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Abstract

We present a novel methodology for optimizing nuclear fuel cycle transitions that
incorporates a game-theoretic approach and captures interactions among multiple decision makers.
The methodology is demonstrated using a two-person sequential game with uncertainty, where the
two players represent a policy maker and an electric utility company, though the method
generalizes to any number and type of individual decision making entities. Coupled with a
sophisticated nuclear fuel cycle simulator, rich transition scenarios may be analyzed to identify
robust transition strategies. These strategies explicitly treat uncertainties using a stochastic
programming approach, devising optimal near-term hedging strategies that simultaneously
consider all possible states of the world, maintaining flexibility to allow for intelligent recourse
decisions once uncertainties are resolved. In the demonstration game, reactor technology and fuel
cycle scheme adopted by the electric utility are shown to depend on both the policy maker’s

decisions and the distributions over uncertain technological and economic outcomes.
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1. Introduction

The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) has been researching
technology to shape the nuclear fuel cycle to better balance the need for energy, economic and
proliferation security; environmental sustainability; and the risks associated with the development
and deployment of new fuel cycle technologies. Previous fuel cycle analysis tools have been
constrained by human and computer resources. Many studies have opted for a less detailed, but
more expansive view of the fuel cycle because of the trade-off between depth and breadth of
modeling. As a result, some key features in fuel cycle transition analysis have suffered, including:
(1) treatment of transients, instead examining the fuel cycle operating at equilibrium where
facilities are continually built, operated and decommissioned as needed, (2) simultaneous
optimization across multiple criteria and objectives, instead focusing on specific areas of interest
to the researchers conducting the study, and (3) explicit modeling of decision making under
uncertainty, instead examining uncertainties through sensitivity or scenario analysis that simply
varies parameter values within a deterministic model.

This paper presents a novel methodology that incorporates a game-theoretic approach for
optimizing nuclear fuel cycle transitions by modeling fuel cycle decision making as a sequential
game against nature featuring a policymaker and electric utility. Here, the policymaker acts first
to influence the state of the world that will prevail, and as a response, the electric utility chooses

to continue operating the U.S. fuel cycle as is, or close it. This approach captures the strategic
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interest of each player, as they are not necessarily aligned, and the subsequent effects of these
players’ interactions. Further, the effects of uncertainty on each player’s decision making are
captured, leveraging the capabilities of nuclear fuel cycle simulators that model time-dependent
processes in the nuclear fuel cycle.

The methodology is presented in generic form; in that form, it can be applied to any fuel
cycle simulator and with any character archetype of an individual decision making entity, each of
which chooses their decisions based on different decision criteria and objectives. Previous
transition optimizations have assumed the perspective of a single “benevolent dictator” shaping
the future of the nuclear fuel cycle. Instead, in the new methodology presented, each participant in
a nuclear project shapes a fuel cycle transition based on their unique decision criteria, and each
responds uniquely to uncertainty resolutions as well as to the other participant’s previous decisions
as time moves forward. Here the policymaker simultaneously considers economic, waste
management and proliferation resistance metrics, whereas the electric utility’s sole concern is the
economics of nuclear power. Incorporating these players and a Nature player that moves randomly
brings autonomous decision making into the fuel cycle simulator.

A game-theoretic approach to energy systems modeling is not in itself new, nor is the
explicit treatment of uncertainties in nuclear fuel cycle transition analysis through a stochastic
programming approach. The novelty of the work presented here is their merger, coupled with a
sophisticated fuel cycle simulation tool, casting the fuel cycle transition as a sequential game
against nature. Compared to past literature in fuel cycle transition analysis, this work moves away
from the idea of a single decision maker, instead modeling the strategic interactions between two
decision makers whose objectives are not necessarily aligned. Coupling to a fuel cycle simulator
allows for multiple, intelligent decisions to be made over the time horizon of the transition, and
these decisions are chosen optimally through an iterative hedging algorithm, removing the
modeler’s responsibility to choose these decisions. This hedging algorithm explicitly incorporates

uncertainties into its solution by examining the available decisions over the time horizon of the



transition. Further, the work leverages past uses of fuel cycle simulators to calculate time-evolving
fuel cycle metrics, and uses these metrics to depict distinct character archetypes by assigning
importance weightings of these metrics to the individual decision makers. This approach brings
novel richness into the analysis of fuel cycle transitions, addressing previously identified

shortcomings of past fuel cycle analyses.

