

Selected Technical Papers

On High Fluence Irradiation Hardening of Nine RPV Surveillance Steels in the UCSB ATR-2 Experiment: Implications to Extended Life Embrittlement Predictions

Journal:	<i>STP: Selected Technical Papers</i>
Manuscript ID	Draft
Manuscript Type:	Full Length Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Nanstad, Randy; R&S consultants, LLC, ; Oak ridge National Laboratory, Materials Science and Techology Division Almirall, Nathan; University of California Santa Barbara Server, William; ATI Consulting, Wells, Peter; University of California Santa Barbara Sokolov, Mikhail; Oak Ridge National Laboratory, Materials Science and Technology Long, Elliot; EPRI, Odette, G. Robert; University of California Santa Barbara
ASTM Committees and Subcommittees:	E10.02 Behavior and Use of Nuclear Structural Materials < E10 Committee on Nuclear Technology and Applications
Keywords:	Radiation embrittlement, flux effects, microhardness, shear punch, transition temperature shift correlations, high fluence data
Abstract:	Nine archival reactor pressure vessel (RPV) surveillance steels from commercial nuclear power plants were irradiated in the UCSB Advanced Test Reactor 2 (ATR-2) experiment to evaluate irradiation embrittlement under low flux surveillance capsule versus higher flux test reactor (ATR-2) conditions. The post-irradiation measurements of irradiation hardening, measured as increases in yield stress ($\Delta\sigma_y$), and corresponding conversions of $\Delta\sigma_y$ to Charpy V-notch 41 J transition temperature shifts (ΔT_c), are compared to various embrittlement trend curve (ETC) model predictions for the nine steels. Tensile, and converted shear punch and microhardness measurements of $\Delta\sigma_y$ generally show a continuing increase between intermediate and the high ATR-2 fluences. The EONY and E900 ETC models underpredict embrittlement at the ATR-2 irradiation condition of: irradiation temperature (T_i) of 292°C, neutron fluence (Φ_t) of 1.4×10^{20} n/cm ² ($E > 1$ MeV) and neutron flux (Φ) of 3.68×10^{12} n/cm ² ·s. On average, the French FIS and Japanese JAEC ETCs slightly overpredict the ATR-2 data. The increase in $\Delta\sigma_y$ with higher fluence is primarily due to Ni-Mn-Si precipitates, which slowly evolve in both nearly copper free and copper bearing steels. Finally, a new OWAY embrittlement model is shown which yields good predictions for the 9 steels at high fluences ($\Phi_t > 5.5 \times 10^{19}$ n/cm ²).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SCHOLARONE™
Manuscripts

On High Fluence Irradiation Hardening of Nine RPV Surveillance Steels in the UCSB ATR-2 Experiment: Implications to Extended Life Embrittlement Predictions

Randy K. Nanstad¹, Nathan Almirall², Peter Wells², William L. Server³
Mikhail A. Sokolov¹, Elliot J. Long⁴ and G. Robert Odette²

Abstract

Nine archival reactor pressure vessel (RPV) surveillance steels from commercial nuclear power plants were irradiated in the UCSB Advanced Test Reactor 2 (ATR-2) experiment to evaluate irradiation embrittlement under low flux surveillance capsule versus higher flux test reactor (ATR-2) conditions. The post-irradiation measurements of irradiation hardening, measured as increases in yield stress ($\Delta\sigma_y$), and corresponding conversions of $\Delta\sigma_y$ to Charpy V-notch 41 J transition temperature shifts (ΔT_c), are compared to various embrittlement trend curve (ETC) model predictions for the nine steels. Tensile, and converted shear punch and microhardness measurements of $\Delta\sigma_y$ generally show a continuing increase between intermediate and the high ATR-2 fluences. The EONY and E900 ETC models underpredict embrittlement at the ATR-2 irradiation condition of: irradiation temperature (T_i) of 292°C, neutron fluence (ϕt) of 1.4×10^{20} n/cm² ($E > 1$ MeV) and neutron flux (ϕ) of 3.68×10^{12} n/cm²·s. On average, the French FIS and Japanese JAEC ETCs slightly overpredict the ATR-2 data. The increase in $\Delta\sigma_y$ with higher fluence is primarily due to Ni-Mn-Si precipitates, which slowly evolve in both nearly copper free and copper bearing steels. Finally, a new OWAY embrittlement model is shown which yields good predictions for the 9 steels at high fluences ($\phi t > 5.5 \times 10^{19}$ n/cm²).

Key Words

Radiation embrittlement, flux effects, microhardness, shear punch, transition temperature shift correlations, high fluence data

¹Oak Ridge National Laboratory; ²University of California Santa Barbara; ³ATI Consulting; ⁴Electric Power Research Institute

1. Introduction

6 Reactor pressure vessel (RPV) integrity is the primary safety concern for light water
7 nuclear reactors. At the start of life, the fracture toughness of RPV steels is sufficiently high so
8 as to assure vessel integrity. However, RPV steels close to the reactor core experience neutron
9 irradiation embrittlement. The degree of embrittlement, manifested as the degradation of fracture
10 toughness, with an attendant increase in yield stress ($\Delta\sigma_y$), depends on the sensitivity of a
11 particular RPV steel [1,2].

19 Embrittlement is traditionally monitored by shifts in the transition temperature measured
20 using shifts in Charpy V-notch energy-temperature curves (ΔT_c) indexed at 41 J, as well as
21 decreases in upper shelf energy. Many different predictive ΔT_c models, typically called
22 embrittlement trend curves (ETCs), have been developed in different countries [3]. The ETCs are
23 largely based on power reactor surveillance capsule data representing the fleet of reactors in each
24 country. While these models are generally robust up to intermediate fluences, on the order of
25 $5 \times 10^{19} \text{ n/cm}^2$ ($E > 1 \text{ MeV}$), extrapolations to higher, end of extended life fluences, nominally of
26 order 10^{20} n/cm^2 , are more uncertain, since there is relatively little surveillance data for these
27 conditions. One way to supplement surveillance data at higher fluences is the use of accelerated
28 test reactor irradiations. However, this approach naturally raises the issue of flux effects on
29 embrittlement, known to be important at low fluence [2]. Note, embrittlement variables are
30 highly interactive, and act in combination to mediate ΔT_c . It is also well established that changes
31 in the yield strength ($\Delta\sigma_y$) are related to ΔT_c . Thus, it is critical to measure ΔT_c , $\Delta\sigma_y$ and the
32 underlying microstructural evolutions, over a wide range of fluxes, for a large matrix of alloys
33 covering pertinent ranges of irradiation fluences and temperatures.

