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A B S T R A C T

Urbanization experiences different speeds and forms under diverse development stages across the globe. How
ever, urbanization-induced impacts on long-term surface urban heat island intensity (Is) trends across global 
cities and the regulators of such impacts remain understudied Here we estimate interannual trends in daytime Is 
(i.e., urban-rural differences in surface temperatures) across 511 major cities for 1985–2020 using annual av
erages calculated using reconstructed land surface temperature data derived from >250,000 Landsat thermal 
images. Our study reveals that the global mean Is growth rate is 0.156 ◦C/decade. We further examine Is change 
associated with per 1% impervious land growth (denoted as β) in each city throughout the research period and 
during different periods. The global mean β is 0.018 ± 0.025 ◦C/% (mean ± 1 standard deviation) for the whole 
period, with greater values in humid than in arid climates; and the β may change during different periods, e.g., it 
has more than tripled when urban impervious land exceeds 30%, indicating the spatiotemporally divergent 
impacts of urbanization on Is trends across global cities. The spatial variations in β across global cities are well 
correlated with rural vegetation abundance and precipitation but not with urban population. Among these three 
factors, rural vegetation abundance possesses the greatest standardized regression coefficient of partial least- 
squares model, signifying the critical role of biome background in regulating β. The finding implies that 
future urbanization over densely vegetated regions should be more carefully and strategically planned due to the 
greater urbanization-induced surface warming effect.   

1. Introduction

The world has witnessed widespread urbanization in recent decades
(Liu et al., 2020). One of the consequences is the urban heat island (UHI) 
effect, which is usually characterized by higher temperatures over urban 
areas than their rural surroundings (Oke, 1982). The UHI can impact 
weather through modification of surface energy budget and boundary 
layer dynamics (Kalnay and Cai, 2003; Qian et al., 2022). One conse
quence of this is the exacerbation of heat extremes (Sun et al., 2014; 

Wang et al., 2021; Yang et al., 2017), which adversely impacts the lives 
and health of urban residents. Accurate understanding of the impact of 
continued urbanization on UHI trends is critical for both understanding 
urban impact at the local scale and for informing urban planning stra
tegies towards heat mitigations (UNEP, 2021). 

The key of examining urbanization-induced impacts on UHI trends 
lies in the accurate quantification of UHI trends. Satellite-based land 
surface temperature (LST) overcomes the under-representation of in-situ 
air temperature measurements over large areas (Zhou et al., 2022) and it 
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Here, we investigate the Is trends since the 1980s across 511 cities 
worldwide with reconstructed LST data obtained based on >250,000 
Landsat thermal images, with the MODIS LST data used to validate the 

reliability in depicting the long-term Is trends. We further combine Is and 
impervious surface data to analyze the urbanization-induced impacts on 
Is trends (i.e., β) by establishing their temporal relationships. We also use 
several other datasets (vegetation abundance, precipitation, and popu
lation) to examine the associated regulators of β. The findings of this 
study should help to deepen the understanding of the change in the 
urban thermal environment due to continued urbanization over the last 
four decades. 

2. Methods

2.1. Study area and data

We focused on the 511 major cities worldwide with an urban area >
200 km2 in 2018 (Fig. 1a). These cities are distributed in Africa (34 
cities), Asia (194 cities), Europe (82 cities), North America (172 cities), 
Oceania (6 cities), and South America (23 cities). They are typified by 
various climate types according to the Köppen-Geiger classification 
scheme (Kottek et al., 2006), including equatorial (52 cities), arid (51 
cities), warm temperate (290 cities), and snow (118 cities) climates. 
These cities have undergone rapid urbanization in recent decades (Gong 
et al., 2020) and possess remarkable differences in annual mean tem
perature and annual total precipitation (Fig. 1b). Moreover, large cities 
also offer more pixels and make them more suitable for statistical 
analysis than small cities. Therefore, these characteristics should be 
useful for assessing and understanding the impacts of urbanization on Is 
trends and the regulators of such impacts in different background 
climates. 

We employed LST observations from both Landsat and MODIS Terra 
satellites. Across the 511 major cities, we processed >250,000 LST im
ages acquired from Landsat-5, − 7, and − 8 for the period of 1985–2020, 
with a spatial resolution of ~100 m as well as overpass time of 
approximately 10:30–12:00 local time. These LSTs were retrieved by a 
statistical mono-window algorithm and have been demonstrated to 
possess an acceptable accuracy (Ermida et al., 2020). These Landsat 
LSTs were used to reconstruct LST time series and to derive the Is trends 
for the period of 1985–2020. The MODIS LSTs for the period of 
2000–2020 were extracted from the MOD11A2 V6.1 product. The 
MODIS LST products have a spatial resolution of 1 km and also possess 
reliable retrieval accuracy (Wan, 2008). The MODIS LSTs were used to 
validate the LSTs reconstructed from Landsat thermal data in capturing 
long-term Is dynamics and Is trends. 