2. Background

2.1 Uncertainty in Nuclear Fuel Cycle Transition Analyses

More comprehensive nuclear fuel cycle transition studies have recently been made possible
through the use of complex fuel cycle simulators coupled with enhanced technological capabilities.
All nuclear fuel cycle transition studies determine the natural resource and technology
requirements for changing over from one nuclear fuel cycle to another. For instance, many
transition studies have examined the changeover from the current U.S. open fuel cycle consisting
of a light water reactor (LWR) fleet to a closed fuel cycle comprising fast reactors (FRs) burning
recycled used fuel from LWRs (Yacout et al., 2004; Dixon et at., 2009; Djokic et al., 2015; Feng
et al., 2016; Bae et al., 2016). Uncertain parameters abound in these transitions—technology costs
and availability dates, demand growth for nuclear electricity, and the potential for government loan
guarantees and tax credits, to name a few. Previously, nuclear fuel cycle transition studies have
handled these uncertainties using sensitivity and scenario analysis. Newer work has taken a
stochastic programming approach to explicitly optimize decisions made under uncertainty,
formulating robust transition strategies (Carlsen, 2016; Phathanapirom and Schneider, 2016;
Pierpoint, 2017). Kann and Weyant (2000) offer a thorough description of these approaches to
uncertainty analysis, which are summarized here.

Sensitivity analysis may help attribute uncertainty in model output to different sources of
uncertainty in its input. Sensitivity analysis is performed by recalculating outcomes of the model
while varying uncertain input parameters over their possible ranges. When variation of an input
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parameter produces relatively small changes in model output, that output is considered robust;
whereas if a large variation is observed, the output is considered sensitive. Given its
straightforward nature requiring zero modifications of the model, this type of analysis is commonly
used. Although simple, sensitivity analysis is useful in that it allows increased understanding of
relationships between model inputs and outputs; it may aid in future investigations by reducing
computational burden via identifying inputs that cause larger uncertainty in model outputs, which
should be the focus of future investigations (Bistline, 2013; Wian, 2013).

Scenario analysis is roughly similar to sensitivity analysis in that no model modifications
are required, and input parameters are varied across their possible ranges. The crucial
distinguishing feature of scenario analysis is its construction of different states of the world
through some combination of uncertain parameter values, which represent a plausible description
of how the system as a whole and its driving forces may develop in the future (Walker et al., 2003;
Gabbert et al., 2010). Solutions of a deterministic optimization model are unique to each individual
scenario and offer a set of coherent, internally consistent futures.

Sensitivity and scenario analysis treat uncertainties as exogenous to a deterministic model.
A key implicit assumption in these approaches is that decision makers have perfect information
about the state of the world that will prevail. In reality, decision makers must act before
uncertainties are resolved and, in many situations, act fo resolve those uncertainties.

Stochastic programming explicitly handles uncertainties by simultaneously considering all
possible states of the world, offering a systematic approach to decision making under uncertainty.
Stochastic programming requires a decision maker to make some decision now that minimizes the
(usually) expected cost or consequence of that decision. Considering stochastic programs in this
way gives rise to a recourse model, in which information available to the decision maker is updated
in each sequential stage (Golub et al., 2014; Leibowicz, 2018). The simplest form of a stochastic
program is the two-stage linear program with recourse; however, because of the complex, dynamic

nature of the nuclear fuel cycle, linear programming is insufficient to represent the most important



associated regulatory, economic, and technological issues. Instead, the nuclear fuel cycle simulator
is treated as a tool that a solution algorithm can invoke to obtain an objective function value.
Pierpoint (2017) constructs an optimization wrapper that invokes the FANTSY fuel cycle
simulator to examine how uncertainties in the nuclear power demand growth rate and reactor
capital costs affect the decision to close the fuel cycle. The wrapper enumerates each branch of the
decision tree and obtains objective function values for each branch. Once each branch is scored,
the method of backward induction is used to find optimal hedging strategies. Similarly, Carlsen
(2016) examines time-wise uncertainties such as disruption in fuel supply to devise optimal
hedging strategies for reactor deployment. Because of the fidelity of the Cyclus simulator (Huff et
al., 2016), coupled with the fine decision space examined, Carlsen relied on a custom particle
swarm optimizer to obtain an approximate solution. Phathanapirom and Schneider (2016)
developed a progressive hedging algorithm to find optimal hedging strategies for use in

considering uncertain radioactive waste disposal costs.

2.2 Extension to Game Theory

Binsbergen and Marx (2007) found that some sequential games can be analyzed by
considering multiple decision trees, with each tree corresponding to an individual player. In
sequential games, one player chooses their action and it is observed by the other player before they
choose their action. If the second player has no information about the first’s action, the effect is
equivalent to the players choosing their actions simultaneously. Table 2.1 identifies the
components of a no-data problem and its corresponding counterparts in a game against nature,
both of which find their roots in decision making under uncertainty. These trees account for the
dependence of the payoffs on the actions of the other players. While the two may be
mathematically equivalent in some cases, insights into the strategic interaction between decision

makers can be gained by examining a nuclear fuel cycle transition through a game-theoretic lens.



These sequential decision making problems may be solved using a recursive method known as

backward induction or dynamic programming (Rust, 2006).

Table 2.1:  Key elements of decision analysis and corresponding counterparts in game theory.

