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eCommon features; JSR P
o-fuel is pre-vaporized {
e-transport OD or 1D
e-ab-initio models exist
*a spray is logical multiphase choice;
*“sets initial condition
for combustion in engines”...but

*sprays can’t be ab-initio modeled
soot/particulates
evaporation (moving boundaries)
detailed combustion kinetics
variable properties, radiation
multicomponent phase equilibrium
turbulence,swirl,droplet interactions

*look to sub-grid element of a spray:

iIsolated droplet
-can model above effects (currently the only configuration)
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-perform experiments in buoyuancy-free environment; stagnant ambience (restrict
droplet motion)
-1-D useful to benchmark biofuel blends and their surrogates;

-data important to validate simulation




Experimental Observations

l—> composition [heptane/iso-butanol]
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flame luminosity is measure of sooting propensity
[C.J. Mueller, G.C. Martin, SAE paper no. 2002-01-1631]
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detailed numerical modeling (DNM)

OpenSMOKE++

[15Tprinciple solver, being modified for miscible mixtures]

Input:
kinetics;
transport
properties

Kinetic Mechanism:

Gas Phase:
 Multi-component molecular diffusion
» Detailed chemical kinetics (thousands)
«'Unsteady transport
* Radiation
*SOOt precursor species 4
v

Liquid
Phase:
*Mass
*Species
*Energy
sunsteady
*preferential
vaporization
*mixture model

Output:
Do K(t)

ﬂgﬁﬂeﬂ, Droplet Surface:

(equate « Surface regression — Adaptive Grid
ana’s » Evaporation of fuel/moving boundary

fugacities))

*POLIMI 1800 detailed mechanism of 482 species, 19,072 reactions (for diesel, gasoline, jet

fuels, alcohols...)

*POLIMI 1421 skeletal mechanism 225 species, 7645 reactions (reduced from POLIMI 1800)
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--excellent agreement; compositions investigated: 0/100, 10/90, 30/70, 50/50, 70/30, 90/10, 100/0

representative results

Compare simulated and measured mixture burning properties
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--heptane/isobutanol behaves as a nearly ideal liquid mixture: Raoult’s law

--nonideal: f; = f;, (Peng-Robinson EOS (1976) used)
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sensitivity
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Questions?



important configurations for generating combustion properties

for validation
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Common features;
-fuel is pre-vaporized
-transport is OD or 1D
-ab-initio models exist



the process

[R.L. McCormick,G. Fioroni, J. Szybist,T. Bays, P. Miles, M. McNenly, W. Pitz, J. Luecke, M. Ratcliff, B.Zigler,
S. Goldsborough, PROJECT # FT-038, U.S. DOE, June 9, 2016]
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Summary

Continuing work:

gasoline/biofuel mixtures
-biofuel = isobutanol; possibly a furan mixture

surrogate is needed
-include a droplet target (e.g., burn rate, maximum flame diameter)

experiments to develop surrogate droplet burning data
-compare surrogate combustion with gasoline/biofuel combustion

kinetic mechanism is needed
-start with POLIMI skeletal mechanism

deliverables:
-open source code for detailed modeling to simulate burning properties
-experimental methodology to develop combustion properties
-kinetic mechanism that can be used in engine simulation of gasoline/biofuel

mixtures
12



data extraction from video
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why heptane and isobutanol?

model fuel system selected is a binary mixture

heptane: gasoline “primary reference fuel” component; simplest diesel surrogate
ISo-butanol: highly ranked based on MF scores

Technology readiness Economics Environmental  compatibility, etc
: ~ \\\‘_\ . Y
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2-methyl butanol 0000000 00000 0000COC OCOGOOFOCOO ler 1. viable
— feedstock
: :
Guerbet alcohols T|er 2: deSIl’ed
Furan mixture 0000000 00000 00000 000000 performance (~40)
Methyl acetate 0000000 00000 00000 OOCOOFOOO Tier 3+ d " 't
Ethyl acetate 0000000 00000 C0OOOCOCO OGOOOCOCQO I€r 5. does It meri

focused attention?