We also processed impervious surface, urban boundary, elevation, 
land cover type, vegetation abundance, precipitation, and population 
data. The impervious surface data (http://data.ess.tsinghua.edu.cn/ 
gaia.html) for 1985–2018 were derived from Landsat images and they 
hold a relatively high overall accuracy (Gong et al., 2020). These data 
were employed to characterize urban impervious land growth (i.e., 

Fig. 1. Spatial distribution and climate characteristics of the 511 studied cities. Distribution of cities and their corresponding climate zones (a) and frequency 
distribution of annual mean temperature and annual total precipitation (b). 

has been frequently used to investigate surface UHI intensity (Is) trends, 
either for studies at city (Dewan et al., 2021; Meng et al., 2018; Quan 
et al., 2016), national (Li et al., 2020a; Yao et al., 2018), or global scales 
(Chakraborty and Lee, 2019; Si et al., 2022; Yao et al., 2019). However, 
the research periods of investigations of Is trends have been mostly 
limited to the recent two decades (i.e., post-2000), mostly due to the lack 
of high-quality and temporally consistent satellite-derived LST products 
before 2000. Global cities should possess highly diverse expansion 
processes due to divergent urbanization rates during different periods. 
For example, much faster urbanization has been witnessed in the United 
States before 2000 than afterwards, while China has experienced more 
rapid urbanization after 2000 (Liu et al., 2020). Such contrasting ur-
banization processes are expected to cause divergent Is trends across 
global cities during different periods (Supplementary Fig. S1). There-
fore, long-term LST observations are required to identify such spatio-
temporal disparities in Is trends. The long-term Is trends (especially for 
pre-2000s) are potentially derivable with LST data acquired by Landsat- 
series satellites, as Landsat-series satellites have sampled the thermal 
status of the earth’s surface for approximately four decades. However, 
Landsat thermal data are characterized by long sampling interval (~16 
days) and strongly impacted by cloud contamination and the stripe-gap 
effect, making the derivation of Is trends based on Landsat thermal data 
extremely difficult (Li et al., 2022a). Therefore, variations in the Is 
trends since the 1980s across global cities remain unknown. 

Increase in urban impervious land can serve as a proxy for urbani-
zation (Gong et al., 2020; Liu et al., 2020). Numerically, the 
urbanization-induced impacts on Is trends are usually evaluated as the Is 
change associated per 1% urban impervious land (or urban-rural dif-
ference in impervious surface percentage, δISP) growth (Li et al., 2021; 
Li et al., 2022b; Rizvi et al., 2020), denoted here as β. Investigating the 
pattern and dynamics of β can deepen the understanding of 
urbanization-induced impacts on Is trends (Fu and Weng, 2016; Tran 
et al., 2017). Previous assessments revealed that β reaches 0.020 ◦C/% in 
Beijing-Tianjin-Hebei metropolitan region, China, with a warm 
temperate climate (Li et al., 2022b). By contrast, β is very small 
(0.001 ◦C/%) in Karachi, Pakistan, characterized by an arid climate 
(Rizvi et al., 2020). However, preceding estimations on β are spatio-
temporally constrained in individual cities and/or in relatively short 
periods (often after 2000); and a global pattern of β remains lacking. 
Furthermore, the daytime absolute Is (not the Is trends) has been shown 
to be jointly regulated by precipitation, vegetation, and urban popula-
tion (Li et al., 2019; Manoli et al., 2019; Zhao et al., 2014). Whether β is 
controlled by these three factors and which factor among these exerts 
the greatest impacts, especially from a global perspective, remain 
unknown. 
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continuous LST data under clear-sky conditions across global cities. We 
compared the Landsat observations with the reconstructed data to 
evaluate the accuracy of the reconstructed Landsat LST with the mean 
absolute error (MAE). Note that the LST data were reconstructed at a 
temporal resolution of 16 days by referring to the revisit period of 
Landsat satellites. To facilitate understanding, a case in Beijing, China, is 
presented to show the procedure of the Prophet model to reconstruct 
Landsat LST (refer to Supplementary Fig. S2). 

We delineated the urban areas as the pixels within the urban 
boundary of 2018 while the rural areas as the buffer zone with an 
equivalent area to the urban (Zhou et al., 2014). The pixels labeled as 
‘water’, ‘wetlands’, ‘permanent snow and ice’, and those pixels with an 
elevation beyond ±50 m of the urban mean elevation were excluded to 
suppress their impacts on the Is estimation (Imhoff et al., 2010; Peng 
et al., 2012). We then calculated Is as the difference between the urban 
and rural mean LSTs: 

Is = LSTurban–LST rural (1)  

where Is denotes the surface urban heat island intensity; and LSTurban 
and LSTrural denote the urban and rural mean LSTs, respectively. 