Decision Analysis Game Theory

Set of alternatives Strategy set

Chance and unknown events Moves of Nature
Results Payoff mapping
Solution concept Equilibrium concept

Pierpoint (2011) proposed and briefly examined a government—industry interaction model.
Pierpoint examined industry response to an increase in the 1 mil per kWh nuclear waste fee under
the Nuclear Waste Policy Act of 1982. In her work, Pierpoint assumed the obligation of the
government stops at waste management, and as a consequence the government absolutely benefits
from the transition to FRs. The variable waste fee is exogenously applied in the simulation. Under
a different guise, the variable waste fee could be viewed as a first-stage strategy.

Resource allocation in safeguards and security applications to nuclear facilities have been
examined using a game-theoretic approach. Avenhaus (2013), Butler et al. (2013), and Ward and
Schneider (2016) each examine a facility operating with static material flows, independent of the
dynamics of material flow resulting from the nuclear fuel cycle system in which facilities are
continually being built and retired. However, in addition to individually examining an enrichment
and reprocessing facility, Ward explores a systems approach to optimization across the two
facilities. Ward considers a simultaneous game, aimed at optimal safeguards such as random
inspections against a proliferation scenario. An “efficient frontier” is identified that depicts payoff
as a function of budget. Butler et al. incorporate uncertainties in a sequential decision making
model, though they do not examine recourse decisions following uncertainty resolutions, which is

equivalent to solving for the expected value solution.



Key to a game-theoretic approach in nuclear fuel cycle transition applications is the
consideration of external costs—those costs that are paid by society as a whole rather than
exclusively by consumers of nuclear power. Each decision maker in a nuclear fuel cycle transition
may select their decisions based on a unique set of decision criteria and weightings, a process that
gives rise to the interaction among individual decision makers. The challenge in examining these
externalities arises in deriving a mechanism for estimating the costs of the impacts and identifying
appropriate importance weightings.

Table 2.2 summarizes concepts presented in this section. The role of uncertainty in fuel
cycle decision making has primarily been investigated using sensitivity and scenario analysis,
although a few recent works have employed stochastic programming to explicitly consider hedging
decisions in a setting where uncertainties unfold dynamically over time. The novelty of this paper
is casting the fuel cycle transition as a sequential game against nature, in which multiple players
take turns making strategic decisions over time in response to, and in anticipation of, each other’s

decisions and the uncertain moves of the random nature player.

Table 2.2: Approaches to fuel cycle transition analysis and their corresponding features.
Multiple
Meaningful Strategic
States of Hedging Players
Approach Summary the World? Decisions? Interacting?
Sensitivity Varies parameters over their No No No
Analysis possible ranges
Scenario Varies parameters that are chosen Yes No No
Analysis to represent plausible, coherent
states of the world
Stochastic Considers plausible, coherent Yes Yes No
Programming states of the world and evolving
information sets as subsequent
decisions are made
Sequential Considers plausible, coherent Yes Yes Yes
Games Against states of the world and evolving
Nature (Our information sets as subsequent
Approach) decisions are made by multiple
agents




3. Methodology

Fig. 3.1 depicts a visualization of the two-stage decision tree arising from a sequential game
against nature with two players. In Fig. 3.1, decision nodes are those in which a decision is made,
and are represented by squares and colored according to the acting decision maker; chance nodes
are the roots of branches in the tree where stochastic parameter outcomes are realized, and are
represented by circles; and end points (nodes) show the final outcome of a decision path and are
represented by triangles. The cost (or objective function or metric value) F(dq, w, d3) is history-
dependent on the first-stage decision d;, the outcome of the stochastic parameter w, and the
second-stage decision d,. We find the optimal recourse decision d5 in response to d using

d; = al‘gmin F(dl'wrdZ) (3 1)
dy '

which chooses from available d after realizing the value of w such that F(d4, w, d,) is minimized.

The first-stage decision (d4) represents a near-term hedging strategy that is chosen optimally using

1= argdminZ?wF(dl,w,dE) (3.2)
w

1

which minimizes the expected cost over the available d; which is a probability-weighted sum of
F(dq, w, d3) given P, the probability of realizing some value of w. Typically, the assumption is
that the decision maker’s objective is to choose a strategy that minimizes the expected costs,
although that is not necessarily the case. For instance, a decision maker could aim to minimize the
maximum possible cost, referred to as a “minimax problem,” which is an example of robust
optimization. The costs (or gains) in decision theory are equivalent to the notion of payoffs in
game theory.

In Fig. 3.1, two decision makers act at d; and d,, represented by the differently colored
decision nodes. In this two-stage game, or any sequential decision making problem, a bilevel
program arises wherein the upper optimization problem is constrained by the lower optimization

problem, with the decision maker in the upper problem able to anticipate the subsequent optimal



reaction by the decision maker in the lower problem. The sequential game is solved through the
method of backward induction, a recursive method that finds an optimal decision rule. In the
context of the nuclear fuel cycle, fuel cycle simulators must be employed to calculate a payoft.
Although the interactions between fuel cycle facilities are formulated as a systems model
(consisting of levels and flow between objects), the highly nonlinear problem effectively restricts

its solution to an algorithm that calls the fuel cycle simulator as a “black-box’ model to be invoked.
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Figure 3.1: Two-stage decision tree for a sequential game against nature with two players.
Depiction includes an initial decision of one player (pink square), a recourse decision
of a second player (blue square) with an associated cost (grey triangle) and a single
stochastic parameter (w).

