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ABSTRACT

Urbanization experiences different speeds and forms under diverse development stages across the globe. How-
ever, urbanization-induced impacts on long-term surface urban heat island intensity (I;) trends across global
cities and the regulators of such impacts remain understudied Here we estimate interannual trends in daytime I
(i.e., urban-rural differences in surface temperatures) across 511 major cities for 1985-2020 using annual av-
erages calculated using reconstructed land surface temperature data derived from >250,000 Landsat thermal
images. Our study reveals that the global mean I growth rate is 0.156 °C/decade. We further examine I; change
associated with per 1% impervious land growth (denoted as $) in each city throughout the research period and
during different periods. The global mean  is 0.018 + 0.025 °C/% (mean + 1 standard deviation) for the whole
period, with greater values in humid than in arid climates; and the  may change during different periods, e.g., it
has more than tripled when urban impervious land exceeds 30%, indicating the spatiotemporally divergent
impacts of urbanization on I trends across global cities. The spatial variations in f across global cities are well
correlated with rural vegetation abundance and precipitation but not with urban population. Among these three
factors, rural vegetation abundance possesses the greatest standardized regression coefficient of partial least-
squares model, signifying the critical role of biome background in regulating p. The finding implies that
future urbanization over densely vegetated regions should be more carefully and strategically planned due to the
greater urbanization-induced surface warming effect.

1. Introduction

Wang et al., 2021; Yang et al., 2017), which adversely impacts the lives
and health of urban residents. Accurate understanding of the impact of

The world has witnessed widespread urbanization in recent decades
(Liu et al., 2020). One of the consequences is the urban heat island (UHI)
effect, which is usually characterized by higher temperatures over urban
areas than their rural surroundings (Oke, 1982). The UHI can impact
weather through modification of surface energy budget and boundary
layer dynamics (Kalnay and Cai, 2003; Qian et al., 2022). One conse-
quence of this is the exacerbation of heat extremes (Sun et al., 2014;

continued urbanization on UHI trends is critical for both understanding
urban impact at the local scale and for informing urban planning stra-
tegies towards heat mitigations (UNEP, 2021).

The key of examining urbanization-induced impacts on UHI trends
lies in the accurate quantification of UHI trends. Satellite-based land
surface temperature (LST) overcomes the under-representation of in-situ
air temperature measurements over large areas (Zhou et al., 2022) and it
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has been frequently used to investigate surface UHI intensity (I5) trends,
either for studies at city (Dewan et al., 2021; Meng et al., 2018; Quan
etal., 2016), national (Li et al., 2020a; Yao et al., 2018), or global scales
(Chakraborty and Lee, 2019; Si et al., 2022; Yao et al., 2019). However,
the research periods of investigations of I5 trends have been mostly
limited to the recent two decades (i.e., post-2000), mostly due to the lack
of high-quality and temporally consistent satellite-derived LST products
before 2000. Global cities should possess highly diverse expansion
processes due to divergent urbanization rates during different periods.
For example, much faster urbanization has been witnessed in the United
States before 2000 than afterwards, while China has experienced more
rapid urbanization after 2000 (Liu et al., 2020). Such contrasting ur-
banization processes are expected to cause divergent I; trends across
global cities during different periods (Supplementary Fig. S1). There-
fore, long-term LST observations are required to identify such spatio-
temporal disparities in I trends. The long-term I trends (especially for
pre-2000s) are potentially derivable with LST data acquired by Landsat-
series satellites, as Landsat-series satellites have sampled the thermal
status of the earth’s surface for approximately four decades. However,
Landsat thermal data are characterized by long sampling interval (~16
days) and strongly impacted by cloud contamination and the stripe-gap
effect, making the derivation of I trends based on Landsat thermal data
extremely difficult (Li et al., 2022a). Therefore, variations in the I
trends since the 1980s across global cities remain unknown.

