value of 500 pcm as in the previous analyses. The results show that the 
sum of two margins, i.e., CM and MOS, for both methodologies are larger than the true application 
bias represented as the dashed line except for the right most point of TSURFER. 

Figure 13. CM and MOS evaluation with different application
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Next, the CM and USL values for the four methodologies are compared in Figure 14 against the 
true bias. Note that in point on the x-axis represents the selection of different experiment as an 
application, and all other 61 experiments are employed to estimate the CM and USL values. Only 
the positive bias cases are considered important, that’s when the code under predicts the measured 
value. The order of the applications on the x-axis is selected by ordering the Whisper CM values 
from low to high. 

Figure 14. CM and USL with different application

Note that the parametric and non-parametric CMs on the left do not change significantly regardless 
of application selection, because both methodologies evaluate their uncertainty using weighted 
statistics which often yields stable results with a large number of experiments. But notice that the 
non-parametric CM curve drops once for application HEU-SOL-THERM-001-010. This 
application has the highest bias of -1030 pcm and a prior uncertainty of 1080 pcm. This drop occurs 
because the non-parametric bias solely depends on the most biased experiment. The parametric 
bias is less impacted by the exclusion of this high bias since it relies on a weighted average formula 
which is more robust to outliers. 

With regard to TSURFER results, the CM values are very close to the true bias, however noticeable 
differences can be observed for one experiment when used as the application. For this case, the 
non-parametric CM shows a drop of approximately 250 pcm value. TSURFER is not able to 
capture this bias which is likely due to the modeling errors that are not factored into the TSURFER 
CM calculations. This follows because TSURFER assumes all errors originate from known 
epistemic sources of uncertainties, e.g., nuclear cross-sections. To hedge against this unknown 
source of errors, TSURFER employs the MOS as an additional margin. 

Finally, when comparing the Whisper and non-parametric USL values, it is observed that Whisper 
sometimes becomes more conservative than the non-parametric methodology. This occurs after 
adding the MOS term which provides an additional margin for the non-covered cross-sections 
uncertainties, represented by the residual uncertainty after performing TSURFER-like cross-
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section adjustments. TSURFER accounts for this residual uncertainty in the CM value. As pointed 
out earlier, this effectively results in double-counting for the residual nuclear data uncertainties, 
hence the lower USL values.

IV. Conclusion and Further Research
The main conclusions may be summarized as follows: 1) The parametric, non-parametric, and 
Whisper methodology rely primarily on the subjective ability of the analyst to select experiments 
that have biases of approximately equal magnitude to the unknown application bias. The use of 
similarity indices like the 𝑐𝑘 metric does not guarantee that the application and a given experiment 
have the same bias magnitude even if they have perfect similarity. This situation occurs when the 
sensitivity profiles are pointing in the same direction but with different magnitude, a situation that 
blinds the similarity index. The implication is that all three methodologies can potentially under-
predict the true application bias if the norm of the application’s sensitivity profile is larger in 
magnitude than that of the experiments; 2) The non-parametric and Whisper methodologies are 
very sensitive to the experiment(s) with the highest bias and/or uncertainty, meaning that the 
addition of similar experiments with low uncertainty does not help improve the confidence in the 
calculated application bias. For the Whisper methodology, the bias continuously increases with 
the number of experiments, implying that the addition of experiments with similar 
biases/uncertainties reduces rather than increases the confidence in the calculated application bias 
and its uncertainty. To limit this unbounded bias increase, Whisper employs a heuristic 
thresholding methodology; 3) The TSURFER methodology is sensitive to the presence of 
uncharacterized error sources, referred to as modeling errors, with the sensitivity increasing with 
the similarity index, meaning that TSURFER could under-predict the true application bias if the 
experiments with high similarity have uncharacterized modeling error sources. Thus, future work 
will focus on quantifying uncharacterized error sources using cross validation to optimize 
TSURFER methodology, and extend this idea to more complicated problems, where the 
dependence between experiment(s) and application is highly nonlinear, that may arise in many 
nuclear engineering applications due to the complexity of nuclear system. 
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Appendix A. Parametric Methodology

Consider conducting 𝑁 experiments, each with a different gradient vector, and assume the 
application gradient is not included in the analysis. Each experiment records a measured value of 
𝑘𝑚𝑖, a corresponding calculated value of 𝑘𝑐𝑖, and their evaluation uncertainty 𝜎 

𝑒𝑖
. Let the bias be 

given as 𝛽𝑖 = 𝑘𝑐𝑖 ― 𝑘𝑚𝑖. Thus, each experiment defines its own PDF of expected deviations 
between measured and predicted values, defined as a normal distribution with mean value 𝛽𝑖, 
denoted as the experimental bias, and uncertainty given by the standard deviation 𝜎 

𝑒𝑖
. As reported 

in the literature, the parametric approach calculates the application bias 𝛽𝑝 as: 

𝛽𝑝 = 𝑘 ― 𝑚 (4)

where

𝑘 =
𝑁

𝑖=1

𝑘𝑐𝑖

𝜎2
𝑒𝑖
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𝑁
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𝑁
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And the pooled variance 𝜎2
𝑝 is defined as 𝑠2, the sum of the weighted variance in 𝑘 about the mean 

and 𝜎2, the average variance such as

𝜎2
𝑝 = 𝑠2 + 𝜎2 (5)

where

𝑠2 =
𝑁

𝑁 ― 1

𝑁

𝑖=1

𝛽𝑖 ― 𝛽𝑝

𝜎𝑒𝑖

2

/
𝑁

𝑖=1

1
𝜎2

𝑒𝑖

(6)

𝜎2 = 𝑁
𝑁

𝑖=1

1
𝜎2

𝑒𝑖

―1

(7)