We estimated the interannual Is trends for each city using linear 
regression and tested the significance of Is trends at the 0.05 level. Only 
cities with significant Is trends (i.e., p < 0.05) were considered in the 
global and regional analysis. Considering that we used static urban 
boundary to estimate Is, the detected Is trend mainly reflects the increase 
in areas affected by Is due to urban expansion. We further validated the 
Landsat-derived Is with those derived from MODIS LST data during 
2000–2020. MODIS data have been commonly used to derive Is trends 
(Quan et al., 2016; Si et al., 2022; Yao et al., 2018). Thus, the Is trends 
derived from MODIS data can be regarded as ‘ground truth’ under clear- 
sky conditions, both because of the estimates available from previous 
studies and also because of the relatively high retrieval accuracy of and 
high-frequency (i.e., daily) revisit of MODIS LST data (Chakraborty 
et al., 2021). We assessed the accuracy of the Landsat-derived Is and Is 
trends with the determination coefficient (R2), MAE, and bias. 

2.3. Assessment of urbanization-induced impacts on Is trends 

Urbanization is often described as the increase of impervious sur
faces (Gong et al., 2020; Liu et al., 2020). Here we used the impervious 
surface percentage (ISP, i.e., the percentage within a 1 km2 rectangle) to 
investigate the urbanization-induced impacts on Is trends. Correspond
ing to the Is calculation, the urban-rural contrast in ISP (denoted as δISP) 
were used to represent the urbanization level, expressed by the 
following formula: 

δISP = ISPurban–ISPrural (2)  

where δISP denotes the urban-rural contrast in ISP; ISPurban and ISPrural 
denotes the urban and rural mean ISP, respectively. Analogous to the Is 
trend estimation, we examined the δISP trends for each city using linear 
regression. 

Global cities are expected to possess highly diverse expansion pro
cesses due to varying urbanization rates across cities and periods. Such 
contrasting urbanization processes across global cities usually lead to 
divergent Is trends. To quantify the urbanization-induced impacts on Is 
trends, we calculated the Is change associated with per 1% urban land 
growth (denoted as β) from a temporal perspective, i.e., the slope of the 
linear relationship between the temporal changes in Is and δISP (Sup
plementary Fig. S3). That is, we compared the β in different cities by 
assessing changes in Is due to same increase in urban land proportion (i. 
e., δISP). The β can be calculated by: 

β =
ΔIs − b
ΔδISP

(3)  

where ΔIs and ΔδISP denote the temporal changes in Is and δISP, 

urbanization). The urban boundary data (http://data.ess.tsinghua.edu. 
cn/gub.html) in 2018 were generated by combining the impervious 
surface data and a kernel density estimation method (Li et al., 2020b). 
The urban boundary data were used to delineate urban and rural sur-
faces. The elevation data were obtained from https://srtm.csi.cgiar.org/ 
. The elevation data possess a spatial resolution of 90 m, and they were 
applied to suppress the impacts of large elevation variations on the Is 
estimation. The land cover type data (https://search.earthdata.nasa. 
gov/) were obtained from the MCD12Q1 product. They have a spatial 
resolution of 500 m and were employed to exclude the pixels labeled as 
‘water’, ‘wetlands’, and ‘permanent snow and ice’ over urban and rural 
surfaces. The vegetation abundance data were obtained from the VIP-
PHEN data product. We retrieved the normalized difference vegetation 
index (NDVI) in 1985 from VIPPHEN (with a resolution of 0.05◦) to 
examine the impacts from vegetation abundance on β. The reanalysis 
precipitation data in 1985 were obtained from https://psl.noaa.gov/d 
ata/gridded/data.UDel_AirT_Precip.html. The precipitation data (with 
a resolution of 0.5◦) were employed to examine the impacts from pre-
cipitation on β. The population data in 1990 (with a resolution of 1 km) 
were collected from Global Human Settlement Layer (http://data. 
europa.eu/89h/d6d86a90-4351-4508-99c1-cb074b022c4a). The popu-
lation data were used to examine the impacts from urban population on 
β. 

We processed all data to a spatial resolution of 1 km for analysis, 
mainly aiming to match the resolution of LST data and to reduce 
computational complexity. The continuous (Landsat LST, elevation, 
vegetation abundance and precipitation data) and discrete (land cover 
data) variables were resampled by bilinear interpolation and nearest 
neighbor interpolation, respectively. The impervious surface percentage 
data were generated based on the proportion of impervious surface 
within a 1 km2 rectangle. The MODIS LST and population data preserve 
their original 1 km resolution. Note that the Landsat LST data were 
reconstructed at 1 km resolution, mainly because we aim to assess the 
impacts of urbanization on long-term Is trends at the city scale and due 
to the huge data volume involved in reconstructing high-resolution 
LSTs. 

2.2. Estimation of long-term Is trends using Landsat data 

The Landsat LST data cannot be used directly to estimate Is trends 
and assess urbanization-induced impacts on Is trends, due to the long 
sampling interval (~16 days) and the large differences in data acquisi-
tion dates impacted by cloud contamination, stripe gaps, and missing 
images (Ahmed et al., 2023; Zhou et al., 2019). There is thus a need to 
reconstruct the Landsat LST with higher spatiotemporal continuity to 
reduce the sampling bias. The Prophet model can reconstruct data with 
periodic variability (Taylor and Letham, 2018). The critical capability of 
the Prophet model is to utilize all available time-series data to simulate 
the interannual and seasonal dynamics. This model can reduce the 
sampling bias of LST data arising from cloud contamination, stripe gaps, 
and missing images by enabling the reconstructed LST dataset with 
enough values within a year and the relatively consistent dates across 
years. This method therefore helps estimate LST trends by overcoming 
the deficiencies of Landsat-derived LST (i.e., with intra-annual periodic 
variability) time series with severe missing and large differences in 
acquisition dates (Li et al., 2022a). 