Increase in urban impervious land can serve as a proxy for urbani-
zation (Gong et al., 2020; Liu et al., 2020). Numerically, the
urbanization-induced impacts on I trends are usually evaluated as the I
change associated per 1% urban impervious land (or urban-rural dif-
ference in impervious surface percentage, 8ISP) growth (Li et al., 2021;
Li et al., 2022b; Rizvi et al., 2020), denoted here as f5. Investigating the
pattern and dynamics of f can deepen the understanding of
urbanization-induced impacts on I trends (Fu and Weng, 2016; Tran
etal., 2017). Previous assessments revealed that  reaches 0.020 °C/% in
Beijing-Tianjin-Hebei metropolitan region, China, with a warm
temperate climate (Li et al., 2022b). By contrast, § is very small
(0.001 °C/%) in Karachi, Pakistan, characterized by an arid climate
(Rizvi et al., 2020). However, preceding estimations on f are spatio-
temporally constrained in individual cities and/or in relatively short
periods (often after 2000); and a global pattern of # remains lacking.
Furthermore, the daytime absolute I (not the I trends) has been shown
to be jointly regulated by precipitation, vegetation, and urban popula-
tion (Li et al., 2019; Manoli et al., 2019; Zhao et al., 2014). Whether g is
controlled by these three factors and which factor among these exerts
the greatest impacts, especially from a global perspective, remain
unknown.

Here, we investigate the I trends since the 1980s across 511 cities
worldwide with reconstructed LST data obtained based on >250,000
Landsat thermal images, with the MODIS LST data used to validate the

reliability in depicting the long-term I trends. We further combine Iy and
impervious surface data to analyze the urbanization-induced impacts on
Is trends (i.e., ) by establishing their temporal relationships. We also use
several other datasets (vegetation abundance, precipitation, and popu-
lation) to examine the associated regulators of $. The findings of this
study should help to deepen the understanding of the change in the
urban thermal environment due to continued urbanization over the last
four decades.

2. Methods
2.1. Study area and data

We focused on the 511 major cities worldwide with an urban area >
200 km? in 2018 (Fig. 1a). These cities are distributed in Africa (34
cities), Asia (194 cities), Europe (82 cities), North America (172 cities),
Oceania (6 cities), and South America (23 cities). They are typified by
various climate types according to the Koppen-Geiger classification
scheme (Kottek et al., 2006), including equatorial (52 cities), arid (51
cities), warm temperate (290 cities), and snow (118 cities) climates.
These cities have undergone rapid urbanization in recent decades (Gong
et al., 2020) and possess remarkable differences in annual mean tem-
perature and annual total precipitation (Fig. 1b). Moreover, large cities
also offer more pixels and make them more suitable for statistical
analysis than small cities. Therefore, these characteristics should be
useful for assessing and understanding the impacts of urbanization on I
trends and the regulators of such impacts in different background
climates.

We employed LST observations from both Landsat and MODIS Terra
satellites. Across the 511 major cities, we processed >250,000 LST im-
ages acquired from Landsat-5, —7, and — 8 for the period of 1985-2020,
with a spatial resolution of ~100 m as well as overpass time of
approximately 10:30-12:00 local time. These LSTs were retrieved by a
statistical mono-window algorithm and have been demonstrated to
possess an acceptable accuracy (Ermida et al., 2020). These Landsat
LSTs were used to reconstruct LST time series and to derive the I trends
for the period of 1985-2020. The MODIS LSTs for the period of
2000-2020 were extracted from the MOD11A2 V6.1 product. The
MODIS LST products have a spatial resolution of 1 km and also possess
reliable retrieval accuracy (Wan, 2008). The MODIS LSTs were used to
validate the LSTs reconstructed from Landsat thermal data in capturing
long-term I dynamics and I trends.

We also processed impervious surface, urban boundary, elevation,
land cover type, vegetation abundance, precipitation, and population
data. The impervious surface data (http://data.ess.tsinghua.edu.cn/
gaia.html) for 1985-2018 were derived from Landsat images and they
hold a relatively high overall accuracy (Gong et al., 2020). These data
were employed to characterize urban impervious land growth (i.e.,
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Fig. 1. Spatial distribution and climate characteristics of the 511 studied cities. Distribution of cities and their corresponding climate zones (a) and frequency