The CM is calculated as the sum of the bias and its uncertainty multiplied by the one-sided 
tolerance factor 𝜚 such as

CM𝑝 = ― 𝛽𝑝 + 𝜚𝜎𝑝 + Δ𝑚 (8)

where non-conservative bias adjustment parameter Δ𝑚 = max 0,𝛽𝑝  is introduced to avoid non-
conservative bias. Finally, the USL for the parametric methodology is given by:

USL𝑝 = 1.0 ― CM𝑝 ― MOS𝑝

= 1.0 + 𝛽𝑝 ― 𝜚𝜎𝑝 ― Δ𝑚 ― 0.005 (9)
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These equations are provided in [16], citing an older reference [15], which does not derive nor cite 
a statistical justification for these equations, instead they are listed without proof. The goal of this 
work is to explain the origin of these equations and judge their adequacy for the bias calculation. 

Starting with the mean bias equation, Eq. (4), we make the following observations. 

1. The individual experimental biases represent the systematic deviations between the 
measured and calculated eigenvalue, with the spread of each PDF determined by the 
aleatory uncertainties resulting from the evaluation procedure, i.e., inclusive of both 
benchmark uncertainties and measurement uncertainties. 

2. The calculation of the mean value in Eq. (4) emulates the Bayesian estimation of the 
mean of an assumed super distribution for all possible experimental biases. This 
assumption is not correct because this distribution is not a proper distribution, i.e., it is 
ill-defined, for the following reasons. Recall the discussion on the systematic bias 
dependence on the inner product between the cross-section error vector and the 
experiment gradient. Building a histogram of the experimental biases implies building 
a PDF that describes the distribution of biases from all conducted (or possible to 
conduct) experiments. This PDF however reflects the distribution of experiments 
selected by the analyst, i.e., they are not random. If indeed the experiments are selected 
randomly, i.e., with gradients that are randomly pointing in the cross-section space, the 
resulting PDF will simply have a zero mean, since all directions are equally probable 
to be selected at random. Moreover, this PDF is expected to have a finite range from a 
maximal negative value when the experiment gradient is opposite in direction to the 
cross-sections error vector, and passing through zero when the gradient is orthogonal 
to the error vector, and up to a maximum value when the gradient is parallel to the error 
vector. The maximum negative and positive limits depend on the norm of the gradients 
for the selected experiments. If the analyst selects experiments with high relevance 
score, the resulting PDF will have a mean value that is close to the application bias. 
Therefore, the shape of this PDF is entirely based on the decisions made by the analyst, 
implying that the mean value of this PDF will also be heavily impacted by the selected 
experiments, ranging from a situation where the mean is entirely non-informing about 
the true application bias to being maximally informing when all experiments have 
perfect relevance score. 

3. Assuming all experiments have similar aleatory spread, i.e., 𝜎𝑒𝑖 = constant, the mean 
value reduces to a simple average formula of all the experiments’ biases. As noted 
earlier, this is acceptable only if all experiments have the same norm for their gradient 
vectors, which is unlikely to be the case. Thus, this averaging could have unpredictable 
results. Consider for example a situation where the selected experiments have near 
perfect relevance score to the application. However, the normed application’s gradient 
has a magnitude that is larger than any of the experiments’ gradients. The result is that 
the true application bias would be bigger the mean bias calculated from the experiments, 
which is an undesirable scenario. This situation is depicted in the numerical section, 
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where multiple experiments with nearly equal relevance have a wide range of bias 
values.  

4. Considering the formula used for the standard deviation for the bias, Eq. (5), which 
takes advantage of a famous theorem from statistics, called variance decomposition 
theorem or total variance theorem, sometimes referred to by practitioners as pooled 
variance. This theorem states that the variance may be decomposed into two terms, 
variance of the means and mean of the variances. This theorem is useful when 
analyzing a superset of data composed of multiple datasets, each with its own mean 
and variance, and the goal is to calculate the variance of the superset. The theorem 
states that one can achieve that by first calculating a superset mean, which represents 
the mean of all the means of the individual datasets. Next, one calculates the variance 
of the means of the datasets around the calculated superset mean, denoted by the 
variance of the means, represented by Eq. (6). Next, one calculates the average of the 
variances of the individual datasets, denoted by the mean of the variances. One can 
show that the variance of the means plus the mean of the variances is equal to the 
variance of all the data in the superset. In our context, each dataset represents the PDF 
of the bias from an individual experiment, and the superset is the ill-defined PDF of all 
possible experiments. This definition is problematic because:

a. The first term, the variance of the means, captures the variance of the 
experiments selected by the analyst. If these experiments have similar biases, 
they will underestimate the true bias uncertainty for the application, and if they 
are very different, they could overestimate the true value. Again, this is all 
because the hypothesized PDF for which the mean and standard deviation are 
calculated is ill-defined. 

b. The second term, the mean of the variances, is inconsistent with the formula 
given by variance decomposition theorem, and its definition cannot be traced 
to a source in the literature. This formula tries to calculate the average standard 
deviation as the inverse of the average confidence, which is different from direct 
calculations of the average variance. In Bayesian statistics, the inverse variance 
is often denoted as the confidence. The idea of using confidence instead of 
variance is a direct result of Bayesian updating when one is trying to estimate 
the mean value of a given distribution, inferred from multiple samples from the 
distribution [18]. The definition in Eq. (7) resembles the Bayesian update 
formula but it contains an additional 𝑁 factor. The reference [15] which 
originally proposed this formula does not provide a justification for it. In other 
parts of this reference, a classical textbook is cited [20], which does not contain 
this formula; instead it contains the Bayesian update formula. The Bayesian 
formula is designed to increase confidence in the estimated mean as more 
samples are added. Eq. (7) is problematic because if one of the experiments has 
very low uncertainty, resulting from extremely careful measurements and 
benchmarking practices, the resulting variance will approach zero in the limit 
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of one perfect measurement, and the resulting application bias will be solely 
determined by this experiment, which may not even have a high relevance score. 
This means that for the benchmark uncertainties are being effectively treated as 
epistemic rather than aleatory uncertainties.