1
2
3 The results presented in this paper are based on high fluence data from a test reactor
4
5 irradiation of nine RPV surveillance steels, which are compared to actual surveillance data for a
6 range of lower fluxes and fluences [3]. Due to limitations in space in the test reactor irradiation,
7
8 the $\Delta\sigma_y$ for the large steel matrix was characterized by tensile, microhardness, and shear punch
9 tests. Results from the actual surveillance programs are based on Charpy V-notch and tensile
10 tests. Thus, correlations between microhardness, shear punch and tensile test yield strength
11 changes ($\Delta\sigma_y$), as well as between the $\Delta\sigma_y$ and Charpy V-notch ΔT_c were developed to allow
12 intercomparisons of the surveillance and ATR-2 data.
13
14

15 Seven of the steels in the ATR-2 irradiation program described in this paper are currently
16 being irradiated to high fluence in operating commercial Pressurized Water Reactors (PWRs) in
17 an Electric Power Research Institute (EPRI) project called the PWR Supplemental Surveillance
18 Program (PSSP) [5]. Thus, there will be an opportunity to assess the effect of neutron flux, as
19 well as the property-property correlation procedures, for these steels. In the meantime, the high
20 fluence test reactor data are compared with embrittlement trend predictions used in several
21 countries, including the new Odette, Wells, Almirall, Yamamoto (OWAY) model [2].
22
23

2. ATR-2 Test Reactor Irradiation and Materials

24 Details on the irradiation conditions in the Idaho National Laboratory Advanced Test
25 Reactor 2 (ATR-2) are described elsewhere, along with the overall test matrix [6-8]. Nine
26 commercial RPV steels that have surveillance capsule results were irradiated to a fluence of
27 $\sim 1.38 \times 10^{20} \text{ n/cm}^2$ ($E > 1 \text{ MeV}$) in the ATR test reactor at an average temperature of 292°C [6-
28 8]. The chemical composition of the nine archival steels are listed in Table 1. The five elements,
29 which are major embrittlement variables (Cu, Ni, Mn, Si, and P), highlighted in red bold
30 numbers, cover a broad range of compositions: copper 0.03 to 0.36 wt%, nickel 0.19 to 0.95 wt%,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

manganese 0.79 to 1.44 wt%, silicon 0.18 to 0.50 wt%, and phosphorous 0.004 to 0.016 wt%.

The compositions were taken from the Reactor Embrittlement Archive Project (REAP) compilation of the data, developed at Oak Ridge National Laboratory for the U.S. Nuclear Regulatory Commission (USNRC), other information contained in commercial reactor vessel surveillance reports and the ASTM Plotter package [9,10]

Table 1. Compositions of the nine archival commercial reactor surveillance steels.

Code	Material (Heat)	Cu	Ni	Mn	Si	P	Cr	Mo	C	S
A	Linde 91 weld (33A277)	0.14	0.19	1.06	0.27	0.016	0.06	0.50	0.13	0.009
B	SA533B-1 plate (C7466-1)	0.20	0.60	1.33	0.23	0.005	0.11	0.49	0.22	0.016
C	SA 508-2 forging (123X167VA1)	0.06	0.75	0.79	0.28	0.010	0.35	0.58	0.20	0.009
D	Linde 1092 weld-M (1P3571)	0.36	0.78	1.42	0.18	0.013	0.04	0.49	0.18	0.011
E	SA533B-1 plate (C0544-2)	0.05	0.56	1.32	0.24	0.010	0.08	0.59	0.24	0.016
F	Linde 1092 weld-K (1P3571)	0.22	0.72	1.37	0.20	0.016	0.09	0.48	0.12	0.011
G	SMAW (BOLA)	0.03	0.90	0.94	0.32	0.004	0.03	0.23	0.14	0.014
H	Linde 124 weld (4P4784))	0.04	0.95	1.41	0.45	0.009	0.13	0.48	0.09	0.009
I	Linde 80 Weld, SA-1094 (71249 flux lot 8457)	0.29	0.60	1.44	0.50	0.014	0.14	0.36	0.10	0.011

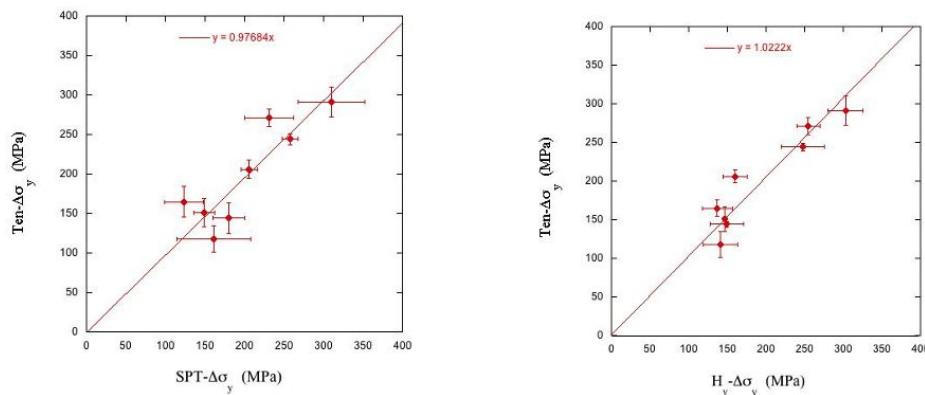
Subsized 16x4x0.5 mm SSJ-2 tensile and multi-purpose disc specimens were machined from the archival steels. Two to three tests of tensile specimens, with guage section of 5 or 2.2 mm, were carried out at the University of California, Santa Barbara (UCSB) using an MTS 810 load frame, in accordance with ASTM E8/E8M-16 [11], at a displacement rate of 0.008 mm/s resulting in strain rates in the range of 0.002 to 0.004/min. Standard engineering stress-strain, $\sigma(\epsilon)$, curves were based on individual specimen thickness measurements, and a best fit to the elastic loading line was used to establish the 0.2% offset yield stress (σ_y). The ultimate engineering stress (σ_u) and uniform engineering strain at maximum load were also determined. The irradiated tests were generally stopped after maximum load to keep the specimens intact.

1
2
3 Both tensile specimen guage sections gave the same highly reproducible results with an overall
4 standard deviation of in $\Delta\sigma_y$ and $\Delta\sigma_u$ of ~ 10 MPa.
5
6

7 Vickers microhardness (H_v) measurements were conducted at UCSB in accordance with
8 ASTM E384-16 [12]. H_v tests were also performed at ORNL in accordance with ASTM E92-16
9 [13]. At ORNL H_v was taken as the average of 5 indents made using 10 kg loads on unpolished
10 20 mm and 8 mm diameter discs. At UCSB, H_v was taken as the average of 10, or more, indents
11 using 0.5 kg loads on polished 3 mm diameter discs, punched from the larger discs using an
12 UCSB device designed maintain specimen flatness. The average difference between the ORNL
13 and UCSB H_v was less than 2%. The standard deviation in the hardness measurements was ~ 5
14 DPH (kg/mm^2), which corresponds to ~ 50 MPa.
15
16

17 Details of a shear punch test using the semiautomated apparatus developed at UCSB are
18 described elsewhere [14]. Basically, a precision punch and die fixture blanked 3 mm discs from
19 multipurpose coupons, while measuring the corresponding loads and displacements. The load-
20 displacements curves were converted to equivalent shear stresses (τ) and strains (γ), as the steel
21 deforms between the punch and die. The shear yield stress (τ_y) was determined at a 1% offset
22 from the elastic load line, while the maximum load defined τ_u . The standard deviation in τ_y and
23 τ_u was ~ 7 MPa.
24
25

26 Previous standard practice was to convert ΔH_v and $\Delta\tau_y$ to $\Delta\sigma_y$ using simple empirical
27 correlations. However, it is more accurate to first evaluate the σ_{yi} for the irradiated H_{vi} and τ_{yi} to
28 estimate the corresponding $\Delta\sigma_y$, by subtracting the unirradiated tensile test σ_y . The unirradiated
29 tensile σ_y data are generally available and more accurate than estimates based on the H_v and SPT
30 methods. The empirically observed relation σ_y/τ_y for the 9 unirradiated steels was found to be
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 identical to the ideal Von Mises of value of 1.73. However, the ratio increases in irradiated steels
4 to an average of ~ 1.89 . This difference is largely due to the reduction of strain hardening, since a
5 significant zone of plastic shear deformation precedes the 1% offset for τ_y . Notably, the σ_y/τ_y
6 values for the 9 surveillance steels are close to those found in an analysis of a much larger ATR-
7 2 database.
8
9