distribution of annual mean temperature and annual total precipitation (b).
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urbanization). The urban boundary data (http://data.ess.tsinghua.edu.
cn/gub.html) in 2018 were generated by combining the impervious
surface data and a kernel density estimation method (Li et al., 2020b).
The urban boundary data were used to delineate urban and rural sur-
faces. The elevation data were obtained from https://srtm.csi.cgiar.org/
. The elevation data possess a spatial resolution of 90 m, and they were
applied to suppress the impacts of large elevation variations on the I
estimation. The land cover type data (https://search.earthdata.nasa.
gov/) were obtained from the MCD12Q1 product. They have a spatial
resolution of 500 m and were employed to exclude the pixels labeled as
‘water’, ‘wetlands’, and ‘permanent snow and ice’ over urban and rural
surfaces. The vegetation abundance data were obtained from the VIP-
PHEN data product. We retrieved the normalized difference vegetation
index (NDVI) in 1985 from VIPPHEN (with a resolution of 0.05°) to
examine the impacts from vegetation abundance on p. The reanalysis
precipitation data in 1985 were obtained from https://psl.noaa.gov/d
ata/gridded/data.UDel AirT Precip.html. The precipitation data (with
a resolution of 0.5°) were employed to examine the impacts from pre-
cipitation on $. The population data in 1990 (with a resolution of 1 km)
were collected from Global Human Settlement Layer (http://data.
europa.eu/89h/d6d86a90-4351-4508-99c1-cb074b022c4a). The popu-
lation data were used to examine the impacts from urban population on
B.

We processed all data to a spatial resolution of 1 km for analysis,
mainly aiming to match the resolution of LST data and to reduce
computational complexity. The continuous (Landsat LST, elevation,
vegetation abundance and precipitation data) and discrete (land cover
data) variables were resampled by bilinear interpolation and nearest
neighbor interpolation, respectively. The impervious surface percentage
data were generated based on the proportion of impervious surface
within a 1 km? rectangle. The MODIS LST and population data preserve
their original 1 km resolution. Note that the Landsat LST data were
reconstructed at 1 km resolution, mainly because we aim to assess the
impacts of urbanization on long-term I trends at the city scale and due
to the huge data volume involved in reconstructing high-resolution
LSTs.

2.2. Estimation of long-term I trends using Landsat data

The Landsat LST data cannot be used directly to estimate I trends
and assess urbanization-induced impacts on I trends, due to the long
sampling interval (~16 days) and the large differences in data acquisi-
tion dates impacted by cloud contamination, stripe gaps, and missing
images (Ahmed et al., 2023; Zhou et al., 2019). There is thus a need to
reconstruct the Landsat LST with higher spatiotemporal continuity to
reduce the sampling bias. The Prophet model can reconstruct data with
periodic variability (Taylor and Letham, 2018). The critical capability of
the Prophet model is to utilize all available time-series data to simulate
the interannual and seasonal dynamics. This model can reduce the
sampling bias of LST data arising from cloud contamination, stripe gaps,
and missing images by enabling the reconstructed LST dataset with
enough values within a year and the relatively consistent dates across
years. This method therefore helps estimate LST trends by overcoming
the deficiencies of Landsat-derived LST (i.e., with intra-annual periodic
variability) time series with severe missing and large differences in
acquisition dates (Li et al., 2022a).

Here we employed the Prophet model to reconstruct spatiotempo-
rally continuous Landsat LSTs at 1 km resolution for 1985-2020. The
method includes three main steps. We first pre-processed the acquired
Landsat LST data by setting all Landsat LST gaps arising from cloud
contamination, stripe gaps, and data missing as null values and elimi-
nating LST outliers based on the ‘3¢ (standard deviation)’ rule (Leh-
mann, 2013). With all the pre-processed Landsat LSTs, we then solved
for the coefficients of the Prophet model and obtained its interannual,
seasonal, and residual components. Using the model coefficients and
associated components, we finally generated spatiotemporally

continuous LST data under clear-sky conditions across global cities. We
compared the Landsat observations with the reconstructed data to
evaluate the accuracy of the reconstructed Landsat LST with the mean
absolute error (MAE). Note that the LST data were reconstructed at a
temporal resolution of 16 days by referring to the revisit period of
Landsat satellites. To facilitate understanding, a case in Beijing, China, is
presented to show the procedure of the Prophet model to reconstruct
Landsat LST (refer to Supplementary Fig. S2).

We delineated the urban areas as the pixels within the urban
boundary of 2018 while the rural areas as the buffer zone with an
equivalent area to the urban (Zhou et al., 2014). The pixels labeled as
‘water’, ‘wetlands’, ‘permanent snow and ice’, and those pixels with an
elevation beyond +50 m of the urban mean elevation were excluded to
suppress their impacts on the Is estimation (Imhoff et al., 2010; Peng
et al., 2012). We then calculated I, as the difference between the urban
and rural mean LSTs:

Iy = LST yipan—LST rural ( 1 )

where I denotes the surface urban heat island intensity; and LSTyrban
and LSTyyr, denote the urban and rural mean LSTs, respectively.