Despite these issues, the parametric approach produces conservative results from a safety analysis 
viewpoint as long as the following two conditions are satisfied: a) the aleatory uncertainties for 
the different experiments are similar in magnitude, ensuring that the bias is not influenced by a 
single or few experiments (due to the incorrect use of the confidence rather than variance to 
calculate the average variance); and b) the selected experiments have a wide range of biases, 
covering the range of variations from prior cross-sections uncertainties, thereby resulting in large 
enough bias uncertainty, which raises no red flags about its adequacy for the application conditions. 
If these two conditions are satisfied, then the parametric approach would calculate a mean bias and 
a standard deviation that are representative of the epistemic uncertainties resulting from the cross-
sections. Due to the pooled variance formula in Eq. (5), it is also effectively capturing the 
evaluation uncertainties. 

A key challenge with the parametric approach is that as analysts transition to using high fidelity 
simulation tools, the biases for the existing body of benchmark experiments are expected to get 
smaller, much smaller than the range implied by the prior cross-sections uncertainties. The 
resulting application bias and bias uncertainty will be smaller, rendering them under-conservative 
for the application conditions. With a lack of relevant experiments, which is common for first-of-
a-kind nuclear systems, the licensor will require additional conservative margin. However, from 
the practitioner’s perspective, excessively large margin may restrict design freedom and lower 
system economy, which is undesirable because it does not provide a venue for taking credit for the 
epistemic uncertainties.

Recalling Table 1, the parametric approach effectively accounts for the systematic bias resulting 
from cross-sections ②, and also the aleatory sources ③ and ④, as long as the aleatory sources 
have the same magnitudes across the pool of available experiments. The solutions uncertainties 
① are captured under the MOS margin.



- 30 -

Appendix B. Non-parametric Methodology

The CM for the non-parametric methodology is the same as in Eq. (8) except that the bias is 
determined as the minimum bias of all the benchmarks biases, and an additional non-parametric 
margin 𝑚𝑛𝑝 is heuristically added if the number of benchmarks involved is small. The CM for the 
non-parametric methodology can be written as:

CM𝑛𝑝 = ― min 𝑘𝑐𝑖 ― 𝑘𝑚𝑖 + 𝜚𝜎𝑝 + Δ𝑚 + 𝑚𝑛𝑝 (10)

The USL for the non-parametric methodology is:

USL𝑛𝑝 = 1.0 ― CM𝑛𝑝 ― MOS𝑛𝑝

= 1.0 + min 𝑘𝑐𝑖 ― 𝑘𝑚𝑖 ― 𝜚𝜎𝑝 ― Δ𝑚 ― 𝑚𝑛𝑝 ― 0.005 (11)

The basic non-parametric methodology may be stated as follows: given the ability to randomly 
generate samples from an unknown PDF, determine the number of samples and a corresponding 
upper tolerance limit that covers a preset portion of the PDF with preset confidence. Note that this 
problem statement assumes that the PDF is unknown, i.e., it cannot be parametrized in terms of 
the PDF’s features, like the mean and standard deviation. The non-parametric approach solves this 
inference problem by employing a sampling-based approach to construct a related extreme value 
EV PDF. Figure 15 graphically demonstrates how the EV PDF may be constructed. 

Figure 15. Extreme value statistics example

Assume first that the original PDF type is known to be a gamma distribution but its parameters are 
unknown, and one is interested in estimating its upper tolerance limit corresponding to 95% 
coverage. The idea is to first pick an order, say k, which implies the need to generate k samples 
from the original PDF, and to take their extreme value, i.e., maximum, representing a single sample 
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of the kth order EV PDF3. If the type of the original PDF distribution is known, one can exactly 
determine the form of the EV PDF either analytically or via exhaustive numerical experiments. 

The EV PDF has an interesting behavior; its mass keeps on shifting to the right with increasing 
the order, i.e., with more samples from the original PDF. If one is interested in finding an upper 
tolerance limit for the original PDF, say with 95% coverage, shown as the grey vertical dashed 
line, then one simply needs to find an EV PDF whose mass is mostly above this limit. We say 
“mostly” because it is impossible to find an EV PDF whose entire mass is above the tolerance 
limit, simply because the EV PDF is expected to have a tail stretching to the smallest values 
attained by the original PDF, e.g., negative infinity for a normal distribution. Thus, one needs to 
find the minimum k that renders a preset portion of the EV PDF above the sought tolerance limit. 
Assume for example that one finds that the kth order EV PDF shown in purple has 3% of its area 
below the 95% upper tolerance limit (the grey dashed vertical line) for the original PDF. This 
means that if one generates a single EV sample (obtained by sampling 𝑘 samples from the original 
PDF and taking the maximum), there will be 97% chance that the EV sample will be higher than 
the 95% tolerance limit. Thus, one can state with 97% confidence that 𝑘 samples are sufficient to 
determine a 95% upper tolerance limit for the original PDF. Clearly as the number of affordable 
samples from the original PDF increases, the confidence in the upper limit could be increased, 
never reaching 100%. 