10 Likewise, it is necessary to convert the irradiated H_v to σ_y . It has been shown that H_v
11 values contain an average flow stress (σ_f) contribution, between 0 and 10% plastic strain,
12 associated with the indent [15]. This effect can be conceptually understood as the finite hardness
13 which would be measured in a material with a $\sigma_y = 0$, due to finite strain hardening at the
14 substantial indentation strains. Thus H_v and σ_y are approximately related as $\sigma_y = C_1 (< 0) + C_2 H_v$.
15 For commonly used units for σ_y and H_v of MPa and DPH (kg/mm²), $C_1 = (\sigma_y - \sigma_f)$, which can be
16 approximated as $C_1 \sim (\sigma_y - \sigma_u)$. The corresponding Vickers C_2 coefficient (σ_y - H_v slope,
17 MPa/DPH) is ~ 3 for elastic-perfectly plastic materials [16]. In practice, the σ_y - H_v slope, C_2 , can
18 be established by fitting σ_y versus H_v data. Here, a fit to the unirradiated and irradiated data
19 together was used in order to obtain a useful spread in H_v and σ_y data points. The C_1 intercept
20 was ~ -94 MPa, which is remarkably close to the average $\sigma_u - \sigma_y$ for the combined unirradiated
21 and irradiated data sets of 89 MPa. The corresponding C_2 slope is 2.8 MPa/DPH, which is 7%
22 lower than the elastic-perfectly plastic value of 3.
23
24

25 The SPT and H_v estimates of $\Delta\sigma_y$ derived from the irradiated τ_y and H_v based σ_{yi} minus
26 the unirradiated tensile test σ_{yu} are shown in Table 2 and Figure 1. While the SPT and H_v based
27 irradiated σ_{yi} generally track each other, the corresponding $\Delta\sigma_y$ for the later are more accurate
28 with a predicted minus measured standard deviation of 22.7 MPa with a -1.1 average bias.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 2. Tensile, SPT and H_v estimates of $\Delta\sigma_y$ (MPa).

Steel	Tensile	\pm	SPT	\pm	H_v	\pm
A	165	19	123	22	142	16
B	244	7	258	9	253	17
C	118	17	161	49	146	21
D	NA	NA	315	35	259	13
E	151	18	149	20	152	32
F	291	19	310	46	308	23
G	144	19	180	6	154	13
H	206	12	206	10	165	12
I	271	11	231	33	260	13

Figure 1. Tensile $\Delta\sigma_y$ versus estimates based on SPT (a) and H_v (b) data.

It is useful to compare the measured ATR-2 test reactor irradiation results with the measured surveillance data for the same steels, even though the surveillance data are at lower fluences. The surveillance $\Delta\sigma_y$ and ΔT_c data were extracted from the USNRC REAP data base, some additional surveillance reports and the ASTME-10 PLOTTER package. All the $\Delta\sigma_y$ data are for room temperature. To make such comparisons the surveillance ΔT_c data must be converted to a equivalent $\Delta\sigma_y$, as $\Delta T_c = C_c \Delta\sigma_y$. A generic relation for $C_c(\Delta\sigma_y)$, derived from a large data base, has been used in the past [17-19]. In this case C_c is a function of $\Delta\sigma_y$ and is

1
2
3 slightly different for plates and welds. However, the generic $C_c(\Delta\sigma_y)$ represents mean behavior.
4
5

6 It is well established that C_c (at 41J) also varies with the initial unirradiated Charpy transition
7 temperature and upper shelf energy, the upper shelf energy after irradiation and the coarse scale
8 steel microstructure [17]. Thus, when possible, a better approach is to least square fit pairs of
9
10 $\Delta\sigma_y$ - ΔT_c data for individual steels. The fit C_c results for the 9 steels in this study are shown in
11
12

13 Table 3 based on imposing 0,0 intercepts (note, allowing a finite intercept has little effect). Since
14 the relative scatter for low levels of hardening data is large, Table 3 also shows the C_c average of
15 the $\Delta T_c/\Delta\sigma_y$ data for $\Delta\sigma_y > 50$ MPa. The two C_c values are similar, except in one case where the
16
17 larger value is probably more reliable.
18
19

20
21
22
23
24
25
26
27 Table 3. C_c ($= \Delta T/\Delta\sigma_y$) based on measured pairs in the surveillance database for the 9 steels.
28
29

Steel	Fitted	Average
A	0.67	0.73
B	0.59	0.62
C	0.42	0.43
D	0.63	0.63
E	0.67	0.66
F	0.53	0.52
G	0.3	0.45
H	0.45	0.46
I	0.64	0.64

48
49 Figure 2a-i plot the actual measured ΔT_c as a function of fluence for the surveillance data
50
51 (open squares) compared to the corresponding predicted ΔT_c based on the tensile test $\Delta\sigma_y$ (and in
52 one case (D) the average of the SPT and H_v converted $\Delta\sigma_y$) for both the individual steel C_c
53
54 estimates (blue triangle for the fitted and green diamond for the average C_c), as well as the
55
56
57
58
59
60

1
2
3 generic function (red circle). The generic C_c based ΔT_c show large overpredictions in some cases,
4 with a standard deviation and bias of 20 and 3.9, respectively. The agreement is much better for
5 the averaged and fitted values. with a standard deviations of 12 MPa and biases of -2 and -0.3
6
7 MPa, respectively. Figure 2 also shows that the corresponding $\Delta\sigma_y$ based estimates of ΔT_c
8
9 increases approximately linearly between surveillance and the higher ATR-2 fluence, with 2
10
11 exceptions. This behavior has been widely observed and is a key feature of the OWAY model as
12
13 discussed in Section 4. Figure 3a-i show the direct comparison of measured and predicted ΔT_c
14
15 for least square fitted, averaged, or based on the generic fit C_c 's.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3. Comparison of Estimated High Fluence Mechanical Properties with Current Embrittlement Trend Equations

A number of empirical, or semi-empirical, ΔT_c models have been proposed in different countries [1-3,18-25], in some cases motivated by the physics of embrittlement [2, 23]. Most of these so-called embrittlement trend curves (ETC) are based on correlations of country-specific surveillance capsule databases. The ETC generally account for Ni, Cu, P and other elements, product form, fluence, irradiation temperature, and in some cases flux. Here the predictions of key ETCs are: a) U. S. Regulatory Guide 1.99, Rev. 2 [20] ; b) EONY [17-19], which is in the alternate PTS Rule [21]; ASTM E900-15 [22]; c) JEAC 4201-13 Japan [23]; EdF 900 MW from France [24].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