For the general N-stage program, determination of the optimal hedging strategies for each
stage n =1, 2...N is carried out recursively with the aid of a function named Hedge depicted in

Fig. 3.2. Hedge accepts two arguments: k, the stage for which possible hedging strategies are being

enumerated, and n, the stage for which strategies are being selected. Hedge is always initialized at

the first stage, k = 1, and iterates through all ], strategies in stage k:

dicia. ), (3.3)

For all J strategies in stage k, Hedge increments k by 1 and calls itself:



Hedge(k =k+ 1,n) (3.4)

This process is repeated until k reaches the value of n. In this way, all histories:

(d%, ©) v K, jiow 3.5)

are enumerated. These histories are all the permutations of the strategies for previous stages and
all outcomes of the stochastic parameters. For all histories, an optimal hedging strategy at stage n

is found using:

hy, = arghmin F({(d}‘,w)vk < n,jk,w}, hp, A1 ) (3.6)

where F is the cost function described previously. Here, Hedge considers each available hedging
strategy in stage n, and calculates the associated cost of choosing that strategy given the history
leading up to that decision, and all downstream optimal hedging strategies for stages n+ 1to N
determined previously.

The sequential two-person game in Fig. 3.1 is analyzed by considering multiple decision
trees. Each decision maker has a unique objective function F,(d4, w, d3) that determines the cost
of a path from root to leaf through the decision tree. Then, the costs can be represented by a
bimatrix, consisting of values F,(d1, w, d3), where p indicates the cost to a player p. The Hedge

algorithm determines all F,,(d1, w, d3) to determine the optimal hedging strategy for each stage

based on the objective of the player who is acting at that stage.
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Figure 3.2: Recursive hedging algorithm via a backward induction method for the general N-
stage decision problem.
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4. Demonstration

A two-stage demonstration game is illustrated in Fig. 3.1. The game (scenario) includes
two players whose payoffs have a net result greater than or equal to zero (general-sum) where
gains by one player do not necessarily correspond to losses for the other. These players represent
two of the prime participants in a nuclear project: a government entity (Player Government) and a
utility company that generates electricity (Player Utility). The strategic interactions of these players
pose a major challenge in the development of nuclear infrastructure. Players act sequentially with
complete information, that is, each knows the other’s available strategies, probabilities of Nature’s
moves, and the corresponding payoffs. Thus, Government chooses his decision anticipating the
influence of that decision on Utility’s subsequent decision by examining Utility’s available
decisions and corresponding payoffs. Utility responds with the knowledge of Government’s initial
decision and the outcome of any upstream stochastic parameters. These stochastic parameters are
represented as choices of a Nature player who moves randomly with no concept of a payoff. Moves
by Nature define the state of the world w € Q, about which Government and Utility are assumed
to have full distributional knowledge of the probabilities of all states occurring. Calculations of

the payoffs for the demonstration game are summarized here, although the specifics are omitted.
4.1 Two-stage Game Description

The two-stage game is informed by results from the VEGAS nuclear fuel cycle simulator
that calculates a material- and technology-constrained mass balance (Schneider and
Phathanapirom, 2016). VEGAS’s unique mass balance calculation ensures that each reactor’s fuel
demands are met throughout its entire lifetime by utilizing a roll-back feature that returns the
simulation to the year in which a reactor that violates material- or technology-constraints was
added and removes it from the simulation. A summary timeline of the reference transition scenario
and key VEGAS simulation input parameters is shown in Figure 4.1. Each VEGAS simulation

begins in 2018 with an initial 100 GW, reactor fleet of LWRs and ends in 2160, allowing the
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simulation to run beyond the decision making period by an additional lifetime of the longest-
operating facility to ensure that liability costs are accounted for. During the simulation, a nuclear
electricity demand growth rate of 2.3% per year is assumed (WNA, 2017). Legacy used fuel is
assumed to be directly disposed of in a geologic repository; consequently, it has no effect on the
results presented here.

In the two-stage game, Government plays first and chooses whether to invest in waste
disposal or reprocessing research and development (R&D). Waste Disposal R&D affects the
probability distribution of possible waste disposal cost outcomes, whereas Reprocessing R&D
deterministically chooses the reprocessing technology cost. Based on the waste disposal cost
outcome, influenced by Government’s chosen R&D strategy, and the reprocessing cost, Utility
chooses a fuel cycle scheme, consisting of either (1) the once-through fuel cycle with direct
disposal of used fuel discharged from thermal reactors or (2) the closed fuel cycle with continuous
recycle of used fuel discharged from thermal reactors in FRs. Technology costs are available in
Appendix A.