This simple example can be easily generalized when the type of the original PDF is not known. 
The mathematical argument would be as follows: first calculate the probability that k samples from 
the original PDF would be less than the 𝑝% tolerance limit. Since all the samples are independent, 
this probability is 𝑝𝑘. Then 1 ― 𝑝𝑘 must be the probability that at least one of the samples (i.e., the 
maximum) is greater than the 𝑝% tolerance limit. Thus, one can state that with  1 ― 𝑝𝑘 confidence 
the maximum of k independent samples drawn from the original PDF could be used as a 𝑝% upper 
tolerance limit. The most widely known result of EV PDF is the famous Wilks’s formula which 
states that for 𝑘 = 59 and 𝑝 = 95%, one can determine a 95%/95% upper tolerance limit for any 
distribution, as long as one can draw independent samples from the same distribution. Said 
differently, if the original PDF is not known, the maximum of 59 randomly generated samples, all 
drawn from the same distribution, would serve as a 95% upper tolerance limit with 95% confidence. 
The key challenge with this approach is that many samples would be needed to develop high 
confidence in the tolerance limit. 

Note that the basic non-parametric approach does not require one to estimate the original PDF’s 
features, e.g., mean value and standard deviation for a normal distribution; instead the tolerance 
limit can be determined directly. This also means that if the features can be readily estimated, it 
would be moot to try the non-parametric approach, simply because there are known formulas 
and/or tables for determining the tolerance limit as a function of the features. If one proceeds with 

3 While other literature defines “kth order” as the statistics seeking kth smallest or kth largest (order) value of given 
PDF(s), in this manuscript “kth order” means by the extreme value of k samples from PDF(s).
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the non-parametric approach, they would be able to obtain the same results obtained with the 
parametric approach, since in this case the type of the original PDF is known. 

Also note that all samples must be independent and generated from the same PDF, i.e., the original 
PDF for which a tolerance limit is sought. Mathematically, the samples are denoted as iid samples, 
short for independent samples from identical distributions, in our case, this means generating 
samples from the “same” distribution. This requirement is important for two reasons, first to ensure 
that the EV PDF samples can be related to the tolerance limit of the original PDF generating the 
samples, and second to ensure that the EV PDF progressively moves to the right with higher orders. 
To demonstrate, consider Figure 16, where one attempts to generate the 3rd order EV PDF using 
three different PDFs (i.e., an incorrect application of EV theorem because the samples are no 
longer iid). In the first case represented by the top two plots for PDFs with low overlap, the EV 
PDF will be heavily biased by the third PDF, i.e., the most extreme of the three, which essentially 
reduces to sampling only the third PDF. On the other hand, as the PDFs get closer to each other, 
as shown in the two bottom plots, the EV PDF will start to shift towards the right, reducing back 
to the iid case. More importantly, with different PDFs used to generate the samples, it is no longer 
clear which tolerance limit is being estimated. The relevance of this observation will become clear 
when we discuss the Whisper methodology.  

Figure 16. Extreme value statistics with different PDFs

Next, consider that one is interested in estimating 𝑝% upper tolerance with 𝑞% confidence for the 
application bias. The goal is to determine 𝑁 the minimum number of experiments to achieve that. 
A straightforward application of non-parametric methodology requires one to assume that there 
exists an unknown PDF from which biases are sampled, allowing one to determine the sought 
tolerance limit. If this assumption is acceptable, one simply solves the following equation for 𝑁, 
𝑞 = 1 ― 𝑝𝑁. This assumption however is problematic as discussed earlier because this hypothetical 
PDF is ill-defined. As discussed in the previous section, there is no such a PDF that describes all 
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possible experiments, simply because it is up to the analyst to select what experiments to include 
and how relevant they are to the application. The situation is different from its common use in 
other engineering applications, such as manufacturing where one is interested in estimating a 
tolerance limit for a clearly defined process implying a well-defined PDF. For example, consider 
an enrichment plant configured to produce low-enriched fuel pellets at a nominal enrichment of 
4%. Due to the inherent uncertainties in the process, the fuel pellets’ enrichments are expected to 
have a PDF with a mean value of 4% and some spread. The distribution of the fuel pellets 
enrichment describes a PDF for which a tolerance limit can be calculated by sampling 𝑁 pellets. 

Applying the non-parametric methodology to samples that are not iid, i.e., generated from different 
experiments, challenges the basic assumption of the EV PDF. As an example, assume that the 
analyst selects experiments that have a relevance score above a minimum threshold, e.g., 0.85. In 
this case, the spread of the resulting PDF will be determined by both the spread of the relevance 
score as well as the spread of the norms of the experimental gradients, see the earlier discussion 
surrounding Eq. (1). Thus, for this approach to be effective, the norm of the application gradient 
needs to be in the same order of magnitude as that of the experiments. If it is higher, then the 
calculated tolerance will be under-predicting the real tolerance for the application bias. A better 
approach would be to scale down the biases by their corresponding gradients’ norms. If one lowers 
the minimum threshold for experimental relevance, the resulting PDF would be wider, thus 
conservatively impacting the calculated tolerance for the application bias. In response to this non-
standard use of the EV theorem, the non-parametric methodology, as used in the nuclear criticality 
safety literature, includes an additional term to the tolerance limit, representing the variance of the 
bias from all available experiments, i.e., the error term 𝜚𝜎𝑝 appearing in Eq. (10). 

It is thus concluded here that the basic non-parametric approach has the following advantages and 
disadvantages. It allows analysts to estimate an upper tolerance limit for the application bias with 
minimal knowledge about the various sources of uncertainties. In doing so, one must ensure that 
the application gradient is similar in magnitude to the experiments, which is possible with expert 
judgment. If one could employ an experimental relevance score, the calculated tolerance would be 
closer to the true value for the application bias, allowing one to drop the additional conservative 
term 𝜚𝜎𝑝. If no knowledge about the application is included, the resulting tolerance is determined 
by the worst experimental bias plus an additional term capturing the variance of the experimental 
biases 𝜚𝜎𝑝. Finally, it does not allow the analyst to take credit for the irreducible sources of 
uncertainties. 