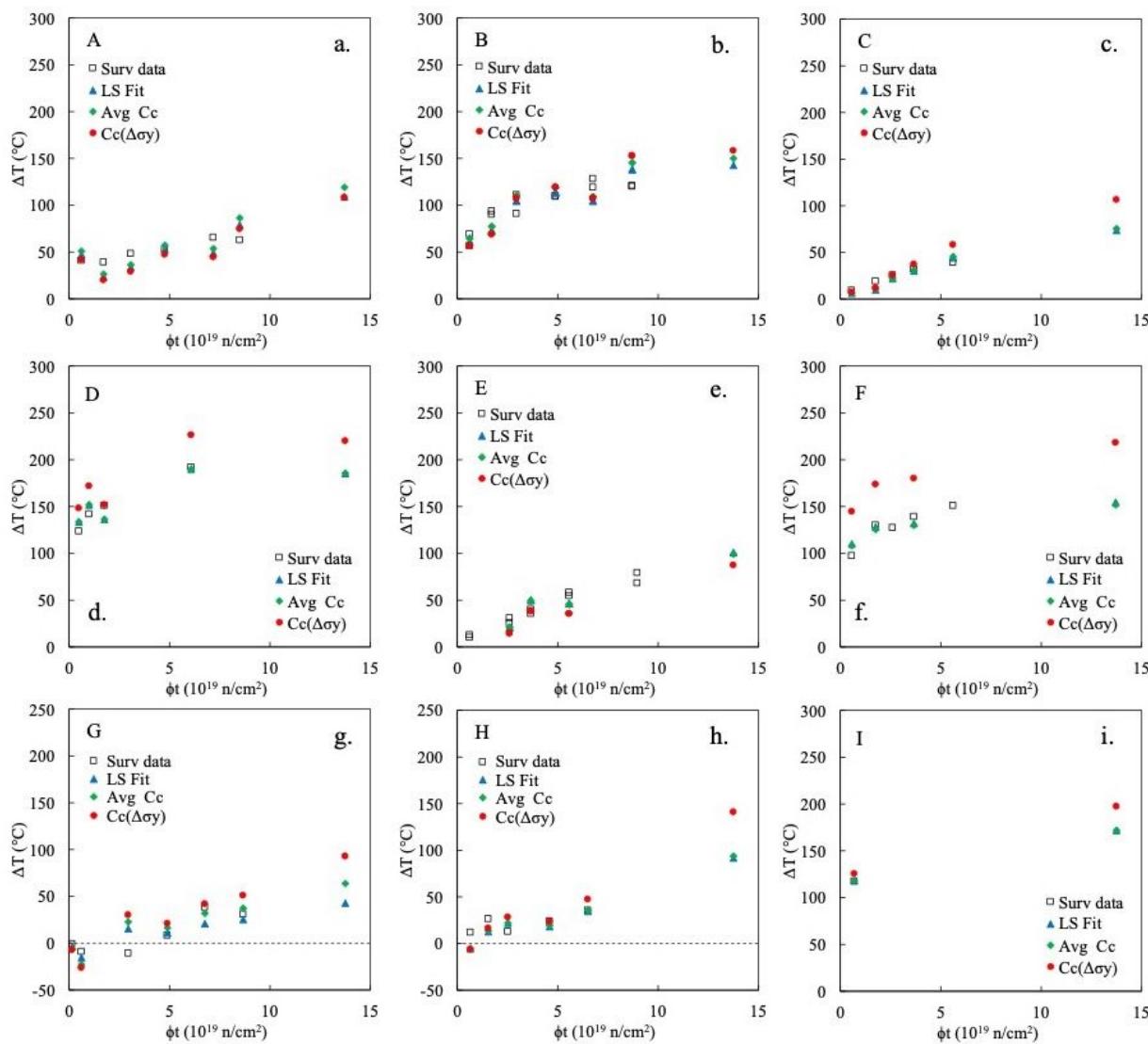


Figure 2a-i. Measured ΔT_c as a function of fluence for the surveillance data; the corresponding predicted ΔT_c estimates based on the tensile test $\Delta\sigma_y$ (in one case the average of the SPT and Hv converted $\Delta\sigma_y$) for the two individual steel and generic fit function C_c .

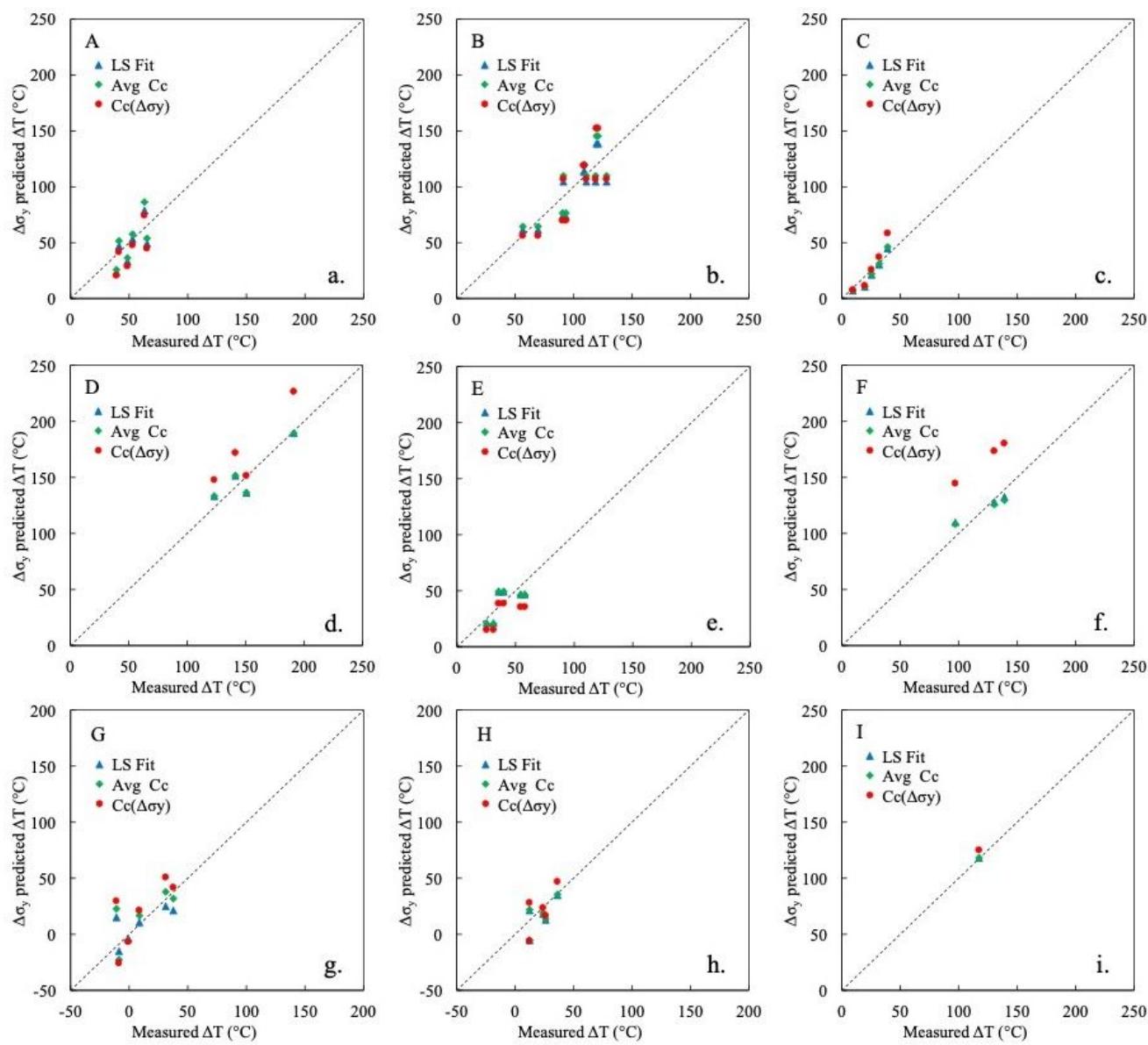


Figure 3a–i. Predicted versus measured ΔT_c for C_c 's least square fitted, averaged or from the generic fit.