Here we employed the Prophet model to reconstruct spatiotempo-
rally continuous Landsat LSTs at 1 km resolution for 1985–2020. The 
method includes three main steps. We first pre-processed the acquired 
Landsat LST data by setting all Landsat LST gaps arising from cloud 
contamination, stripe gaps, and data missing as null values and elimi-
nating LST outliers based on the ‘3σ (standard deviation)’ rule (Leh-
mann, 2013). With all the pre-processed Landsat LSTs, we then solved 
for the coefficients of the Prophet model and obtained its interannual, 
seasonal, and residual components. Using the model coefficients and 
associated components, we finally generated spatiotemporally 
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effect of such factor selections on the obtained results. 

3. Results

3.1. Validation of the reconstructed Landsat LST dataset

We evaluated the accuracy of the reconstruction by comparing the 
Landsat observations with the reconstructed LST. The results show that 
the mean absolute error (MAE) of the reconstructed Landsat LST is about 
3 ◦C across global cities (Fig. 2), e.g., the MAE is 2.9 ◦C for one sample 
point in Beijing (Supplementary Fig. S2). This error may be caused by 
the impacts of weather system on LST. The magnitude for this error is 
close to that of Is and the reliability of the reconstructed Landsat LST 
may therefore be doubtable in accurately portraying Is and Is trends. We 
therefore further compared the Landsat-derived Is and Is trends with 
those estimated from MODIS data for the period of 2000–2020. The 
comparisons show that Is and Is trends estimated from these two types of 
satellite data are in good agreement, with R2 of 0.87 for Is (p < 0.001) 
and R2 of 0.55 for Is trends (p < 0.001; Fig. 3b & 3d). The estimated Is 
and Is trends are also relatively consistent for individual cities (Fig. 4) 
and at the pixel level (e.g., Fig. 3e & 3f). When compared with those 
obtained from MODIS data, the mean absolute error (MAE) of the 
Landsat-derived Is and Is trends are 0.33 ◦C and 0.14 ◦C/decade, 
respectively. These two MAEs account for <10% of the dynamic ranges 
of the Is (− 4 to 5 ◦C) and of the associated trends (− 0.7 to 1.2 ◦C/ 
decade). The mean biases for the Is and Is trends are even lower, being 
equivalent to − 0.10 ◦C and 0.01 ◦C/decade, respectively (Fig. 3b to 3d). 
These assessments indicate that the Landsat-derived Is and Is trends are 
generally reliable across global cities. The MAE of Is and Is trend esti
mates is obviously smaller than that of the reconstructed LST, probably 
because the Is calculation (i.e., the difference between urban and rural 
mean LSTs) significantly offsets the influence of weather systems on Is 
estimates (Huang et al., 2016). Note that there exist spatial differences of 
the estimated Is at the pixel level (e.g., Fig. 3e & 3f) due to the differ
ences between MODIS LST and the reconstructed Landsat LST (Supple
mentary Fig. S6). Such LST differences could be caused by the 
differences in various factors between these two types of data, such as 
the imaging style and LST retrieval algorithm; besides, the annual 
MODIS LST averages were influenced by missing data, which may cause 
a bias compared to the true LST values and therefore lead to the spatial 
difference of the estimated Is. The final resulting annual averages of 
Landsat LST data at 1 km resolution for 1985–2020 are freely available 
at https://osf.io/qgewa/. 

3.2. Global long-term Is trends accompanied by increased urban land 

From the global perspective, Is shows a nearly linear increasing 
pattern since the 1980s, resembling to the growth of the urban-rural 

Fig. 2. The accuracy of the Prophet model for Landsat land surface temperature (LST) reconstruction across global cities. Mean absolute error (MAE) of LST 
reconstruction across global cities (a); and frequency histogram of MAE of LST reconstruction (b). 

respectively; and b is a constant denoting the offset of the linear rela-
tionship between ΔIs and ΔδISP. We used the static urban boundary in 
2018 to assess β, mainly because it contains most of the areas experi-
encing rapid urbanization and can reflect the changes in δISP and the 
resulting changes in Is compared to urban boundaries in earlier years. 