Gasification/catalysis Fermentation Hydrolysis/catalysis Pyrolysis

J. Farrell, D. Gaspar, P. Miles, J. Szybist, J. Dunn, M. McNenly, D. Longman, J. Holladay, R. Wagner, C. Moen
“Co-Optimization of Fuels&Engines (Co-Optima) Initiative”, SAE 13! International Conference on Engines & Vehicles,
September 13, 2017, Capri, Italy

-we don’t need a surrogate (initially; later for gasoline/isobutanol we do)
-boiling points are close
-binary simplest mixture (easy sweep through composition space)

-kinetic mechanisms are known 14



2. Approach (contd)

organization/management/key milestones

A. Institutions
-Cornell responsible for experiments, surrogate development,
kinetic modeling
-UCSD responsible for simulations of biofuel mixture effects

B. Project organized around two budget periods (BP1,2)

1. BP1 (18 mths): model fuel system (heptane/isobutanol)
GO/NOGO milestone
A. experiments:
--demonstration of ability to ignite heptane/isobutanol mixtures
--extraction of quantitative data from video
B. simulations:
--miscible mixtures
--should be within specified tolerance of experiments

2. BP2: (18 mths): gasoline+biofuel
-develop surrogates, kinetic mechanism, transport property database "
-experiments and simulations on fuel system




4. Relevance

-opensource simulation capabilities enhance development

-liquid fuel burning is complex (sprays, unsteady, phase equilibrium, moving
boundaries, radiation, particulates, etc.); 1-D simplifies while allowing consideration
of other effects that are challenging (currently) to model for a spray

How is combustion of gasoline/biofuel blends influenced by mixture fraction?
This project provides answers from a fundamental perspective.

Liquid fuels and combustion engines will be dominant

biofuel
blends

power:out

16



4. Relevance (contd)

“The needs of power and transportation systems...will very likely
require liquid hydrocarbon fuels for years to come...”

w U.S. energy consumption by energy source, 2017

Total = 97.7 quadrillion

TRANSFORMING e 5 = - . . .
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14% predicting blend performance

Note: Sum of components may not egual 100% because of independent rounding.
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 Predictive Simulation for Internal Combustion Engines (PreSICE) |

‘Sponsared by the Offce of Basic Energy Sciences, Offce of Science and the Vehicle Technologles! |
Program, Offce of Eneray Eficiency and Renewable Energy, US. Department of Energy

Thursday, March 3, 2011

...combustion will remain a dominant energy and power source
for world society for another century”

https://www1.eere.energy.gov/vehiclesandfuels/pdfs/presice_rpt.pdf 17
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https://epdf.tips/transforming-combustion-research-through-

5. Future Work

BP1: (December 15, 2017- June 15, 2019)

*complete heptane/isobutanol model system experiments and simulations
(achieve go/nogo decision point for experiments (ignition/data) and simulations

*submit journal article for review.

BP2: (June 16, 2019 - October 15, 2020)
*select biofuels for BP2 (probably isobutanol and a furan mixture)
*develop gasoline/biofuel surrogates using one or more droplet properties as targets
(constrained optimization process)
*experiments (gasoline; biofuel; gasoline/biofuel mixture)
*develop combustion kinetic mechanism of surrogates and reduced mechanisms
*simulations
-validate kinetic mechanism and surrogate formulation with droplet burning properties
*provide access to open-source code for simulation

Risk factors:
fuel ignitability (sparks and alternatives); code convergence (mesh; simulating
initial condition; alter mixture model; mixing rules)

18
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Experimental Hardware

experiments performed in free-fall

winch
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Computational Grid

-computational grid of solution domain developed,;

(blue, liquid; red, gas)

-50 points for liquid phase; 300 points for gas (grid-independence)
(grid is finer across interface)

droplet

.........

1 15

21



*Constrained Optimization Approach

[Narayanaswamy, K., Pepiot, P, Pitsch, H., “A component library framework for deriving
kinetic mechanisms for multi-component fuel surrogates: application for jet fuel
surrogates,” Comb. Flame 165, 288-309 (2016).]

*other surrogate Generators
Pitz, W. et al. “Chemical kinetic models for advanced engine combustion,” Project ID #
ACEQ13, Annual Merit Review, Department of Energy, June 7, 2016 Washington, DC.

C.J. Mueller, W.J. Cannella, T.J. Bruno, B. Bunting, Heather D. Dettman, J.A. Franz,
M.L. Huber, M.Natarajan, W.J. Pitz, M.A. Ratcliff, K.Wright, Methodology for formulating
diesel surrogate fuels with accurate compositional, ignition quality and volatility
characteristics, Energy&Fuels, 26, 3284-3303 (2012)

22



burning histories of heptane/isobutanol droplets
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Simulation

« Thermal properties have strong influence on simulations.

« Chapman-Enskog kinetic theory conductivity prediction, corrected for polyatomic
gases with the Eucken approach used to simulate conductivities.

* Kinetic theory prediction is accurate for spherical-like molecules but can deviate
significantly for cylindrical-like aggregates since there is no basis to assume an
iIsotropic interaction potential.

« Published thermal conductivity values were 7-8% lower than values incorporated
in the original OpenSMOKE++ framework.

« The predicted values were corrected by a factor of 0.9 to better match published
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