Prior to 2035, electricity demand targets are met by building new LWRs, with the original
fleet of LWRSs retiring by 2040. In 2035, Utility chooses a fuel cycle strategy based on the outcome
of Government’s stage-one decision and has three available options to choose from: continue
building LWRs, build high-temperature gas-cooled reactors (HTGRs) that benefit from increased
fuel utilization, or build sodium-cooled FRs (SFRs) that recycle used fuel discharged from thermal
reactors, closing the fuel cycle. If Utility decides to build SFRs, VEGAS attempts to build SFRs
to satisfy demand; but if available used fuel for recycle is insufficient to continue steady supply of
fresh fuel for an SFR during its lifetime, VEGAS’s roll-back feature is implemented. The roll-back
feature moves the simulation clock back to the year of construction for the SFR for which
insufficient fuel is available, replacing it with a lower-tier reactor (LWR or HTGR) that requires

enriched natural uranium, of which there is an unlimited supply.
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Figure 4.1: Timeline of reference fuel cycle transition scenario with key events and VEGAS
simulation input parameters.

4.2 Payoff calculation

Each unique VEGAS simulation is determined by Government’s decisions, Utility’s
decisions, and Nature’s moves; these collectively correspond to a path from root to leaf of the
decision tree, defined as a fuel cycle transition scenario, such as that depicted in Fig. 3.1. The
desirability of each scenario is evaluated by Government and Utility based on their decision
criteria, each of which is measured through some fuel cycle metric quantified through their
objective function values. Each scenario results in unique “consequences”. Here, the three metrics
of interest to the two players are the total cost of electricity, the cumulative heat load to the
repository, and the nuclear security measure during the fuel cycle simulation period. These fuel
cycle metrics compete directly, as fuel cycles that rely on separating actinides for recycle in FRs
generally are low in proliferation resistance, although they result in a lesser waste repository heat

burden. The opposite trend is true for fuel cycles that directly dispose used fuel. Costs for both
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advanced technologies are uncertain. The values of these metrics in a given scenario are calculated
using the output mass balance from the VEGAS simulator. These calculations are described
briefly.
4.2.1 Cost of Electricity

The levelized cost of electricity (LCOE) is the constant dollar price of electricity that would
be necessary over the economic life of a plant to provide an acceptable return on equity for
investors. The LCOE consists of two components: (1) Cg, front- and back-end fuel cycle charges
that are calculated by applying unit costs (typically in dollars per kg U, initial heavy metal (IHM),
or separative work units (SWU)) to the mass balance that quantifies the flow of materials between
fuel cycle processes as kg U, IHM, or SWU and (2) C,-oqct0r» reactor charges that are calculated
from the total overnight capital cost of the plant, amortized under assumptions regarding the

discount rate and construction time. The annual LCOE is calculated using

LCOE = w (41)

where E is the total energy in kWh, generated in that year. The total cost of electricity (COE) is

then found using

T
COE = z E,LCOE, (4.2)

t=to
where E, is the total electricity generated each year in the VEGAS simulation.
4.2.2 Decay Heat
For a given design and location of a geologic waste repository, the size of the repository is
controlled by the decay heat (Hardin et al., 2011; Wigeland et al., 2006). The total cumulative heat

load to the repository can be calculated using:

D=1, Y M. {(1 =1 ) @3N + ypp 1y dEFY (4.3)
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M,, = mass throughput of reactor type r in year t

rr¢ = fraction of fuel discharged from reactor type r in year t ultimately reprocessed
yrp, = output FP mass fraction from reactor type r
da>NF = decay heat constant of reactor type r from SNF

dfP = decay heat constant of reactor type r from FPs

The decay heat intensities per tIHM! of spent nuclear fuel (SNF), d>NF

, and high-level waste
(HLW) resulting from reprocessing of discharged used fuel, d’“", are applied to the mass balance,
giving the total heat load to the repository over the lifetime of the VEGAS simulation. The mass
balance gives M,. ., the total mass of fuel (ttHM) from reactor type r in year t, and r,. ., the fraction
of that fuel ultimately reprocessed. In Eq. (3), M, (1 —r,.,) is the quantity of SNF disposed of,
which, when multiplied by d>V¥ | yields the total heat load to the repository resulting from SNF.
In Eq. (3), 7., 1s the fraction of discharged used fuel reprocessed, and ypp_ is the mass fraction of
fission products (FPs) in the resulting HLW. Then M,.,r,. . ypp_ is the quantity of FPs in HLW
producing heat, at a rate dZ”, with M,.,r,.,yrp d5¥ being the total heat load to the repository

resulting from disposal of FPs in HLW. The decay heat intensities per ttHM or SNF and HLW for
LWR and HTGR technologies is available in Appendix A.

4.2.3 Proliferation Resistance

The proliferation resistance of a fuel cycle is a measure of its ability to resist the illicit
diversion of material for the production of weapons-usable material through both intrinsic (to the
material or process) and extrinsic (or engineering) barriers. Charlton et al. (2007) provide a

thorough methodology for calculating the dynamic proliferation resistance of a fuel cycle.