We estimated the interannual I trends for each city using linear
regression and tested the significance of I trends at the 0.05 level. Only
cities with significant Is trends (i.e., p < 0.05) were considered in the
global and regional analysis. Considering that we used static urban
boundary to estimate I, the detected I, trend mainly reflects the increase
in areas affected by I; due to urban expansion. We further validated the
Landsat-derived I; with those derived from MODIS LST data during
2000-2020. MODIS data have been commonly used to derive I trends
(Quan et al., 2016; Si et al., 2022; Yao et al., 2018). Thus, the I trends
derived from MODIS data can be regarded as ‘ground truth’ under clear-
sky conditions, both because of the estimates available from previous
studies and also because of the relatively high retrieval accuracy of and
high-frequency (i.e., daily) revisit of MODIS LST data (Chakraborty
et al., 2021). We assessed the accuracy of the Landsat-derived I and I
trends with the determination coefficient (RZ), MAE, and bias.

2.3. Assessment of urbanization-induced impacts on I trends

Urbanization is often described as the increase of impervious sur-
faces (Gong et al., 2020; Liu et al., 2020). Here we used the impervious
surface percentage (ISP, i.e., the percentage within a 1 km? rectangle) to
investigate the urbanization-induced impacts on I trends. Correspond-
ing to the I calculation, the urban-rural contrast in ISP (denoted as 3ISP)
were used to represent the urbanization level, expressed by the
following formula:

SISP = ISP iiban—ISPruran (2)

where 8ISP denotes the urban-rural contrast in ISP; ISPy;pan and ISPpyra)
denotes the urban and rural mean ISP, respectively. Analogous to the I
trend estimation, we examined the ISP trends for each city using linear
regression.

Global cities are expected to possess highly diverse expansion pro-
cesses due to varying urbanization rates across cities and periods. Such
contrasting urbanization processes across global cities usually lead to
divergent I; trends. To quantify the urbanization-induced impacts on I
trends, we calculated the I; change associated with per 1% urban land
growth (denoted as ) from a temporal perspective, i.e., the slope of the
linear relationship between the temporal changes in I; and 8ISP (Sup-
plementary Fig. S3). That is, we compared the f in different cities by
assessing changes in I due to same increase in urban land proportion (i.
e., 8ISP). The f can be calculated by:

AL -b
" ASISP

B 3)

where AI; and ASISP denote the temporal changes in I; and SISP,
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respectively; and b is a constant denoting the offset of the linear rela-
tionship between AI; and ASISP. We used the static urban boundary in
2018 to assess f, mainly because it contains most of the areas experi-
encing rapid urbanization and can reflect the changes in ISP and the
resulting changes in I; compared to urban boundaries in earlier years.

2.4. Potential drivers of

According to previous findings, precipitation (a climate parameter),
vegetation abundance (a surface-property parameter), and population (a
proxy for human activity intensity) are the main regulators on the
spatial pattern of I (Li et al., 2019; Manoli et al., 2019; Zhao et al.,
2014). We therefore also employed precipitation, vegetation abundance
(rural NDVI), and urban population to investigate their roles in regu-
lating the spatial pattern of § (i.e., urbanization-induced impacts on I
trends) by establishing their spatial relationships across global cities. We
first used ordinary correlation analysis to preliminarily examine the
relationships of § with precipitation, rural NDVI, and urban population
across global cities. Nevertheless, there is often co-linearity between
precipitation and rural NDVI (Supplementary Figs. S4 & S5), and the
role of vegetation and precipitation cannot be well differentiated in
regulating $ with ordinary correlation analysis. We therefore employed
the partial least-squares model (i.e., a common strategy to solve co-
linearity) (Wold et al., 1984) to differentiate the role of these three
variables. We used the partial correlation coefficients between # and
precipitation, rural NDVI, and urban population as well as the associated
standardized coefficients to determine the relative importance of these
three variables on regulating the spatial pattern of  across global major
cities. Note that the impacts from precipitation, vegetation abundance,
and urban population on f described in the study mainly reflect the
controls of spatial differences in  between different cities.