Recalling the sources of uncertainties, it hedges for the epistemic uncertainties, source ②, as it is 
based on the worst systematic bias, and the evaluation uncertainties, sources ③ and ④, as it 
employs the pooled variance as an additional term in the CM definition. Recall the pooled variance 
contains a term that averages the evaluation uncertainties from all experiments. Finally, it accounts 
for the solution uncertainties, source ① in the MOS term.
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Appendix C. Whisper Methodology

The Whisper methodology has been developed by Los Alamos National Laboratory researchers 
[16]. It is promoted to provide the following features: a) it hybridizes the use of parametric and 
non-parametric methodologies; b) it relies on the concept of EV theorem and uses calculated 
tolerance to set the CM; c) it employs a heuristic formula to reduce the number of samples 
generated from low-relevance experiments in an attempt to reduce their impact on the calculated 
tolerance limit; and finally d) it employs TSURFER-based approach to determine the non-covered 
uncertainties which are used to set the MOS. 

The full implementation may be found in the following reference [16], however a brief overview 
of the steps is given here. First, it generates an EV-like PDF which is used to calculate a tolerance 
value m, covering preset area q, say 95%, under the EV-like PDF. We explain later why we use 
the qualifier “like” when describing Whisper’s EV PDF and the associated tolerance. The CM is 
determined as:

CM𝑤 = 𝑚 + Δ𝑚 (12)

The MOS for the Whisper methodology can be represented by a sum of three terms, i.e., margin 
for software error (in our notation, the solution uncertainties, source ①), margin for the non-
covered nuclear cross-sections uncertainties, and margin for the application. As per the expert 
opinion, the margin for software is set to be 0.005 and the margin for non-covered cross-sections 
is calculated by the TSURFER methodology, such that

MOS𝑑 = 𝜚𝜎𝑘′
(13)

where 𝜎𝑘′
 is the residual, i.e., non-covered, uncertainty for the application response, resulting from 

a TSURFER-based adjustment procedure. The USL for the Whisper methodology can be written 
as

USL𝑤 = 1.0 ― CM𝑤 ― MOS𝑤
= 1.0 ― 𝑚 ― Δ𝑚 ― 0.005 ― 𝜚𝜎𝑘′

(14)

Markedly different from the basic non-parametric methodology, Whisper generates an EV-like 
PDF using samples that are not iid, this is because they are generated from different PDFs. Each 
PDF represents one experiment with the PDF assumed known, i.e., in the normal case the 
experimental bias sets the PDF’s mean value and the evaluation uncertainty sets the PDF’s 
standard deviation. Then it calculates an EV-like PDF of kth order, with k being the effective EV 
order, i.e., the number of the overlapping extreme experiments (Details on how this is performed 
will be given in the numerical sections). Since the original PDFs are fully characterized, Whisper 
explicitly constructs the kth order EV-like PDF, which can be done analytically if the original PDFs 
are normal, or it can be done numerically for general PDFs. Finally, it defines the tolerance limit 
m as the value that covers a preset portion of the EV-like PDF. 
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Further, Whisper employs a linear heuristic method for two reasons: first, to diminish the number 
of samples generated from low relevance experiments by assigning a weight 𝑤 that varies linearly 
with the relevance score, meaning that only 𝑤% of its generated samples are used to construct the 
EV-like PDF for each experiment. Another more subtle reason is to limit the impact of the number 
of experiments with similar biases on the calculated tolerance. When an increasing number of 
experiments with similar biases are included, the resulting EV-like PDF will continue shifting its 
mass to more extreme values, raising the tolerance, as shown in Figure 16. This is counter-intuitive 
as one should develop higher confidence in the bias when an increasing number of experiments 
provide similar bias results, a basic premise of any statistical inference methodology. Whisper sets 
a maximum threshold on the weights to ensure the calculated tolerance does not increase 
indefinitely with the number of experiments. The selected function for the required weight is

𝑤𝑟𝑒𝑞 = 𝑤𝑚𝑖𝑛 + 𝑤𝑝𝑒𝑛𝑎𝑙𝑡𝑦(1 ― 𝑐𝑘,𝑚𝑎𝑥) (15)

where 𝑤𝑚𝑖𝑛 and 𝑤𝑝𝑒𝑛𝑎𝑙𝑡𝑦 are heuristic constants that are set to be 25 and 100, respectively, for this 
analysis, and 𝑐𝑘,𝑚𝑎𝑥 is the maximum 𝑐𝑘 value of the selected benchmark experiments. The sum of 
individual weight factors 𝑤𝑖 should be the same as the required weight 𝑤𝑟𝑒𝑞 calculated in Eq. (15) 
such that

𝑤𝑟𝑒𝑞 =
𝑖

𝑤𝑖 (16)

and the individual weight factors also satisfy the following linear relation with an appropriately 
selected acceptance 𝑐𝑘, 𝑐𝑘,𝑎𝑐𝑐, such that

𝑤𝑖 = max 0,
𝑐𝑘,𝑖 ― 𝑐𝑘,𝑎𝑐𝑐

𝑐𝑘,𝑚𝑎𝑥 ― 𝑐𝑘,𝑎𝑐𝑐
(17)

An exemplary numerical test is conducted to explain the impact of this weighting procedure with 
the benchmark experiments in Section III.C. Figure 17 shows how different cut-off values (𝑐𝑘,𝑎𝑐𝑐) 
discard experiments. 