I The calculation of d>F and d™" involves reactor fuel depletion and decay calculations using the Oak Ridge
Isotope Generation (ORIGEN) code included in the SCALE 6.2 package (Rearden and Jessee, 2016).
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The total nuclear security measure, defined by Charlton as the total time-and mass-
weighted average of the static proliferation resistance values PR; for a fuel cycle consisting of

i=1,2,..,1processes, is found using:
I
_ Zizl miAtiPRi

NS = (4.4)
T
2, mt;
where
m; = amount of material in process i in significant quantities
At; = time material is in process i at the static proliferation resistance value for process i
PR; = static proliferation resistance value for process i
The static proliferation resistance for process i is found using:
J
j=1
where
w; = weight for attribute j
u; = utility function for attribute j
x;j = input value for the utility function for attribute j in process i

which is a weighted sum of a score (translated from a utility function u;; based on a quantitative
or qualitative measure) from j different attributes of the ability of the process ability to impede
proliferation.

The average nuclear security measure during a given VEGAS simulation is used here to

measure the overall proliferation resistance of the fuel cycle, which can be calculated using:

T
1
NS=z ) NS, (46)
t:to
NS; = total nuclear security measure in year t
NS = average nuclear security measure for a given fuel cycle transition path during the

fuel cycle simulation period

Each fuel cycle metric is translated into a score using the min-max normalization, in which

the least favorable metric value across all scenarios receives a score of 0 and the most favorable
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metric value receives a score of 1, with all intermediate metric values normalized using linear
interpolation. For the total COE and the cumulative heat load to the repository, the score is found
using:

F2 — min !

S =
" maxfY — min f? (4.7)
0 0

where f? is the metric value for path 9 through the decision tree, with the set ¥ € ® producing the

entire decision tree depicted in Fig. 3.1. The score of the proliferation resistance metric is:
72— min

B max f¥ — min f?
0 0

9 _
Se=1 (4.8)

The evaluation criteria are indexed over ¢, with the overall payoff for path 9 calculated using:

pY = Z WS . (4.9)
c

Once payoffs are determined for each 9 € 0, the Hedge algorithm depicted in Fig. 3.2 is used to
select the decision that maximizes the expected payoff.
Government’s and Utility’s assumed decision criteria weightings are given in Table 4.2 for

the two-stage demonstration game, which are subject to the constraint:
Z w, =1 (4.10)
c

where ¢ indexes over the cost of electricity, decay heat and proliferation resistance criteria.
Government’s three criteria are assumed to be of equal importance. Ensuring that nuclear power
remains a viable marketplace option along with other electricity generation technologies is
advantageous if climate change policy is enacted. The international consensus is that geologic
repositories represent the best-known method for permanently disposing of SNF and HLW
generated from nuclear power production. Siting, construction, and licensing of a geologic

repository is assumed to be a federal responsibility (DOE, 2013). Since the decay heat from SNF
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and HLW ultimately determines the size of the repository needed, minimizing the heat load is
favorable. Finally, from a national security standpoint, the need to develop a proliferation-resistant
fuel cycle is apparent. On the other hand, Utility’s two criteria include the COE and decay heat,
with greater importance placed on the former. Utilities are typical businesses in many respects;
and increased electricity sales result in increased revenues and therefore profits, especially in an
unregulated market. Historically, under the Nuclear Waste Policy Act of 1982, utilities were
charged 1 mill per kWh of nuclear electricity, paid to a Nuclear Waste Fund, which was to fund
the development of repositories for disposing of SNF and HLW (DOE, 2004). Yucca Mountain
was designated as the first site for a geologic repository for nuclear waste in 1987 and was
originally approved in 2002. However, as a result of the DOE shutdown of the Yucca Mountain
project in 2010, the federal government has failed to meet its obligation to dispose of nuclear
waste, leaving 39 states to store radioactive waste on-site (NEI, 2018). Because of the issues
surrounding licensing, constructing, and operating a nuclear waste repository, utilities may be
responsible for long-term storage of their nuclear waste. Generally, fuel cycles that directly dispose
of discharged used fuel result in a larger repository heat burden, although the proliferation
resistance is high because these cycles avoid producing separated actinides. The opposite

relationship holds in considering fuel cycles that recycle discharged used fuel.

Table 4.2: Player Government’s and Utility’s assumed decision criteria weighing for
demonstration problem.