Note, ASTM E900-15 is unique since it was developed by ASTM Committee E10.02 using surveillance capsule data (1878 data values) from thirteen countries and assessments of nine ETCs existing at the time [25]. Thus, ASTM E900-15 can be considered an *international* embrittlement trend equation. Countries that developed their own ETCs based on national surveillance capsule databases, rely on them to make embrittlement assessments and predictions

1
2
3 for their existing operating and possible new reactors. Since many countries seek to extend
4 operating licenses for existing reactors to 80 years, or more, the choice of the most appropriate
5 trend equation is very important, and requires reliable data reaching a fluence of about 10^{20}
6
7 n/cm² for pressurized water reactors.
8
9

10
11 The prediction ΔT_c values from these five embrittlement prediction equations/methods are
12
13 compared to the ATR-2 ΔT_c estimates as shown in Table 4. The predictions are based on the the
14
15 mean of the fitted and averaged C_c , the chemistry content from Table 1 at 1.38×10^{20} n/cm² and
16
17
18 292°C for the ATR-2 irradiation. On average the EDF FIS and JEAC 4201-13 overpredict the
19
20
21 ATR-2 ΔT_c estimates, with a mean predicte minus measured bias of +28 and +15 °C and
22
23 standard deviations of 21 and 50°C, respectively. The EONY and E900 predictions underpredict
24
25 the ATR-2 ΔT_c by -33 and -21, respectively, with standard deviations of 37 and 22 °C.
26
27
28
29
30
31
32
33
34
35

36 Table 4. Comparisons of ATR-2 ΔT_c estimates to predicted ΔT_c values from five embrittlement
37 prediction equations/methods.

Material Code	Tensile Yield to ΔT_c , °C	H_v -SPT Average to ΔT_c , °C	ΔT_c Predictions from Trend Equations, °C				
			RG1.99, Rev. 2	EONY	ASTM E900-15	JEAC 4201 -13	EDF 900 MW
A	116	93	67	71	85	125	122
B	148	155	128	107	115	172	154
C	76	65	32	35	62	109	88
D	NA*	181	208	175	164	189**	220**
E	100	100	27	52	72	92	81
F	153	162	161	140	136	183	205
G	65	75	35	43	53	89	82
H	94	84	46	47	74	89	89

I	173	157	164	134	153	183	229
Average Bias			-26	-33	-21	15	28
Standard Deviation			40	37	22	21	50

*No tensile data is available; **Assuming the maximum Cu = 0.3% for this Linde 92 weld [EONY].

4. The OWAY Model

The overriding objective of the ATR-2 experiment was to develop accurate predictions for predicting ΔT_c at low ϕ , high ϕt extended life conditions [2,6]. Special emphasis was also on the $\Delta\sigma_y$ contributions of Ni-Mn-Si precipitates, which are observed in a wide range of RPV steels at high ϕt . Unfortunately, there is little surveillance data in this fluence regime. Thus, the main goal of ATR-2 was to create and analyze the high fluence, intermediate flux database, for both $\Delta\sigma_y$ and microstructural changes, in a large matrix of irradiated alloys. The ATR-2 results were integrated with a variety of other databases to develop a new high ϕt -low ϕ predictive embrittlement procedure. The general approach of the so-called Odette, Wells, Almirall and Yamamoto (OWAY) model was based on four steps [2]:

1. Derive a composition dependent chemistry factor ($CF = \Delta\sigma_y$) for the ATR-2 condition just described.
2. Exploit the fact that neutron fluence dependence between intermediate ($\approx 3-5 \times 10^{19}$

n/cm^2) and the high, extended life ATR-2 fluence ($\approx 1.4 \times 10^{20} \text{ n}/\text{cm}^2$) is approximately

linear.

3. Account for the flux difference between the ATR irradiation condition ($\approx 3.68 \times 10^{12}$

$\text{n/cm}^2\text{-s}$) and low flux vessel service condition ($\approx 4 \times 10^{10} \text{ n/cm}^2\text{-s}$) as an effective fluence,

ϕt_e .

4. Interpolate between the intermediate and high effective fluence.

Step 1: The ATR-2 CF was based on 49 $\Delta\sigma_y$ data points and is given by:

$$CF = \Delta\sigma_y(ATR-2) = 127 + (Cu - Cu_{min}) * 570 + [(Cu - Cu_{min}) * 504 + 82.8](Ni - 0.75) + 20.7 * (Mn + 1.2Si) + 1481 * (1 - 3.73 * (Cu - Cu_{min})) * (P - P_{min})$$

for $Cu_{min} = 0.04$, $Cu_{max} = 0.24$ and $P_{min} = 0.004$. (1)

Step 2: The linear fluence dependence assumption is based on empirical observations of higher

fluence surveillance data (surveillance reports, REAP, PLOTTER15, and the results for the 9

materials in this study), as well as some test reactor data [26-31], taken from the literature. Note

an approximately linear fluence dependence is also supported by detailed physical models [2].

1
2
3 **Step 3:** The effect of flux was primarily determined by fitting a rate theory solute trap
4
5 recombination model of $\phi t_e / \phi t < 1$ to high fluence $\Delta\sigma_y$ data over a range of higher test reactor
6
7 fluxes to permit physically based extrapolation to low flux service conditions [2]. This analysis
8
9 showed that the flux effect, which is strong at low fluence, decreases at high fluence ($\phi t_e \rightarrow \phi t$),
10
11 mainly due to the buildup of point defect sinks, suppressing defect recombination. The best
12
13 effective fluence estimate was $\phi t_e \approx 1.25 \times 10^{20} \text{ n/cm}^2$, or $\approx 91\%$ of the actual value of $\approx 1.4 \times 10^{20}$
14
15 n/cm^2 [2]. The corresponding practical bounds on ϕt_e were estimated to be between ≈ 1 and
16
17 $1.4 \times 10^{20} \text{ n/cm}^2$ (not considering uncertainty in the actual fluence estimates). The OWAY
18
19 model was recently evaluated for 106 surveillance data points with $\phi t > 6 \times 10^{19} \text{ n/m}^2$ taken from
20
21 the PLOTTER22 [32] database as will be described in full detail in a separate paper.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Step 4: Applying the OWAY model and interpolation to the 9 steels to predict high fluence $\Delta\sigma_y$
was carried out as follows:

- Evaluate $\Delta\sigma_y$ at low flux and intermediate fluence using either surveillance data above
 3×10^{19} and less than $5.5 \times 10^{19} \text{ n/cm}^2$, or based on ETC models such as E900 and EONY at
 $4 \times 10^{19} \text{ n/cm}^2$.
- Linearly interpolate between the intermediate fluence $\Delta\sigma_y$ and the ATR-2 chemistry factor

1
2
3 for effective fluences of 1 to 1.4×10^{20} n/cm², including the best estimate $\phi t_e = 1.25 \times 10^{20}$
4
5
6
7 n/cm².
8
9

10
11
12
13
14 • Compare predictions of $\Delta\sigma_y$ at fluence greater than 5.5×10^{19} n/cm² for ATR-2 effective
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- Compare predictions of $\Delta\sigma_y$ at fluence greater than 5.5×10^{19} n/cm² for ATR-2 effective
fluences of 1, 1.25 and 1.4×10^{20} n/cm².

The results are shown in Figure 4. Here, the surveillance ΔT_c for the 9 steels was converted
to $\Delta\sigma_y$ based on the individual steel C_c values, as discussed above. The green circles are
surveillances $\Delta\sigma_y$, unfilled diamonds are the ATR-2 CF, and filled diamonds are the measured
ATR-2 data. Figures 4a-e use intermediate fluence surveillance data, which is available for 5 of
the 9 steels. Figure 4f-i use EONY to predict the intermediate flux $\Delta\sigma_y$ at 4×10^{19} . A statistical
analysis showed the best predictions were for a $\phi t_e \approx 1.4 \times 10^{20}$ (no flux effect). These results are
consistent with an unpublished analysis of a larger data set.