2.4. Potential drivers of β 

According to previous findings, precipitation (a climate parameter), 
vegetation abundance (a surface-property parameter), and population (a 
proxy for human activity intensity) are the main regulators on the 
spatial pattern of Is (Li et al., 2019; Manoli et al., 2019; Zhao et al., 
2014). We therefore also employed precipitation, vegetation abundance 
(rural NDVI), and urban population to investigate their roles in regu-
lating the spatial pattern of β (i.e., urbanization-induced impacts on Is 
trends) by establishing their spatial relationships across global cities. We 
first used ordinary correlation analysis to preliminarily examine the 
relationships of β with precipitation, rural NDVI, and urban population 
across global cities. Nevertheless, there is often co-linearity between 
precipitation and rural NDVI (Supplementary Figs. S4 & S5), and the 
role of vegetation and precipitation cannot be well differentiated in 
regulating β with ordinary correlation analysis. We therefore employed 
the partial least-squares model (i.e., a common strategy to solve co- 
linearity) (Wold et al., 1984) to differentiate the role of these three 
variables. We used the partial correlation coefficients between β and 
precipitation, rural NDVI, and urban population as well as the associated 
standardized coefficients to determine the relative importance of these 
three variables on regulating the spatial pattern of β across global major 
cities. Note that the impacts from precipitation, vegetation abundance, 
and urban population on β described in the study mainly reflect the 
controls of spatial differences in β between different cities. 

2.5. Uncertainties of the method 

We conducted the uncertainty analysis to examine the impacts from 
image number, urban definition, and factor selection on our results. 
First, we investigated the effects of the number difference in available 
Landsat images on the estimated Is and Is trend. This aims to examine the 
possible effect of the number differences in available Landsat LST across 
cities on the analysis associated with the Is and Is trend. Second, we 
analyzed the influence of urban definition on the magnitudes of Is, Is 
trend, and β by dividing the urban areas into urban cores (defined by the 
areas within the urban boundary in 1990) and urban fringes (defined as 
the newly expanded areas between the urban boundaries of 1990 and 
2018). This analysis aims to assess the uncertainties in the estimates of 
Is, Is trend, and β caused by different urban definitions. Third, we used 
urban NDVI, rural NDVI, and urban-rural contrast in NDVI to detect the 
relationship between β and vegetation cover. This aims to analyze the 

https://osf.io/qgewa/


contrast in impervious surface percentage (δISP; Fig. 5a & 5b). The 
global mean Is increases from 0.63 ◦C around 1985 to 1.14 ◦C in 2020, 
with an increasing rate of 0.156 ± 0.002 ◦C/decade (mean ± 95% 
confidence interval, p < 0.001), while the global mean δISP grows from 
16.4% to 52.6% during the same period at a rate of 9.7 ± 0.3%/decade 
(p < 0.001). The strong temporal correlation between the Is and δISP 
trends over individual cities is understandable, because urbanization (i. 
e., increase of δISP) significantly regulates the Is change over time (Li 
et al., 2021; Li et al., 2022b). However, there is a large difference in the 
spatial variability of Is and δISP growths among global cities (Fig. 5c & 
5d). From the spatial perspective, the correlation between the Is and δISP 

trends over global cities becomes insignificant (Fig. 5f). This implies that 
the more rapid urbanization rate in a city does not necessarily lead to 
faster Is trends than in other cities. For example, a stagnant increase of 
δISP (7.7%/decade) is associated with a relatively fast increase of Is 
(0.200 ◦C/decade) for cities in North America. While a rapid growth of 
δISP (15.1%/decade) is accompanied with a relatively low Is increase 
(0.057 ◦C/decade) in African cities. Such a contrast suggests the pres
ence of other regulators in modulating urbanization-induced impacts on 
Is trends across global cities (refer to the next section for elaborate 
analysis). 

Fig. 3. Comparison of the surface urban heat island intensity (Is) and Is trends derived from the Landsat and MODIS annual mean thermal data. The mean absolute 
errors (MAEs) of the Is (a) and Is trends (c) across global cities; comparison of the global Is (b) and Is trends (d) derived from these two types of satellite data; and pixel- 
based comparison of the Is over time derived from these two data sources for Beijing, China (e) and Paris, France (f), with black lines indicating the urban boundaries 
in 2018. The ‘unavailable’ label in (e) and (f) denotes the unavailability of MODIS data in these three years (1985, 1990, and 1995). 



3.3. Divergent urbanization-induced impacts on Is trends and their 
regulators 

The global mean β (i.e., Is change associated with per 1% growth of 
δISP) is 0.018 ± 0.025 ◦C/% (mean ± 1 SD; Fig. 6). We find an inflection 
point of β on the increase of Is along with urbanization, at which δISP is 
around 30%. When urban fraction δISP <30%, β remains at a rather low 
rate of 0.005 ◦C/%. As the cluster of urban areas reaches a certain 
density (δISP >30%), its impact on Is triples (0.018 ◦C/%) (Fig. 6c). This 
implies urbanization can accelerate the increase of Is as cities grow 
bigger or denser. This may be due to the phenomenon that urbanization 
is initially characterized by the occupation of bare land or areas with 
little vegetation, while later urban encroachment on forest land leads to 
a significant reduction in vegetation and accelerates the Is growth. 
Moreover, the threshold for the inflection point of β varies across climate 
zones, generally with a smaller threshold yet larger change magnitude of 
β in humid climates (Fig. 7), which may be associated with greater 
vegetation abundance. 