2.5. Uncertainties of the method

We conducted the uncertainty analysis to examine the impacts from
image number, urban definition, and factor selection on our results.
First, we investigated the effects of the number difference in available
Landsat images on the estimated I; and I trend. This aims to examine the
possible effect of the number differences in available Landsat LST across
cities on the analysis associated with the I; and I trend. Second, we
analyzed the influence of urban definition on the magnitudes of I, I
trend, and by dividing the urban areas into urban cores (defined by the
areas within the urban boundary in 1990) and urban fringes (defined as
the newly expanded areas between the urban boundaries of 1990 and
2018). This analysis aims to assess the uncertainties in the estimates of
I, I trend, and f caused by different urban definitions. Third, we used
urban NDVI, rural NDVI, and urban-rural contrast in NDVI to detect the
relationship between # and vegetation cover. This aims to analyze the

effect of such factor selections on the obtained results.
3. Results
3.1. Validation of the reconstructed Landsat LST dataset

We evaluated the accuracy of the reconstruction by comparing the
Landsat observations with the reconstructed LST. The results show that
the mean absolute error (MAE) of the reconstructed Landsat LST is about
3 °C across global cities (Fig. 2), e.g., the MAE is 2.9 °C for one sample
point in Beijing (Supplementary Fig. S2). This error may be caused by
the impacts of weather system on LST. The magnitude for this error is
close to that of I and the reliability of the reconstructed Landsat LST
may therefore be doubtable in accurately portraying Is and I; trends. We
therefore further compared the Landsat-derived I5 and I trends with
those estimated from MODIS data for the period of 2000-2020. The
comparisons show that I and I trends estimated from these two types of
satellite data are in good agreement, with R? of 0.87 for I (p < 0.001)
and R? of 0.55 for I trends (p < 0.001; Fig. 3b & 3d). The estimated I
and [ trends are also relatively consistent for individual cities (Fig. 4)
and at the pixel level (e.g., Fig. 3e & 3f). When compared with those
obtained from MODIS data, the mean absolute error (MAE) of the
Landsat-derived Is and I trends are 0.33 °C and 0.14 °C/decade,
respectively. These two MAEs account for <10% of the dynamic ranges
of the Iy (—4 to 5 °C) and of the associated trends (—0.7 to 1.2 °C/
decade). The mean biases for the I; and I trends are even lower, being
equivalent to —0.10 °C and 0.01 °C/decade, respectively (Fig. 3b to 3d).
These assessments indicate that the Landsat-derived I and I trends are
generally reliable across global cities. The MAE of I; and I trend esti-
mates is obviously smaller than that of the reconstructed LST, probably
because the I calculation (i.e., the difference between urban and rural
mean LSTs) significantly offsets the influence of weather systems on I
estimates (Huang et al., 2016). Note that there exist spatial differences of
the estimated I at the pixel level (e.g., Fig. 3e & 3f) due to the differ-
ences between MODIS LST and the reconstructed Landsat LST (Supple-
mentary Fig. S6). Such LST differences could be caused by the
differences in various factors between these two types of data, such as
the imaging style and LST retrieval algorithm; besides, the annual
MODIS LST averages were influenced by missing data, which may cause
a bias compared to the true LST values and therefore lead to the spatial
difference of the estimated I;. The final resulting annual averages of
Landsat LST data at 1 km resolution for 1985-2020 are freely available
at https://osf.io/qgewa/.

3.2. Global long-term I; trends accompanied by increased urban land
From the global perspective, I; shows a nearly linear increasing

pattern since the 1980s, resembling to the growth of the urban-rural
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contrast in impervious surface percentage (3ISP; Fig. 5a & 5b). The
global mean I increases from 0.63 °C around 1985 to 1.14 °C in 2020,
with an increasing rate of 0.156 + 0.002 °C/decade (mean + 95%
confidence interval, p < 0.001), while the global mean 8ISP grows from
16.4% to 52.6% during the same period at a rate of 9.7 + 0.3%/decade
(p < 0.001). The strong temporal correlation between the Iy and 3ISP
trends over individual cities is understandable, because urbanization (i.
e., increase of 8ISP) significantly regulates the I change over time (Li
etal., 2021; Li et al., 2022b). However, there is a large difference in the
spatial variability of I and 8ISP growths among global cities (Fig. 5¢c &
5d). From the spatial perspective, the correlation between the I; and 8ISP

trends over global cities becomes insignificant (Fig. 5f). This implies that
the more rapid urbanization rate in a city does not necessarily lead to
faster I; trends than in other cities. For example, a stagnant increase of
SISP (7.7%/decade) is associated with a relatively fast increase of I
(0.200 °C/decade) for cities in North America. While a rapid growth of
8ISP (15.1%/decade) is accompanied with a relatively low I increase
(0.057 °C/decade) in African cities. Such a contrast suggests the pres-
ence of other regulators in modulating urbanization-induced impacts on
I; trends across global cities (refer to the next section for elaborate
analysis).
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3.3. Divergent urbanization-induced impacts on I trends and their
regulators