Figure 5a shows the corresponding high fluence OWAY model predicted versus measured
 $\Delta\sigma_y$. Unfortunately high fluence surveillance data was not available for 4 out of 9 alloys. Again,
the OWAY model in Figure 5a, uses medium fluence surveillance data, when available. The
standard deviation and average bias for OWAY are 13 and +3 MPa, respectively. Note the $\Delta\sigma_y$
for steel D are based on the EONY model at intermediate fluence, but are plotted in Figure 5a for

1
2
3 completeness. Further, there are two predicted $\Delta\sigma_y$ for steel D based on maximum Cu values of
4
5 0.24 and 0.3 wt.%, respectively, where the latter is pertinent to Linde 92 welds. Figure 5b-e
6
7 show the other ETC predictions also have a small average bias, but somewhat larger standard
8
9 deviations, than the OWAY $\Delta\sigma_y$. Table 4 tablulates the results in Figure 5.
10
11
12
13
14

15 Figure 6 shows predictions of the OWAY versus the other ETC models at 10^{20} n/cm².
16
17 Again the EONY and E900 ETC models somewhat underpredict the OWAY $\Delta\sigma_y$, as does JAEC
18
19 at high fluence. The FIS model overpredicts OWAY $\Delta\sigma_y$.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

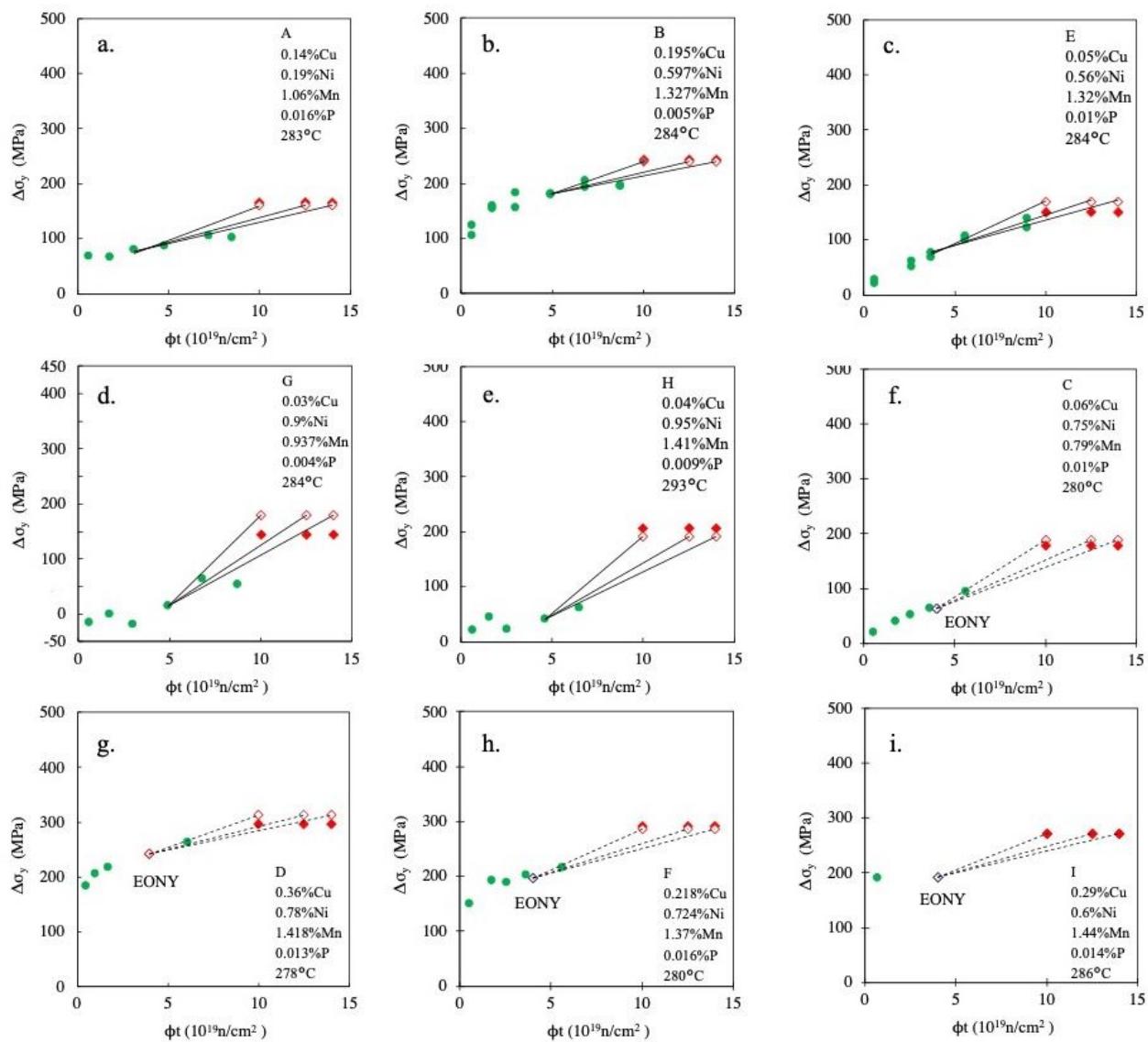


Figure 4. The OWAY model applied to the 9 steels: a-e) using intermediate fluence surveillance $\Delta\sigma_y$; f-i) EONY modeled intermediate fluence $\Delta\sigma_y$. The best predictions of higher fluence surveillance data are for an ATR-2 fluence $\sim 14 \times 10^{19} \text{ n/cm}^2$.

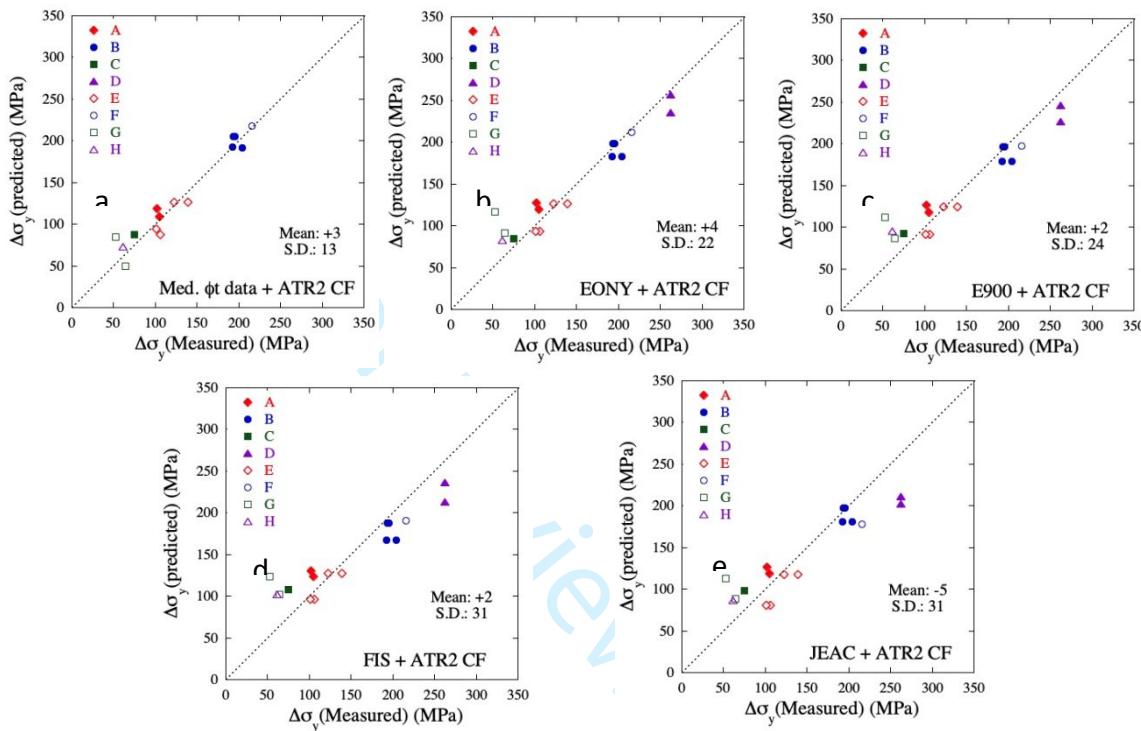


Figure 5. Measured versus predicted $\Delta\sigma_y$ for OWAY (5a) and other ETC models (5b-f).