Regarding the spatial variations, β is greater in most cities in eastern 
North America, eastern South America, and Southeastern Asia, yet it is 
smaller in southwestern North America, western South America, central 
Euro-Asia, and Africa. We identified the top ten countries with the 
greatest β (Table S1). The identification reveals that the β is the greatest 
in Indonesia, followed by Brazil and the United States. In terms of 
climate zone, the β is the largest in equatorial zone, followed by warm 
temperate and then snow zones, while β is the smallest and can even be 
negative for many cities in arid zone. The urbanization in arid zones 
increases irrigation and vegetation fraction in cities than in surrounding 
desert environment (Fan et al., 2017; Wang, 2021), leading to a negative 
urbanization-induced daytime Is and therefore a negative β. 

Our analysis shows that precipitation and vegetation background are 
both closely related to the changing rate of Is during the urbanization 
process, while the influence of urban population is negligible (Fig. 8). 
The β shows a non-linear relationship with precipitation (Fig. 8a). This 
corresponds well to previous findings that Is correlates nonlinearly with 
precipitation (Manoli et al., 2019). Nevertheless, the β is more strongly 

related to rural normalized difference vegetation index (NDVI) 
compared with precipitation and urban population (Fig. 8a to 8c). 
Furthermore, the partial correlation coefficient of rural NDVI with β is 
greater than those of precipitation and urban population with β 
(Fig. 8d); and the standardized regression coefficient for rural NDVI is 
almost twice that for precipitation and is close to zero for urban popu
lation when co-explaining β (R2 = 0.33, p < 0.001; Fig. 8e). This suggests 
that the β could be controlled mainly by rural NDVI. This finding is 
comparable to previous ones that Is should be strongly regulated by 
evapotranspiration (Li et al., 2019), although our focus is on β (i.e., 
urbanization-induced impacts on the Is trends) rather than on Is. In fact, 
the strong influence of rural NDVI on the β can be intuitively understood 
as that, as urbanization happens over regions with more vegetation and 
therefore naturally higher evapotranspiration, cooling efficiency over 
these regions gets reduced, which leads to larger Is. In other words, the 
heating potential induced by urbanization (increase of δISP) can be 
significantly larger over regions with abundant vegetation (mostly in 
humid climate) than those sparsely vegetated regions (mostly in arid 
climate) (Supplementary Fig. S3). 

3.4. Uncertainty analysis 

Several uncertainty analyses were performed on image number, 
urban definition, and factor selection. In terms of image number, the 
number of available Landsat thermal images exceeds 300 views in most 
cities, and the MAEs of estimated Is and Is trend show a slight negative 
correlation with image number (Supplementary Fig. S9). This indicates 
the disparities in the amount of available Landsat LST across cities have 
relatively small impacts on the analysis associated with the Is and Is 
trend. Regarding urban definition, urban cores possess significantly 
distinct magnitudes of Is and Is trends relative to urban fringes (Sup
plementary Fig. S10). This implies that static urban boundary does have 
impacts on estimation of Is and Is trends and may not accurately describe 
the magnitudes of Is and Is trends (or ISP) across urban categories. 
Nevertheless, the assessment of β is similar across urban categories; 
particularly, the estimated β in different urban categories is highly 

Fig. 4. Comparison of surface urban heat island intensity (Is) and Is trends derived from Landsat and MODIS land surface temperature (LST) data across global major 
cities. The mean Is (◦C) for the period of 2000–2020 derived from Landsat (a) and MODIS (b) data; the Is trends (◦C/decade) for the same period derived from Landsat 
(c) and MODIS (d) data.



correlated with that without distinguishing between urban categories, 
and the fitting line between the two is close to the 1:1 line (Supple
mentary Fig. S11). This implies that the static urban boundary used in 
this study should not significantly affect the estimation of β. The sensi
tivity analysis of factor selection shows that β is more correlated with 
rural NDVI compared to urban NDVI and urban-rural contrast in NDVI 
(Supplementary Fig. S12a to S12c). This difference in correlation may be 
due to larger differences in vegetation coverage among cities in rural 
areas than in urban areas (Supplementary Fig. S12d). The former may 
therefore better reflect the potential degree of urbanization-induced 
impacts on vegetation cover (and thus Is change) by transforming 
vegetation into urban land. This indicates that our selection of rural 
NDVI should be appropriate for understanding the potential causes of 
differences in β across cities. Besides, data accuracy may also induce 
uncertainty in the results. For instance, the generated ISP at 1 km res
olution calculated using 30 m impervious surfaces may overestimate the 
true ISP in urban areas; and such an overestimation may vary across 
cities and urban regions, therefore affecting the assessment of β. 
Nevertheless, such a kind of errors mainly affects the ISP magnitude and 
has relatively little effects on the estimates of temporal ISP trend, mainly 
because systematic errors can be significantly offset when fitting the 
overall overestimated ISP time series. That is, the effects of systematic 
overestimation on the slope of relationship tend to be small by fitting the 
relationship between overall overestimated ISP and Is. Therefore, the 
overestimated ISP should not significantly affect our main findings 

related to β. 