The global mean g (i.e., I change associated with per 1% growth of
8ISP) is 0.018 £ 0.025 °C/% (mean =+ 1 SD; Fig. 6). We find an inflection
point of f on the increase of I; along with urbanization, at which 8ISP is
around 30%. When urban fraction 8ISP <30%, f remains at a rather low
rate of 0.005 °C/%. As the cluster of urban areas reaches a certain
density (ISP >30%), its impact on I triples (0.018 °C/%) (Fig. 6¢). This
implies urbanization can accelerate the increase of I; as cities grow
bigger or denser. This may be due to the phenomenon that urbanization
is initially characterized by the occupation of bare land or areas with
little vegetation, while later urban encroachment on forest land leads to
a significant reduction in vegetation and accelerates the I; growth.
Moreover, the threshold for the inflection point of § varies across climate
zones, generally with a smaller threshold yet larger change magnitude of
f in humid climates (Fig. 7), which may be associated with greater
vegetation abundance.

Regarding the spatial variations, f is greater in most cities in eastern
North America, eastern South America, and Southeastern Asia, yet it is
smaller in southwestern North America, western South America, central
Euro-Asia, and Africa. We identified the top ten countries with the
greatest §§ (Table S1). The identification reveals that the f is the greatest
in Indonesia, followed by Brazil and the United States. In terms of
climate zone, the f is the largest in equatorial zone, followed by warm
temperate and then snow zones, while f is the smallest and can even be
negative for many cities in arid zone. The urbanization in arid zones
increases irrigation and vegetation fraction in cities than in surrounding
desert environment (Fan et al., 2017; Wang, 2021), leading to a negative
urbanization-induced daytime I and therefore a negative f.

Our analysis shows that precipitation and vegetation background are
both closely related to the changing rate of I; during the urbanization
process, while the influence of urban population is negligible (Fig. 8).
The g shows a non-linear relationship with precipitation (Fig. 8a). This
corresponds well to previous findings that I; correlates nonlinearly with
precipitation (Manoli et al., 2019). Nevertheless, the  is more strongly

related to rural normalized difference vegetation index (NDVI)
compared with precipitation and urban population (Fig. 8a to 8c).
Furthermore, the partial correlation coefficient of rural NDVI with g is
greater than those of precipitation and urban population with
(Fig. 8d); and the standardized regression coefficient for rural NDVI is
almost twice that for precipitation and is close to zero for urban popu-
lation when co-explaining § (R? = 0.33, p < 0.001; Fig. 8e). This suggests
that the $ could be controlled mainly by rural NDVI. This finding is
comparable to previous ones that I should be strongly regulated by
evapotranspiration (Li et al., 2019), although our focus is on g (i.e.,
urbanization-induced impacts on the I trends) rather than on L. In fact,
the strong influence of rural NDVI on the $ can be intuitively understood
as that, as urbanization happens over regions with more vegetation and
therefore naturally higher evapotranspiration, cooling efficiency over
these regions gets reduced, which leads to larger I. In other words, the
heating potential induced by urbanization (increase of 3ISP) can be
significantly larger over regions with abundant vegetation (mostly in
humid climate) than those sparsely vegetated regions (mostly in arid
climate) (Supplementary Fig. S3).