Figure 17. Change in ck,acc with different application selection
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These results imply that the 𝑐𝑘,𝑎𝑐𝑐 works as a heuristic cutoff of the linear relationship between the 
Whisper weights and 𝑐𝑘 values. In this analysis, a high value of 𝑐𝑘,𝑎𝑐𝑐 removes the experimental 
bias PDFs with lower relevance resulting in the reduction of calculated CM. As pointed out earlier, 
the cutoff procedure is mainly designed to hedge against the monotonic increase in the CM value 
with the increased number of experiments, see Figure 7. Results indicate that going from a high 
cutoff value of 0.94 down to a cutoff value of 0.81 reduces the CM value by approximately 500 
pcm. Also, notice that within each group, the CM values are fairly constant indicating lack of 
sensitivity to the specific non-zero weight values used by Whisper for each group, an observation 
that was supported by earlier numerical experiments.

Finally, Whisper employs the bias uncertainty to calculate the residual uncertainty in the 
application response which is used to set the MOS. The idea is to report as MOS the aleatory 
uncertainties from both the non-covered cross-section subspace as well as the evaluation 
uncertainties. 

Focusing on Whisper’s CM calculations, the following observations are made.

1. Recall that the non-parametric methodology’s real power is that it can create an EV PDF 
that progressively moves towards the tail end of the original PDF. This is possible if one 
can generate multiple iid samples from the same PDF and take their maximum values, thus 
ensuring that the increased samples will push the EVs further towards the tail end of the 
original PDF. As demonstrated earlier, this logic does not apply when one samples from 
different PDFs, losing the ability to compare samples from the same PDF. If the PDFs have 
low overlap (see Figure 16), the EVs will be dominated by the PDF with the highest values, 
e.g., for normal PDFs, the PDF with the highest standard deviation and/or highest mean 
value will dominate the EV PDF. This will be demonstrated numerically. 

2. When sampling from a single PDF, the goal is to construct an EV PDF whose mass is 
concentrated above an upper tolerance limit that is already fixed -- albeit unknown -- by 
the original PDF. If the original PDF was known, one would not need to calculate an EV 
PDF, because the tolerance limit would be fully determined by the original PDF. Recall 
that the key power of the non-parametric approach is that allows one to estimate a tolerance 
limit when the original PDF is unknown. 

3. Consider two experiments, one with a very high relevance score and low average bias, 
represented by the red PDF in Figure 18, and another with lower relevance and higher 
average bias. One can consider that each experiment represents a group of closely grouped 
experiments with approximately the same bias and spread. For simplicity, assume the 
weights for the two groups of experiments are 1.0 and 0.5 respectively. The EV PDF will 
have 50% of its samples generated from the high relevance PDF(s) and the other 50% from 
the low relevance PDF(s). This is because 50% of the low relevance samples will be 
eliminated by the Whisper weighting procedure. The resulting extreme PDF will thus have 
two modes as shown. Note that each mode is simply a scaled version of the original PDFs. 
If no weighting is employed, then the EV PDF will simply reduce to the original low 
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relevance PDF. Consider the tolerance limit corresponding to the case with no weighting, 
shown as the black vertical bar. The area above this bar is say 5%. The area above the same 
bar under the Whisper-weighted PDF will be slightly lower than 5%. Hence, to obtain the 
same confidence, the tolerance limit obtained from the Whisper-weighted EV-like PDF 
will move slightly to the left to cover the same area. 

Figure 18. Impact of relevance on tolerance limit

4. With experiments with perfect (or very high) relevance scores employed, the differences 
in their biases will be mainly determined by the magnitude of their gradients. As explained 
earlier, if all the experiments have the same relevance but different biases, the application 
bias will be determined by the experiment with the highest gradient norm. This does not 
guarantee whether this bias will under or over predict the true application bias without 
comparing the application gradient norm to the norms of the experiments’ gradients. This 
is not checked by Whisper. Instead, the highest bias is expected to impact the tolerance 
limit obtained by Whisper. As explained earlier, if the application has a gradient of higher 
magnitude than the experiment with the highest bias, the calculated bias would under-
predict the true bias. The parametric approach hedges for this scenario by employing the 
pooled variance, which is expected to be big enough, as calculated over many experiments. 
Whisper does not hedge for this scenario, except based on the analyst’s best judgment of 
selecting experiments with sensitivities of the same magnitude as those of the application. 

5. Assuming one employs two experiments with the same relevance score, but with two 
different evaluation uncertainties, the tolerance limit will be determined by the PDF with 
the higher evaluation uncertainties. This is because the Whisper weighting employs a 
relevance score that does not account for the evaluation uncertainties; instead, it is based 
on the prior cross-sections uncertainties only. Thus, if one conducts the same experiment 
twice, with one being unreasonably high uncertainty, the Whisper tolerance will be 
determined by the less accurate measurements which is undesirable from practical 
considerations. This forces the analyst to design a heuristic criterion to reject experiments 
before calculating the tolerance limit. 
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Therefore, Whisper employs CM to account for the systematic bias from cross-sections 
uncertainties, source ②, because it effectively uses the most conservative bias to set the tolerance 
limit. In doing so, it does not explicitly account for the difference in magnitude between the 
experimental and application gradients, however by a) employing the pooled variance’s first term; 
the standard deviation of the biases around their mean value, b) relying on the expert-judgment of 
the analyst to pick experiments with similar sensitivities to those of the application, and c) the 
tolerance limit reducing to the most conservative experimental bias like the basic non-parametric 
methodology, it can be confidently argued that it calculates a conservative estimate of the 
application bias. It also accounts for the evaluation uncertainties ③ and ④ through the use of 
pooled variance; the second term, being the mean of the evaluation uncertainties. For MOS, it 
employs a TSURFER-based procedure to calculate residual uncertainties, which are composed of 
the aleatory evaluation uncertainties, source ③ and ④, and the non-covered cross-sections 
uncertainties, a portion of source ②. Because TSURFER relies on the concept of assimilating 
measurements and predictions to increase confidence, the final uncertainty in the bias will be less 
than the prior uncertainties in ③, ④ and ②. Thus, the Whisper’s MOS will be accounting for a 
portion of these sources, which were already accounted for in the CM. This double-counting while 
acceptable from safety point of view, cannot be traced to a statistical justification.
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Appendix D. TSURFER Methodology