4. Discussion and implications

The Landsat satellites possess major advantages of global periodic
and long-term observations. Several studies revealed the impacts of 
urbanization on Is changes using multiple clear-sky Landsat images and 
land cover data (Rizvi et al., 2020; Yu et al., 2019). However, the issue of 
temporal discontinuity becomes a major challenge for Is trend analysis 
using Landsat data due to the relatively low temporal resolution and the 
large amount of missing data caused by cloud cover (Ahmed et al., 2023; 
Zhou et al., 2019). Therefore, there may be large uncertainties associ
ated with employing LST data from only a few time nodes to assess the 
impacts of urbanization on Is trends. Several studies attempted to 
reconstruct Landsat (or MODIS) LST data to improve the temporal 
continuity of LST data to better assess the impacts of urbanization on Is 
trends (Fu and Weng, 2016; Li et al., 2022b). Nevertheless, previous 
investigations are mainly limited to individual cities/urban agglomer
ations and limited to the recent two decades. A comprehensive assess
ment of urbanization-induced impacts on Is trends remains lacking, 
especially from a global and long-term perspective. As an attempt, we 
reconstructed a spatiotemporally continuous LST dataset for global cit
ies using >250,000 Landsat thermal images. We demonstrated that the 
reconstructed LST matches well with the MODIS LST data in quantifying 
Is and its trends (Fig. 3); and the reconstructed Landsat LST data have a 

Fig. 5. The trends of urban-rural contrast in impervious surface percentage (δISP) and surface urban heat island intensity (Is) as well as their correlations across 
global cities for the period of 1985–2020. The δISP trends (a) and Is trends (b) at global and continental scales; the δISP trends (c) and Is trends (d) for the period of 
1985–2020 across global cities; the temporal correlation between δISP and Is over time for each city (e); and the spatial correlation between δISP and Is trends across 
global cities (f). Both the trend and correlation analyses are based on significance tests at the 0.05 level. The δISP and Is trends for cities in Asia, North America, and 
Europe are enlarged as Supplementary Figs. S7 & S8. 



high reliability for Is analysis. We further analyzed the impacts of ur
banization on long-term Is trends by combining Is and Landsat imper
vious surface data. This is perhaps the first effort to assess global Is trends 
since the 1980s and to evaluate the role of urbanization in regulating 

such long-term trends using Landsat LST data. 
The urbanization rates vary considerably across cities and during 

different periods (Liu et al., 2020). Such disparities in urban expansion 
processes may lead to significantly different Is trends across cities and 

Fig. 6. Spatial variations of urbanization- 
induced impacts on surface urban heat is
land intensity trends (β) across global cities. 
The spatial variations of β (a); the top 10 
countries with the highest β, with the 
number in the parentheses after the country 
name denoting the number of cities (b); 
temporal variations of global mean surface 
urban heat island intensity (Is) with the 
increase of urban-rural contrast in imper
vious surface percentage (δISP, i.e., the red 
curve), with the slope characterizing β (c); 
and variations in β for cities in each back
ground climate (d). Note that in (b) only 
countries containing five or more cities are 
included in the ranking. An inflection point 
was identified along the red curve in (c): β 
before this inflection point (i.e., δISP =
30%) is significantly lower (β = 0.005 ◦C/ 
%) than that after this inflection point (β =
0.018 ◦C/%). (For interpretation of the 
references to colour in this figure legend, 
the reader is referred to the web version of 
this article.)   

Fig. 7. Surface urban heat island intensity (Is) variations depending on the variations in urban-rural contrast of impervious surface percentage (δISP) across climate 
zones, with the slopes of the red curves denoting urbanization-induced impacts on Is trends (i.e., the β). The inflection points were identified along each red curve. 
There is a significant difference in the slope of the red curve (i.e., the β) before and after the inflection points. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 



periods (e.g., Supplementary Fig. S1). Accurately identifying the long- 
term Is trends from a global perspective is critical to understand the 
impacts of urbanization on such trends. By establishing a long-term 
relationship between Is and ISP in each city worldwide, we find a 
noteworthy ‘marginal effect’ of urbanization on Is trends – the same 
increase of ISP can lead to significantly different amounts of Is increase 
across different climates and along different urbanization stages (Figs. 6 
and 7). For example, the impacts of urbanization on Is trends are larger 
in humid climates (Fig. 6) that are characterized by denser vegetation 
and heavier precipitation (Hossain and Li, 2021; Yang et al., 2008). This 
implies that over cities in humid tropical regions (e.g., some African 
cities), urban population exposure to heat may become even more 
prominent in the future due to the projected increase in urban popula
tion (Rohat et al., 2019) and the notably larger Is trends associated with 
urbanization (Fig. 6a). Furthermore, urbanization can impact tempera
ture extremes (Sun et al., 2014; Wang et al., 2021; Yang et al., 2017), 
especially by increasing heat wave periods in humid climates (Liao et al., 
2018) due to the complex interactions between UHI and temperature 
extremes (Zhao et al., 2018). This implies that urban population expo
sure to extreme heat events can therefore be further augmented over 
humid cities due to urbanization. We also find an evident threshold for 
the urbanization-induced impacts on Is trends, e.g., the Is trends can 
accelerate when urban impervious land exceeds 30% (Fig. 6c). The 
enhanced impacts of urbanization with the proportion of urban imper
vious land may be associated with the increasing magnitude of the 
reduction in evapotranspiration due to local urbanization (Zhou et al., 
2022). This implies that the increase in heat exposure of urban residents 
may be amplified with the advance of urbanization. Special care should 
therefore be taken on such a threshold in sustainable urban planning, 
although this threshold may change for individual cities (Fig. 7). 