3.4. Uncertainty analysis

Several uncertainty analyses were performed on image number,
urban definition, and factor selection. In terms of image number, the
number of available Landsat thermal images exceeds 300 views in most
cities, and the MAEs of estimated I and I trend show a slight negative
correlation with image number (Supplementary Fig. S9). This indicates
the disparities in the amount of available Landsat LST across cities have
relatively small impacts on the analysis associated with the I5 and Ig
trend. Regarding urban definition, urban cores possess significantly
distinct magnitudes of I and I; trends relative to urban fringes (Sup-
plementary Fig. S10). This implies that static urban boundary does have
impacts on estimation of I and Is trends and may not accurately describe
the magnitudes of I and Is trends (or ISP) across urban categories.
Nevertheless, the assessment of $ is similar across urban categories;
particularly, the estimated g in different urban categories is highly
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correlated with that without distinguishing between urban categories,
and the fitting line between the two is close to the 1:1 line (Supple-
mentary Fig. S11). This implies that the static urban boundary used in
this study should not significantly affect the estimation of . The sensi-
tivity analysis of factor selection shows that f is more correlated with
rural NDVI compared to urban NDVI and urban-rural contrast in NDVI
(Supplementary Fig. S12a to S12c). This difference in correlation may be
due to larger differences in vegetation coverage among cities in rural
areas than in urban areas (Supplementary Fig. S12d). The former may
therefore better reflect the potential degree of urbanization-induced
impacts on vegetation cover (and thus I; change) by transforming
vegetation into urban land. This indicates that our selection of rural
NDVI should be appropriate for understanding the potential causes of
differences in f# across cities. Besides, data accuracy may also induce
uncertainty in the results. For instance, the generated ISP at 1 km res-
olution calculated using 30 m impervious surfaces may overestimate the
true ISP in urban areas; and such an overestimation may vary across
cities and urban regions, therefore affecting the assessment of f.
Nevertheless, such a kind of errors mainly affects the ISP magnitude and
has relatively little effects on the estimates of temporal ISP trend, mainly
because systematic errors can be significantly offset when fitting the
overall overestimated ISP time series. That is, the effects of systematic
overestimation on the slope of relationship tend to be small by fitting the
relationship between overall overestimated ISP and I;. Therefore, the
overestimated ISP should not significantly affect our main findings

related to f.
4. Discussion and implications

The Landsat satellites possess major advantages of global periodic
and long-term observations. Several studies revealed the impacts of
urbanization on I; changes using multiple clear-sky Landsat images and
land cover data (Rizvi et al., 2020; Yu et al., 2019). However, the issue of
temporal discontinuity becomes a major challenge for I trend analysis
using Landsat data due to the relatively low temporal resolution and the
large amount of missing data caused by cloud cover (Ahmed et al., 2023;
Zhou et al., 2019). Therefore, there may be large uncertainties associ-
ated with employing LST data from only a few time nodes to assess the
impacts of urbanization on I; trends. Several studies attempted to
reconstruct Landsat (or MODIS) LST data to improve the temporal
continuity of LST data to better assess the impacts of urbanization on I
trends (Fu and Weng, 2016; Li et al., 2022b). Nevertheless, previous
investigations are mainly limited to individual cities/urban agglomer-
ations and limited to the recent two decades. A comprehensive assess-
ment of urbanization-induced impacts on I trends remains lacking,
especially from a global and long-term perspective. As an attempt, we
reconstructed a spatiotemporally continuous LST dataset for global cit-
ies using >250,000 Landsat thermal images. We demonstrated that the
reconstructed LST matches well with the MODIS LST data in quantifying
Is and its trends (Fig. 3); and the reconstructed Landsat LST data have a
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high reliability for I, analysis. We further analyzed the impacts of ur-

banization on long-term I; trends by combining Is and Landsat imper-
vious surface data. This is perhaps the first effort to assess global I; trends
since the 1980s and to evaluate the role of urbanization in regulating

such long-term trends using Landsat LST data.

The urbanization rates vary considerably across cities and during
different periods (Liu et al., 2020). Such disparities in urban expansion
processes may lead to significantly different I trends across cities and
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periods (e.g., Supplementary Fig. S1). Accurately identifying the long-
term I; trends from a global perspective is critical to understand the
impacts of urbanization on such trends. By establishing a long-term
relationship between I; and ISP in each city worldwide, we find a
noteworthy ‘marginal effect’ of urbanization on I; trends — the same
increase of ISP can lead to significantly different amounts of I increase
across different climates and along different urbanization stages (Figs. 6
and 7). For example, the impacts of urbanization on I, trends are larger
in humid climates (Fig. 6) that are characterized by denser vegetation
and heavier precipitation (Hossain and Li, 2021; Yang et al., 2008). This
implies that over cities in humid tropical regions (e.g., some African
cities), urban population exposure to heat may become even more
prominent in the future due to the projected increase in urban popula-
tion (Rohat et al., 2019) and the notably larger I trends associated with
urbanization (Fig. 6a). Furthermore, urbanization can impact tempera-
ture extremes (Sun et al., 2014; Wang et al., 2021; Yang et al., 2017),
especially by increasing heat wave periods in humid climates (Liao et al.,
2018) due to the complex interactions between UHI and temperature
extremes (Zhao et al., 2018). This implies that urban population expo-
sure to extreme heat events can therefore be further augmented over
humid cities due to urbanization. We also find an evident threshold for
the urbanization-induced impacts on I; trends, e.g., the I trends can
accelerate when urban impervious land exceeds 30% (Fig. 6¢). The
enhanced impacts of urbanization with the proportion of urban imper-
vious land may be associated with the increasing magnitude of the
reduction in evapotranspiration due to local urbanization (Zhou et al.,
2022). This implies that the increase in heat exposure of urban residents
may be amplified with the advance of urbanization. Special care should
therefore be taken on such a threshold in sustainable urban planning,
although this threshold may change for individual cities (Fig. 7).