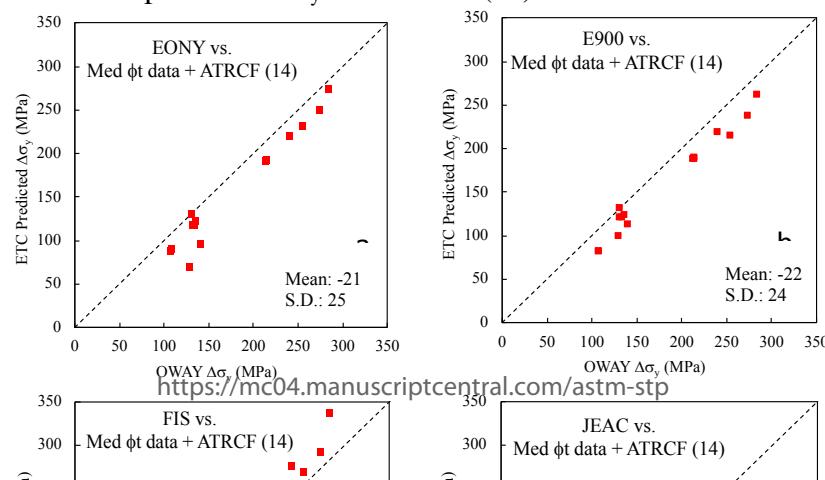


Figure 6. OWAY versus other ETC predictions at 1×10^{20} n/cm² and 290°C.

Table 5. OWAY and other ETC model predictions of high fluence surveillance $\Delta\sigma_y$.

Steel	Measured ΔT_c , °C	$\Delta\sigma_y$, MPa	$\Delta\sigma_y$ Predictions ($\phi t > \approx 5.5 \times 10^{19}$)				
			OWAY*	EONY	E900	FIS	JEAC
A	65	105	109	120	118	123	119
A	63	102	119	128	126	131	127
B	119	193	193	182	179	168	181
B	121	195	206	199	196	188	197
B	128	204	192	182	179	168	181
B	120	194	205	199	196	188	197
C	39	75	87	85	93	108	98
D	192	262	256	256	246	236	211
D	192	262	236	236	226	213	202
E	69	123	126	127	125	127	118

	E	80	139	127	127	125	127	118
	E	58	106	88	94	92	96	81
	E	54	101	94	94	92	96	81
	F	151	216	217	212	198	190	178
	G	38	64	49	92	87	102	88
	G	31	53	84	116	112	124	113
	H	36	61	73	83	95	103	86

Average bias	2.6	4.5	1.8	1.9	-4.6
Standard deviation	13	22	24	31	31

Table 6. Predictions of $\Delta\sigma_y$ at 1×10^{20} n/cm² and 290°C.

Steel	Predictions of $\Delta\sigma_y$ (MPa) at 10^{20} n/cm ² and 290°C				
	OWAY14	EONY	E900	FIS	JEAC
A	130	131	132	169	146
A	130	131	132	169	146
A	214	191	188	217	203
B	214	193	190	218	204

B	213	191	188	217	203
B	214	193	190	218	204
B	140	97	113	147	139
C	284	275	262	337	229
D	273	250	238	291	220
D	136	123	123	132	126
E	136	123	123	132	126
E	131	118	121	131	125
E	134	118	121	131	125
E	254	231	215	269	201
F	107	88	82	118	109
G	107	90	83	119	110
G	129	69	99	117	104
H	240	220	220	275	210
I					
	Average bias	-21	-22	11	-16
	Standard deviation	25	24	20	26

5. Summary and Conclusions

1
2
3 The primary results and conclusions from this study of 9 archival surveillance steels
4
5
6 irradiated in the ATR-2 experiment can be summarized as follows:
7
8
9

10 • The agreement between tensile, shear punch and microhardness test based estimates of
11
12 changes in yield stress ($\Delta\sigma_y$) following the ATR-2 irradiation are generally good and well
13
14 within data scatter.
15
16
17 • Published surveillance data on the $\Delta\sigma_y$ and 41 J Charpy shift (ΔT_c) were analyzed to
18
19 establish individual $\Delta T_c = C_c \Delta\sigma_y$ relations for the 9 steels.
20
21
22 • The predicted surveillance ΔT_c based on $\Delta\sigma_y$, using the individual steel C_c , are in good
23
24 agreement with measured Charpy ΔT_c .
25
26
27 • The predicted versus measured agreement of the $\Delta\sigma_y$ is much better than using a
28
29 previously derived generic $C_c(\Delta\sigma_y)$ relation.
30
31
32 • To permit comparisons with predictions of various ETC models, the individual steel C_c
33
34 were used to predict ΔT_c at the ATR-2 condition based on the $\Delta\sigma_y$ from eight tensile and
35
36 one shear punch plus microhardness test.
37
38
39 • On average the FIS and JAEC models slightly overpredict the ATR-2 ΔT_c condition
40
41 estimates, while the EONY and E900 models result in underpredictions.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- The surveillance ΔT_c data was converted to $\Delta\sigma_y$ in order to test the OWAY model at high fluences greater than $5.5 \times 10^{19} \text{ n/cm}^2$.
- The OWAY predictions are in excellent agreement with the high fluence surveillance data, assuming there is little or no effect of flux at the ATR-2 fluence, and that the $\Delta\sigma_y$ dependence is linear between intermediate ($\approx 4 \times 10^{19} \text{ n/cm}^2$) and the high ($\approx 1.4 \times 10^{20} \text{ n/cm}^2$) fluences.
- The EONY, E900 and JAEC (at high fluence) ETC models underpredict the OWAY estimates of $\Delta\sigma_y$ at 10^{20} n/cm^2 , while the Frensh FIS model slightly overpredicts the OWAY results.

Acknowledgements

The co-authors wish to acknowledge and thank our recently departed lead author, Dr. Randy K. Nanstad, for his enumerable seminal contributions to nuclear reactor pressure vessel research. The large body of knowledge he created has supported the safe, long-term operation of nuclear power plants on an international basis. More generally, Randy's research also led to major improvements in our understanding of irradiation effects, fracture mechanics and structural materials. Bill Server acquired the nine surveillance steels studied in this paper under EPRI funding; and Randy authored a report on the technical findings under EPRI sponsorship. EPRI also partially supported the post-irradiation examinations of the nine steels. The UCSB ATR-2

1
2
3 irradiation was sponsored by the US DOE National Scientific Users Program, and was carried out
4 as an UCSB-INL collaboration; we are very grateful for the outstanding ATR-2 INL team led by
5
6 Dr. Mitch Meyer. Under the sponsorship of the US DOE Light Water Reactor Sustainability
7 Program, post irradiation characterization studies were mainly carried at UCSB by Drs. Peter
8 Wellas and Nathan Almirall, with outstanding technical support from David Gragg. A wide
9
10 variety of ORNL contributions contributed to the success of this research.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only