Criterion Weighting (w,)
Evaluation Criterion (¢)  Player Government  Player Utility

Cost of Electricity 0.3 0.9
Decay Heat 0.3 0.1
Proliferation Resistance | 0.3 0.0
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4.3 Results: Perfect Information and Hedging Strategies

The perfect information strategies represent those strategies that would be optimal if the
decision maker knew all of Nature’s moves (outcomes of stochastic parameters) in advance.
Additionally, these strategies require that each player correctly anticipate the moves of the other
player. For the two-stage demonstration game, Government’s and Utility’s decisions when perfect
information is available are depicted in Fig. 4.2. In the case where the waste disposal cost outcome
is low (Fig. 4.2a), Utility chooses thermal reactors, which produce a greater volume of waste, since
disposing of used fuel is cheap. Government can choose a “do nothing” strategy because the
Reprocessing R&D strategy affects the reprocessing cost; no reprocessing technology is employed
for the once-through fuel cycle; and the Waste Disposal R&D strategy affects the probability
distribution of the waste disposal cost outcomes, which are already known in the perfect
information scenario. If Government were to choose the “do nothing” strategy, it is likely that
leftover funds from opting out of R&D spending would be used in operation of the waste
repository. However, these leftover funds are implemented in the VEGAS simulations as a capital
subsidy for LWRs to ensure that all decision alternatives entail the same level of total expenditures,
which facilitates the analysis. Alternatively, in the case where the waste disposal cost outcome is
high (Fig. 4.2b), Government chooses the Reprocessing R&D strategy to lower the cost of
reprocessing, and Utility chooses to transition to a closed fuel cycle by building FRs. As a result,
less waste is disposed of in the repository, which has the effect of minimizing the fuel cycle cost

and heat load to the repository.
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Known Waste

“Do Nothing” Disposal Cost
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Thermal Reactors

% __

(a) Low Waste
Disposal Cost

(b) High Waste
Disposal Cost

SLA

Fast Reactors

Reprocessing R&D

Consequence of
player strategies and
parameter outcome

Figure 4.2: Player Government’s optimal R&D strategy and Player Utility’s optimal fuel cycle
strategy (thermal reactors: open fuel cycle and fast reactors: closed fuel cycle) when
both players operate with perfect information, knowing that in (a) the waste disposal
cost is low and in (b) the waste disposal cost is high.

When Government and Utility hedge optimally under uncertainty, a transition to a closed
fuel cycle is never observed. Government hedges by choosing the Waste Disposal R&D, since the
expected state of the world (overall disposal cost outcomes) is unfavorable to recycling of used
fuel. Then, in all cases, Utility builds thermal reactors and directly disposes of discharged reactor
fuel. On the contrary, if Government instead chooses the Reprocessing R&D strategy and the waste
disposal cost outcome is high, then Utility is observed to switch the strategy toward a closed fuel
cycle, building FRs. These behaviors are depicted in Fig. 4.3a, in which Government and Utility

hedge optimally, and Fig. 4.3b, in which Government’s decision is fixed as Reprocessing R&D

and the waste disposal cost outcome is high.
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Figure 4.3: Player Utility’s optimal recourse decision (thermal reactors: open fuel cycle and fast
reactors: closed fuel cycle) (a) when Player Government chooses his optimal hedging
R&D strategy and (b) when Government’s R&D strategy is fixed. In (a), Government
chooses his strategy before knowing the state of the world that will prevail, and in
both (a) and (b) Utility chooses his recourse decision after the state of the world is
revealed.

The strategies chosen by each player—both perfect information and hedging strategies—
are contingent on their decision criteria weightings. Fig. 4.4 illustrates how Utility’s decision to
pursue an open fuel cycle (blue) or closed fuel cycle (red) depends on the weightings of the three
decision criteria (Wcog, Wpr, Wpg) for (cost of electricity, decay heat and proliferation resistance).
Fig. 4.4a represents cases where Government chose Waste Disposal R&D, whereas Fig. 4.4b
represents cases where Government chose Reprocessing R&D. The quantiles of Fig. 4.4a and 4.4b

are then shaded based on Utility’s recourse decision (opening or closing the fuel cycle) after having

observed Government’s decision.
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Examining the bottom-left quantile of both Fig. 4.4a and 4.4b, Utility’s optimal recourse
decision is shaded blue to indicate the decision to keep the fuel cycle open, building thermal
reactors and directly disposing of the resulting used fuel. This decision is made when Utility is
concerned only about lowering the COE, regardless of whether Government chooses Waste
Disposal or Reprocessing R&D. Compare that scenario with the bottom-right region shaded
orange, in which Utility’s optimal recourse decision is now to close the fuel cycle, based only on

lowering the heat load to the repository.
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Figure 4.4: Player Utility’s weighted decision matrices (with weog = 1-wpr-wpy) for selecting an
optimal recourse decision based on Player Government’s first-stage strategy being
(a) Waste Disposal R&D or (b) Reprocessing R&D and a high waste disposal cost
outcome.

Utility’s recourse decision is most heavily influenced by the tradeoff between proliferation
resistance and decay heat. However, the effect of the cost of electricity can be observed when
considering the transition of Utility’s weightings of (Wcog, Wpn, Wer) from (0.0, 0.5, 0.5) to (0.2,
0.4, 0.4). Here, the ratio between wpy and wpr remains the same, but wcog increases from 0.0 to

0.2. Using Fig. 4.3a, we observe that Utility’s optimal recourse decision changes from a closed

fuel cycle to an open fuel cycle.
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The threshold observed in Fig. 4.3, in which Utility changes his decision based on
Government’s stage-one strategy, can be seen by comparing the quantile of row one and column
two of Utility’s decision matrices in Fig. 4.4. In this quantile, Utility has a baseline criteria
weighting in Table 4.2 (0.9, 0.1, and 0.0 for the COE, decay heat and proliferation resistance,
respectively). Here, Government’s choice between Waste Disposal R&D and Reprocessing R&D
results in a different response by U. These inflection points at which Government is able to
influence Utility’s recourse decision can be seen by comparing Utility’s decision matrices in Fig.
4.4a and 4.4b, and where Utility’s recourse decision is altered by his own criteria weighting by

comparing the individual quantiles in Fig. 4.4a or 4.4b.