Besides, previous studies interestingly showed that surface temperatures
are higher in regions near barren land and lower in those close to
vegetation and water bodies, described as the ‘proximity effect’ (Man-
sourmoghaddam et al., 2021; Mansourmoghaddam et al., 2023). Here
we further find that cities with larger I; (or I trend) in urban cores also
have stronger I (or I trend) in urban fringes (Supplementary Fig. S10).
This implies that the ‘proximity effect’ exists not only between small
urban patches (e.g., barren land, vegetated areas and water bodies) and
their surroundings, but may also occur among regional urban thermal
environments at a larger spatial scale. This finding indicates that the
‘proximity effect’ needs to be considered in the design of future urban
heat mitigation strategies to hinder the effects of urbanization-induced
rapid surface warming on the surrounding thermal environment.
Satellite thermal data with high spatial resolution are required to
better understand inner-city I changes and their controlling factors
(Sobrino et al., 2012). Compared to reanalysis data and other satellite
data (e.g., MODIS and AVHRR LSTs), Landsat LST data have a much
higher spatial resolution, enabling the monitoring of thermal environ-
mental characteristics at the landscape scale. However, due to the huge
computational burden involved in reconstructing 100-m Landsat LST,
here we only reconstructed the Landsat LST dataset for 1985-2020 at 1-
km spatial resolution, as our primary purpose is to assess the impacts of
global urbanization on long-term I trends at the city scale. Our method
should be able to reconstruct 100-m Landsat LST if the computational
capacity permits. This implies that our approach should be useful to
assess local thermal environmental changes and their responses to urban
landscape or landscape change from a fine-scale perspective for future
studies. For example, the Landsat LST reconstruction method may help
better assess the long-term and fine-scale changes in urban thermal
environments (Li et al., 2022a), the impacts of land cover change on



surface temperatures (Fu and Weng, 2016), as well as identify the
cooling and heating effects of blue-green space (Gunawardena et al.,
2017) and industrial plants (Gao et al., 2022) on their surroundings,
respectively.

Previous studies have revealed urbanization-induced impacts on the
evolution of the urban thermal environment (Li et al., 2021; Li et al.,
2022b; Sun et al., 2014; Wang et al., 2021; Yang et al., 2017) and
assessed the relative importance of controlling factors of I; (Lai et al.,
2021; Li et al., 2019). While urbanization-induced vegetation reduction
is traditionally considered as the dominant factor affecting I (Peng et al.,
2012; Zhou et al., 2014), background precipitation and urban popula-
tion have been also shown to exert a strong control (Manoli et al., 2019;
Zhao et al., 2014). Nevertheless, studies that found strong control of
background precipitation are not contradictory to those that stressed the
control of vegetation, because the rural vegetation depend strongly on
background precipitation (Supplementary Fig. S5). This is analogous to
previous findings from a spatial perspective that the change trends of
LST with increasing impervious surface percentage are largely regulated
by both evapotranspiration and background precipitation (Zhou et al.,
2022). Here, by differentiating the relative importance of rural vegeta-
tion, precipitation, and urban population based on partial least-squares
model, we further find that while such urbanization-induced impacts on
I trends are closely related to the background precipitation where cities
are located, they are more strongly induced by differences in vegetation
abundance (Fig. 8). We therefore provide evidence that, resembling the
absolute I, the I trends could be more influenced by vegetation abun-
dance relative to background precipitation and urban population. Our
study thus highlights the potential of urban green spaces as an effective
strategy to reduce I growth during the urbanization process.
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