References

1. T.J. Williams, R.K. Nanstad, "Low-Alloy Steels Low Alloy Steels," Ch 10, in G.R. Odette
2 and S.J. Zinkle eds. *Structural Alloys for Nuclear Energy Applications*, Elsevier, 2019.
3. G.R. Odette, T. Yamamoto, T.J. Williams, R.K. Nanstad, C.A. English, "On the History
4 and Status of Reactor Pressure Vessel Steel Ductile to Brittle Transition Temperature
5 Shift Prediction Models," *J. Nucl. Mater.* 526 (2019) 151863.
6. N. Soneda, "Ch. 11 Embrittlement Correlation Methods to identify trends in
7 embrittlement in reactor pressure vessels (RPVs)," (2014) 333-377 in *Irradiation*
8 *Embrittlement of Reactor Pressure Vessels (RPVs)* in Nuclear Power Plants, first ed.,
9 Woodhead Publishing, 2014. doi:10.1533/9780857096470.3.333.
10. R.K. Nanstad, G.R. Odette, N. Almirall, J. Robertson, W.L. Server, T. Yamamoto, P.
11 Wells, "Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance
12 Materials," ORNL/TM-2017/172, Oak Ridge National Laboratory, December 2016
13. W.L. Server, T. C. Hardin, and N. A. Palm, 'U.S. Surveillance Programs for Long-Term
14 Operation," *International Review of Nuclear Reactor Pressure Vessel Surveillance*
15 *Programs, ASTM STP 1603*, W. L. Server and M. Brumovsky, Eds., ASTM International,
16 West Conshohocken, PA, 2018, pp. 369-378
17. G.R. Odette, et. al, "Update on the High Fluence Advanced Test Reactor - 2 Reactor
18 Pressure Vessel High Fluence Irradiation Project," UCSB ATR-2 2016-1, LWRS Report
19 Number M3LW-16OR0402012, University of California, Santa Barbara, 30 June 2016.
20. As-Run Physics Analysis for the UCSB-2 Leadout Experiment in I-22, 2016.
21. As-Run Thermal Analysis of the UCSB-2 Experiment in the ATR, 2016.

1
2
3 9. H.B. Klasky, B.R. Bass, P.T. Williams, R.D. Phillips, M. Erickson, M.T. Kirk, G.L.
4 Stevens, "Radiation embrittlement archive project," Trans SMiRT-22, August 18-23,
5
6 2013 San Francisco, CA.
7
8 10. M. Kirk, "User's Manual & ETC Assessment Guidelines – E10.02 PLOTTER Tool
9 version 2013-10-04(R6)," 29 October , 2013 , ASTM International , West
10 Conshohocken, PA .
11
12 11. *Standard Test Methods for Tension Testing of Metallic Materials*, ASTM E8/E8M-
13 16ae1, (West Conshohocken, PA: ASTM International, approved August 1, 2016)
14
15 12. *Standard Test Method for Microindentation Hardness of Materials*, ASTM E384-16,
16 (West Conshohocken, PA: ASTM International, approved February 1, 2016)
17
18 13. *Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials*,
19 ASTM E92-16, (West Conshohocken, PA: ASTM International, approved August 1,
20 2016)
21
22 14. T.S. Milot, "Establishing Correlations for Predicting Tensile Properties Based on the
23 Shear Punch Test and Vickers Microhardness Data" [PhD Thesis], University of
24 California, Santa Barbara, 2013
25
26 15. M.Y. He, G.R. Odette, T. Yamamoto, D. Klingensmith, "A universal relationship
27 between indentation hardness and flow stress," J. Nuc. Mat. 367-370 (2007) 556.
28
29 16. D. Tabor, The hardness of solids, Rev. Phys. Tech 1 145 (1970).
30
31 17. G.R. Odette, P. Lombrozo, R. A. Wuellart, Relationship Between Irradiation
32 Hardening and Embrittlement, Effect of Irradiation on Materials 12, ASTM STP 870
33 (1985) 840.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 18. E.D. Eason, G.R. Odette, R.K. Nanstad, T. Yamamoto, "A physically based correlation
4 of irradiation-induced transition temperature shifts for RPV steels," ORNL/TM-
5 2006/530, Oak Ridge National Lab, (2007). (<https://info.ornl.gov/sites/publications/files/Pub2592.pdf>)
6
7
8
9
10
11
12 19. E.D. Eason, G.R. Odette, R.K. Nanstad, T. Yamamoto, A physically-based correlation
13 of irradiation-induced transition temperature shifts for RPV steels, J. Nucl. Mater.
14
15 433 (2013) 240.
16
17
18
19 20. U.S. Nuclear Regulatory Commission, Radiation Embrittlement of Reactor Vessel
20 Materials, Regulatory Guide 1.99 Rev. 2, 1988.
21
22
23
24 21. U.S. NRC, "10 CFR 50.61a Alternate fracture toughness requirements for protection
25 against pressurized thermal shock events," March 24, 2021.
26
27
28
29
30
31 22. Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in
32 Reactor Vessel Materials ASTM E900-21, (West Conshohocken, PA: ASTM
33 International, approved September 23, 2021)
34
35
36
37
38 23. JEAC, Method of Surveillance Tests for Structural Materials of Nuclear Reactors,
39
40 JEAC4201-2007 (2013 Addendum), Japan Electric Association, Chiyoda-ku, Tokyo,
41
42 Japan, 2013.
43
44
45 24. P. Todeschini, Y. Lefebvre, H. Churier-Bossennec, N. Rupa, G. Chas and C. Benhamou,
46
47 Revision of the irradiation embrittlement correlation used for the EDF RPV fleet,
48
49 Proceedings of Fontevraud 7, (2010).
50
51
52
53
54
55
56
57
58
59
60

1
2
3 25. ASTM Subcommittee E10.02, *Adjunct for ASTM E900-15: Technical Basis for the*
4 *Equation used to Predict Radiation-Induced Transition Temperature shift in*
5 *Reactor Vessel Materials*,” ASTM International, West Conshohocken, PA, 2015.
6
7
8
9
10 26. M. Shimodaira, T. Toyama, K. Yoshida, K. Inoue, N. Edbisawa, K. Tomura, T.
11 Yoshiie, M.J. Konstantinovic, R. Gerard, Y. Nagai, “Contribution of irradiation-
12 induced defects to hardening of a low-copper reactor pressure vessel steel,” *Acta Mater.*
13
14 155 (15) (2018) pp. 402-409.
15
16
17
18
19 27. E.A. Kuleshova , B.A. Gurovich , Y.I. Shtrombakh , Yu.A. Nikolaev , V.A. Pechenkin
20 , “Microstructural behavior of VVER-440 reactor pressure vessel steels under
21 irradiation to neutron fluences beyond the design operation period,” *J. Nuc. Mat.* 342
22
23
24
25
26
27
28
29 28. A. Ballesteros , I. Marcelles and J. Bros , “Beyond RPV design life,” *Nuclear*
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Engineering International , 48 , 2003 , 32 .
29. M. Lambrecht, E. Meslin, L. Malerba, M. Hernandez, F. Bergner, B. Radiguet, A. Almazouzi, “On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels,” *Jou J. Nuc. Mat.* 406-1 (2010) 84.
30. P. Efsing, J. Rouden, J. P. Nilsson, “Flux effects on radiation induced aging behavior of low alloys weld,” *Eff. Rad. Nuc. Mat.* 26, ASTM-STP 1572 (2014) 119-134
31. L. Debarberis, F. Sevini, B. Acosta, A. Kryukov, D. Erak, “Fluence rate effects on irradiation embrittlement of model alloys,” *Int. J. Pres. Ves.* 82 (2005) 373.
32. M. Kirk, PLOTTER 22 ASTM E10.02 Committee