The TSURFER methodology is parametric; it assumes a Gaussian shape for the PDFs obtained 
from each experiment. Unlike the standard implementation presented in Section 0, it allows the 
analyst to take credit for the epistemic uncertainties by solving a mathematical adjustment problem 
which minimizes L2 norm of the sum of two terms to find optimal adjustments for the cross-
sections. The first term minimizes the L2 norm of the adjustments of the cross-sections to ensure 
their consistency with their prior values, and the second term minimizes the discrepancy between 
the measurements and predictions for the selected experimental responses. The premise is that one 
can correct for the cross-section errors that belong to the covered subspace. The residual 
uncertainties resulting from the non-covered subspace are propagated to the response and are used 
as the basis for calculating the tolerance limit. A key difference between TSURFER and the 
previous methodologies is that it provides a mathematically justifiable approach to map the biases 
from the experimental to the application domain, a mapping process that accounts for the 
differences between the experiments’ gradients and the application gradient. The full methodology 
may be found in a previous publication [17] and a brief discussion on the TSURFER formulation 
is also summarized below.

Considering that there are 𝑀 available experiments to predict the application keff bias, the 
corresponding prior values, i.e., code-calculated, for both the experiments and the application may 
be aggregated in a vector 𝑘 ∈ ℝ𝑀+1 such that:

𝑘 = [𝑘1 𝑘2 ⋯ 𝑘𝑀+1]𝑇

where the last element is the prior application keff. The corresponding measurements for the first 
𝑀 values are designated by another vector 𝑚 ∈ ℝ𝑀. In this formulation, the last element of 𝑚 is 
set to the prior value of keff, assumed to have no corresponding experimental value.

The prior cross-sections uncertainties are described by a multivariate joint Gaussian PDF with a 
vector of means representing the reference multi-group cross-sections and a covariance matrix 
given by:

𝑪𝜶𝜶 =
𝑐𝑜𝑣(𝛼1,𝛼1) 𝑐𝑜𝑣(𝛼1,𝛼2) ⋯ 𝑐𝑜𝑣(𝛼1,𝛼𝑛)
𝑐𝑜𝑣(𝛼2,𝛼1) 𝑐𝑜𝑣(𝛼2,𝛼2) ⋯ 𝑐𝑜𝑣(𝛼2,𝛼𝑛 )

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝛼𝑛,𝛼1) 𝑐𝑜𝑣(𝛼𝑛,𝛼2) ⋯ 𝑐𝑜𝑣(𝛼𝑛,𝛼𝑛)

∈ ℝ𝑛×𝑛

The adjusted cross-sections are calculated as the minimizer of the following quadratic form subject 
to the linearity constraint 𝑘′(𝛼′) = 𝑚′:

𝛼∗ = argmin
𝛼′

[𝛼′ ― 𝛼]𝑇𝑪―𝟏
𝜶𝜶[𝛼′ ― 𝛼] + [𝑚′ ― 𝑚]𝑇𝑪―𝟏

𝒎𝒎[𝑚′ ― 𝑚] (18)
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where 𝑪𝒎𝒎 ∈ ℝ(𝑀+1)×(𝑀+1) is the covariance matrix for the measured keff. The constraint implies 
that the adjusted cross-sections 𝛼′ will update the best-estimated values (the components of 𝑚′) 
for all 𝑀 experiments as well as the application. The last element of the vector 𝑚′ is taken to 
represent the best-estimate for the application keff value, and the last component of 𝑚′ ― 𝑚 is 
referred to as the application bias. 

The objective function in Eq. (18) may be re-written in terms of the calculated and adjusted keff 
values as: 

𝜒2
𝑀 = [𝑘′ ― 𝑘]𝑇𝑪―𝟏

𝒌𝒌 [𝑘′ ― 𝑘] + [𝑚′ ― 𝑚]𝑇𝑪―𝟏
𝒎𝒎[𝑚′ ― 𝑚]

where 𝜒2
𝑀 is the 𝑀-degrees of freedom chi-square value describing the discrepancies between the 

prior and adjusted keff values. The 𝑪𝒌𝒌 ∈ ℝ(𝑀+1)×(𝑀+1) matrix denotes the prior covariance matrix 
for the calculated keff values given by: 

𝑪𝒌𝒌 = 𝑺𝒌𝜶𝑪𝜶𝜶𝑺𝑻
𝒌𝜶 (19)

where 𝑺𝒌𝜶 ∈ ℝ(𝑀+1)×𝑛 matrix aggregates the first-order sensitivity profiles for all 𝑀 experiments 
and the application.