5. Conclusions

This paper presents a novel methodology for optimizing nuclear fuel cycle transitions that
captures interactions between self-interested agents. The methodology is demonstrated in an
example two-person, two-stage problem, in which players represent a policy maker and an electric
utility company. While the example scenario features just two players and two stages, the hedging
algorithm presented generalizes to any number of stages and agents. Results from the example
scenario identify a near-term hedging strategy that maintains flexibility to adapt a transition
strategy or policy choice based on new information. These adapted decisions are termed “recourse
decisions.” This strategy shift in response to information gained during the transition illustrates
the importance of coupling a fuel cycle simulator with a model of autonomous decision making.

The work presented in this paper addresses some shortcomings of past fuel cycle analysis
studies, including treatment of transients, a multi-agent decision making process (versus the
“benevolent dictator” norm), and explicit handling of uncertainties. Many components of the
analysis may be developed further in future work. Briefly, some expansions may be the inclusion

of simultaneous decisions when multiple utility companies compete to fulfill a fixed demand for
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nuclear electricity, different scalarization methods for multi-objective optimization, and inclusion
of other objectives in addition to the three considered here.

Beyond the realm of fuel cycle transition analysis, the work presented here has further
applications in nuclear safeguards and security, where a fuel cycle simulator may be used to
identify vulnerabilities in the fuel cycle. A novel coupling of a fuel cycle simulator to an
adversarial game offers the ability to more realistically calculate decision criteria such as the time
requirement for significant diversion of special nuclear material, idle enrichment or reprocessing
capacity, and quantities of stockpiled separated actinides. A temporal cross section in a fuel cycle
simulation containing quantities and qualities of material circulating and in stockpiles, as well as
available capacities of nuclear technologies may give initial conditions for a breakout scenario in
which an aggressive strategy to produce or divert large quantities of high-value special nuclear
material is pursued or, at worst, a regime change whereby a civilian nuclear power program is

abandoned in favor of a nuclear weapons production program.
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Appendix

Values of key parameters used throughout the analysis of the reference transition scenario
are given in the table below. Some commentary on these values follows:
Waste Disposal Costs: Obtained from the 2009 Advanced Fuel Cycle Cost Basis report
(Shropshire et al., 2009).
Reactor Capital Costs: SFR capital costs were collected from fuel cycle expects of the Advanced
Fuel Cycle Initiative Economic Working Group, who also informed updated LWR capital costs
from their 2009 estimates.
Decay Heat Coefficients: Reactor fuel recipes are approximated from the DOE’s Evaluating and
Screening Study (Wigeland et al., 2014). Fuel burnup and depletion calculations were performed
using the Oak Ridge Isotope Generation (ORIGEN) code included in the SCALE 6.2 package
(Rearden and Jessee, 2016). Post processing of ORIGEN results yield actinide and fission product
decay heat intensities.
Static Proliferation Resistance Values: Similar calculations to decay heat coefficients, though at
a finer isotopic scale. Calculation of nuclear security attributes for material in their forms during
individual fuel cycle processes which contribute to the overall proliferation resistance value follow
the methodology presented by Charlton et al. (2017). Values in the table are presented in units of

utility per unit mass through the fuel cycle process.
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Table A.1: Key parameter values for analysis of reference transition scenario.

Waste Disposal Costs

Low Cost Outcome High Cost Outcome
SNF Disposal ($/kg IHM) 602 987
HLW Disposal ($/kg FP in IHM) 4,133 8,795
Reactor Capital Costs

LWR SFR
Total Overnight Capital Cost ($/kWe) 4,177 4,155
Decay Heat Coefficients

LWR SFR
SNF Disposal (watts per tIHM) 1.849E+03 8.929E+03
HLW Disposal (watts per tFP in HLW) 1.322E+03 2.738E+03
Static Proliferation Resistance Values

LWR SFR
Uranium Mining (per kg U as U3Og) 0.791 0.791
Conversion (per kg U as U3Og) 0.791 0.791
Enrichment (per SWU) 0.788 1.000
Fuel Fabrication (per kg THM) 0.807 0.575
SNF Storage (per kg IHM) 0.854 0.815
Reprocessing (per kg IHM) 0.583 0.599
SNF Disposal (per kg IHM) 0.825 0.838
HLW Storage (per kg IHM) 0.914 0.916
HLW Disposal (per kg IHM in HLW) 0.919 0.917
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