Besides, previous studies interestingly showed that surface temperatures 
are higher in regions near barren land and lower in those close to 
vegetation and water bodies, described as the ‘proximity effect’ (Man
sourmoghaddam et al., 2021; Mansourmoghaddam et al., 2023). Here 
we further find that cities with larger Is (or Is trend) in urban cores also 
have stronger Is (or Is trend) in urban fringes (Supplementary Fig. S10). 
This implies that the ‘proximity effect’ exists not only between small 
urban patches (e.g., barren land, vegetated areas and water bodies) and 
their surroundings, but may also occur among regional urban thermal 
environments at a larger spatial scale. This finding indicates that the 
‘proximity effect’ needs to be considered in the design of future urban 
heat mitigation strategies to hinder the effects of urbanization-induced 
rapid surface warming on the surrounding thermal environment. 

Satellite thermal data with high spatial resolution are required to 
better understand inner-city Is changes and their controlling factors 
(Sobrino et al., 2012). Compared to reanalysis data and other satellite 
data (e.g., MODIS and AVHRR LSTs), Landsat LST data have a much 
higher spatial resolution, enabling the monitoring of thermal environ
mental characteristics at the landscape scale. However, due to the huge 
computational burden involved in reconstructing 100-m Landsat LST, 
here we only reconstructed the Landsat LST dataset for 1985–2020 at 1- 
km spatial resolution, as our primary purpose is to assess the impacts of 
global urbanization on long-term Is trends at the city scale. Our method 
should be able to reconstruct 100-m Landsat LST if the computational 
capacity permits. This implies that our approach should be useful to 
assess local thermal environmental changes and their responses to urban 
landscape or landscape change from a fine-scale perspective for future 
studies. For example, the Landsat LST reconstruction method may help 
better assess the long-term and fine-scale changes in urban thermal 
environments (Li et al., 2022a), the impacts of land cover change on 

Fig. 8. Responses of urbanization-induced impacts on surface urban heat island intensity trends (β) to three factors including precipitation, rural normalized dif
ference vegetation index (NDVI), and urban population. Correlations of β with precipitation (a), rural NDVI (b), and urban population (c); and partial correlation 
coefficients of β (d) and partial least-squares based standardized regression coefficients of β (e) with these three factors. The inserted subplots in (a) and (c) show the 
non-linear relation between β and precipitation and the relationship between β and logarithm of urban population, respectively. 



Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2023.113650. 
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surface temperatures (Fu and Weng, 2016), as well as identify the 
cooling and heating effects of blue-green space (Gunawardena et al., 
2017) and industrial plants (Gao et al., 2022) on their surroundings, 
respectively. 

Previous studies have revealed urbanization-induced impacts on the 
evolution of the urban thermal environment (Li et al., 2021; Li et al., 
2022b; Sun et al., 2014; Wang et al., 2021; Yang et al., 2017) and 
assessed the relative importance of controlling factors of Is (Lai et al., 
2021; Li et al., 2019). While urbanization-induced vegetation reduction 
is traditionally considered as the dominant factor affecting Is (Peng et al., 
2012; Zhou et al., 2014), background precipitation and urban popula-
tion have been also shown to exert a strong control (Manoli et al., 2019; 
Zhao et al., 2014). Nevertheless, studies that found strong control of 
background precipitation are not contradictory to those that stressed the 
control of vegetation, because the rural vegetation depend strongly on 
background precipitation (Supplementary Fig. S5). This is analogous to 
previous findings from a spatial perspective that the change trends of 
LST with increasing impervious surface percentage are largely regulated 
by both evapotranspiration and background precipitation (Zhou et al., 
2022). Here, by differentiating the relative importance of rural vegeta-
tion, precipitation, and urban population based on partial least-squares 
model, we further find that while such urbanization-induced impacts on 
Is trends are closely related to the background precipitation where cities 
are located, they are more strongly induced by differences in vegetation 
abundance (Fig. 8). We therefore provide evidence that, resembling the 
absolute Is, the Is trends could be more influenced by vegetation abun-
dance relative to background precipitation and urban population. Our 
study thus highlights the potential of urban green spaces as an effective 
strategy to reduce Is growth during the urbanization process. 
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