Assuming that the linearization of the constraint 𝑘′(𝛼′) = 𝑚′ is sufficiently accurate within the 
limitations of first-order sensitivity theory, the minimizer of t

he objective function in Eq. (18) may be given by:

Δ𝑘 = ― 𝑪𝒌𝒌(𝑪𝒌𝒌 + 𝑪𝒎𝒎)―𝟏𝒅 (20)

where Δ𝑘 = 𝑘′ ― 𝑘 and 𝑑 ∈ ℝ𝑀+1 is the discrepancy vector, 𝑑 = 𝑘 ― 𝑚

The posterior (i.e., post the consolidation of experimental and prior values) covariance matrix for 
the keff values is given by:

𝑪𝒌′𝒌′
= 𝑪𝒌𝒌 ― 𝑪𝒌𝒌(𝑪𝒌𝒌 + 𝑪𝒎𝒎)―𝟏𝑪𝒌𝒌 (21)

The diagonal elements of this matrix describe the confidence one has in the posterior keff values.

The CM (also referred to as the LTL) for the TSURFER methodology can be described by the bias 
𝛽𝑇 that is the last element of Δ𝑘 in Eq. (20) and its uncertainty 𝜎𝑘′

 that is the square root of the last 
element of 𝑪𝒌′𝒌′

 in Eq. (21) such that

CM𝑇 = ― 𝛽𝑇 + 𝜚𝜎𝑘′
(22)
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And the USL is calculated with the MOS by

USL𝑇 = 1 ― CM𝑇 ― MOS𝑇
= 1 + 𝛽𝑇 ― 𝜚𝜎𝑘′

― 0.005 (23)

Since both TSURFER and Whisper employ the idea of cross-section adjustments, albeit for 
different goals, this work presents a more detailed account of how this is achieved. Instead of 
focusing on the mathematical details of the minimization problem, the objective is to highlight the 
key challenges, which remain unaddressed by the nuclear literature, such as the error compensation 
phenomena, the impact of prior covariance data, the impact of low relevance experiments, and the 
lack of a formal verification procedure for the calculated application bias, and the impact of 
modeling errors. To achieve that, the current work dives deeply into the mechanics of cross-section 
adjustments to help solicit the insight needed to guide future work focused on first-of-a-kind 
nuclear systems, presenting one of the key contributions of this work. It provides insight on how 
to interpret the biases calculated which surprisingly could at times degrade rather than improve 
model predictions; a critically needed discussion that is currently absent from the cross-section 
adjustment literature. 

As mentioned earlier, the regulatory process does not mandate a specific procedure to perform 
model validation, however it requires that two independent sources of knowledge be consolidated 
as a basis for establishing confidence in model predictions: 1) the measurements collected from 
experiments with conditions that are representative of the application, and 2) the model predictions 
that simulate the same experimental conditions. The premise, as best supported by the Bayes 
theorem, is that the confidence fused from both sources will be higher than the prior confidence 
obtained with the simulation only, representing the basic idea behind correcting for the epistemic 
sources of uncertainties. 

Focusing here on cross-sections prior uncertainties, they are typically high and incomplete 
resulting in high uncertainties for the quantities of interest, e.g., eigenvalue. The experiments, 
however, are carefully conducted to allow for highly accurate low uncertainty measurements, 
providing a venue for the analyst to improve model predictions by analyzing the sources of 
uncertainties responsible for the observed deviations between measured and predicted responses. 
Because the number of cross-sections is substantially high, it is infeasible to build experiments 
that can be used to correct for all sources of cross-sections uncertainties. Hence, it is important to 
devise a methodology to measure the value of an experiment via a relevance score. The goal of 
these experiments is to regress back the observed deviations to their sources by calculating cross-
section adjustments that minimize the deviations. 

The search for the optimal cross-section adjustments is cast as an inverse problem that requires an 
optimization search. A successful search for the optimal adjustments ideally implies the ability to 
estimate their true values which allows for improved predictions not only for the experimental 
conditions but also for the application conditions. This is, however, not an easy endeavor because, 
in most realistic situations, the inverse problem is ill-posed, a situation that arises when the number 
of cross-sections is much higher than the number of measured experimental responses. The ill-
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posedness presents a formidable challenge for the optimization search resulting in the so-called 
error-compensation phenomenon, where the cross-sections are incorrectly over- or under-adjusted, 
i.e., as compared to their true unknown errors, leading to the same responses residual, i.e., the post-
adjustment deviations between measured and predicted responses. 

This makes an inverse problem challenging to choose which cross-section changes would be 
appropriate for the application because there are theoretically an infinite number of cross-section 
adjustments that might result in the same degree of agreement between measured and expected 
responses. This is due to the fact that the application model is not taken into account while 
determining the best-estimates, making it impossible to predict a priori whether the adjusted cross-
sections will result in better or worse model predictions for the application conditions. Although 
regularization techniques have been developed to render the optimization search well-posed, this 
can only be done by selecting the adjustments that produce a unique solution by enforcing some 
mathematical criterion, such as the minimum distance from the best-known prior cross-section 
values. Because these regularization techniques are blind to the application conditions, they cannot 
ensure that the adjustments will improve the model predictions for the application conditions.

Note that unlike the previous three methodologies, the TSURFER methodology takes credit for 
the epistemic sources of uncertainties in the CM calculation, based on a mathematically rigorous 
approach for mapping the experimental biases to determine the application bias. As noted earlier, 
each experimental bias is heavily influenced not only by the true cross-section error vector but also 
by its own gradient norm. The adjustment procedure automatically accounts for the relative 
strength of each experiment’s gradient when calculating the optimal cross-section adjustments, 
and moreover, employs the application’s gradient to calculate the corresponding bias. This is 
fundamentally different from the three previous methodologies which employs the experimental 
bias directly as an application bias, lacking a formal approach to perform the needed mapping, 
leaving the analyst to heuristically add an additional margin to characterize lack of knowledge 
about the uncertainties resulting from the mapping. Finally, if the experiments employed are not 
relevant, TSURFER cannot guarantee that the application bias will improve the predictions, 
representing a key challenge for any inference technique that tries to reduce uncertainties with 
limited measurements.
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