
Climbing the Summit and Pushing the Frontier of
Mixed Precision Benchmarks at Extreme Scale

Hao Lu
Oak Ridge National Laboratory

Oak Ridge, USA
luh1@ornl.gov

Michael Matheson
Oak Ridge National Laboratory

Oak Ridge, USA
mathesonma@ornl.gov

Vladyslav Oles
Oak Ridge National Laboratory

Oak Ridge, USA
olesv@ornl.gov

Austin Ellis
Oak Ridge National Laboratory

Oak Ridge, USA
ellisja@ornl.gov

Wayne Joubert
Oak Ridge National Laboratory

Oak Ridge, USA
joubert@ornl.gov

Feiyi Wang
Oak Ridge National Laboratory

Oak Ridge, USA
fwang2@ornl.gov

accuracy. The convergence of HPC and ML offers the oppor-
tunity to develop new techniques that exploit mixed precision
capabilities to enable new science. The High Performance
LINPACK (HPL) benchmark [2] has long played a key role in
tracking the performance of the world’s top supercomputers.
The double precision math reflects the precision used in typical
HPC applications. Most of the ML models seen in centers train
using mixed precision operations, which are fundamentally
different from those in HPL.

The High-Performance LINPACK benchmark for Accel-
erator Inspection (HPL-AI) [3] was created to provide a
benchmark that measures the performance potential of mixed
precision (FP16/FP32) on newly deployed supercomputers.
Together these benchmarks are important in the acquisition
of large leadership class supercomputers given the cost and
resources necessary to design, deploy, and maintain these
systems. The combined benchmarks yield valuable insight into
the double precision and mixed precision performance possible
on systems covering a wide range of use cases.

Only a handful of systems in the world are capable of ex-
ascale performance, and just a limited number of applications
are able to sustain it. The present work helps pave the way
for more into the future. The main contributions of this paper
are:
• We summarize the efforts and accomplishments of devel-

oping a leadership class cross-platform implementation
of the HPL-AI benchmark for two of the world’s fastest
supercomputers at the OLCF, both the NVIDIA-based
Summit and the newly launched AMD-based exascale
system, Frontier. This is the first known code that runs
on different GPU enabled systems and delivers exascale
performance on both. We report sustained performance
of 1.411 EFLOPS on Summit and 2.387 EFLOPS on ap-
proximately 40% of Frontier. Our Summit result achieved
9.5 times the performance of HPL demonstrating the
value of mixed precision.

• We propose a performance model based on measured
floating point operation (flop) rate for key compute ker-

Abstract—The rise of machine learning (ML) applications and
their use of mixed precision to perform interesting science are
driving forces behind AI for science on HPC. The convergence
of ML and HPC with mixed precision offers the possibility of
transformational changes in computational science. The HPL-AI
benchmark is designed to measure the performance of mixed
precision arithmetic as opposed to the HPL benchmark which
measures double precision performance. Pushing the limits of
systems at extreme scale is nontrivial —little public literature
explores optimization of mixed precision computations at this
scale. In this work, we demonstrate how to scale up the HPL-
AI benchmark on the pre-exascale Summit and exascale Frontier
systems at the Oak Ridge Leadership Computing Facility (OLCF)
with a cross-platform design. We present the implementation,
performance results, and a guideline of optimization strategies
employed for delivering portable performance on both AMD and
NVIDIA GPUs at extreme scale.

Index Terms—Parallel programming, High performance com-
puting, Exascale computing, Linear algebra.

I. INTRODUCTION

Mixed precision computing is critically important in the
modern data center as machine learning (ML) has shown
an explosive growth due to the innovative use of the sig-
nificant c omputational p ower a vailable a t l ower p recision on
graphics processing units (GPUs). These applications have
demonstrated that acceptable results can be obtained at re-
duced precision. The motivation to use mixed precision is
due to hardware having at least five t imes t he fl oating point
performance in lower precision blue [1]. However, traditional
HPC workloads are dominated by double precision, 64-bit
floating p oint (FP64) c omputations t o d eliver t he required

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

<latexit sha1_base64="dreXcowYHlwvZfrZG3U6Rs6DB78=">AAACAnicbVC7SgNBFJ2NrxhfUUtBFoMQm7AroumM2FgmYB6QXcPsZDYZMjO7zMwKYdlOf8FWazuxSSH+h6W1P+FsksIkHrhwOOdezuV4ISVSWdaXkVlaXlldy67nNja3tnfyu3sNGUQC4ToKaCBaHpSYEo7riiiKW6HAkHkUN73Bdeo377GQJOC3ahhil8EeJz5BUGnJcTwWX93FxcFJknTyBatkjWEuEntKCpefo9rP4+Go2sl/O90ARQxzhSiUsm1boXJjKBRBFCc5J5I4hGgAe7itKYcMSzce/5yYx1rpmn4g9HBljtW/FzFkUg6ZpzcZVH0576Xif147Un7ZjQkPI4U5mgT5ETVVYKYFmF0iMFJ0qAlEguhfTdSHAiKla5pJ8VjaiT3fwCJpnJbs89JZzSpUymCCLDgAR6AIbHABKuAGVEEdIBCCJ/AMXowH49V4M94nqxljerMPZmB8/AKLqZxF</latexit>

A(k)
<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

(a)

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="fVUXIpDLIma7vjZUkpaL1/EDR18=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6te4lXTtFcsuRV3CrhKvDkp1Qtfcfkm/9roFX+6fYljToTBDGnte25kggQpQzEjab4baxIhPEZD4lsqECc6SKYnp7BslT4cSGVLGDhV/04kiGs94aHt5MiM9LKXif95fmwGtSChIooNEXi2aBAzaCTM/od9qgg2bGIJworaWyEeIYWwsSktbAl5lom3nMAqaVUr3kXl/M6GUwMz5MAJOAVnwAOXoA5uQQM0AQYSPIFn8OI8Om/Ou/Mxa11z5jPHYAHO5y99IZo2</latexit>

A12

<latexit sha1_base64="mUjFqWKXgdjvY2C5VArqzAXQ1mQ=">AAACAXicbVC7SgNBFJ2NrxiNRi1tBkPAKuyKaMqIIJYRzAM2S5idzCZD5rHMzAph2cpvsNVOsBNbO//C0j9x8ihM4oELh3Pu5d57wphRbVz328mtrW9sbuW3Czu7xb390sFhS8tEYdLEkknVCZEmjArSNNQw0okVQTxkpB2Orid++4EoTaW4N+OYBBwNBI0oRsZKfjfk6VUv9bws65XKbtWdAq4Sb07K9eJXUrkpvDZ6pZ9uX+KEE2EwQ1r7nhubIEXKUMxIVugmmsQIj9CA+JYKxIkO0unJGaxYpQ8jqWwJA6fq34kUca3HPLSdHJmhXvYm4n+en5ioFqRUxIkhAs8WRQmDRsLJ/7BPFcGGjS1BWFF7K8RDpBA2NqWFLSGfZOItJ7BKWmdV76J6fmfDqYEZ8uAYnIBT4IFLUAe3oAGaAAMJnsAzeHEenTfn3fmYteac+cwRWIDz+Qt7jJo1</latexit>

A11

<latexit sha1_base64="IvaudJX01x3hQit7DWMAGjLKP8E=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6teUvXStFcsuRV3CrhKvDkp1Qtfcfkm/9roFX+6fYljToTBDGnte25kggQpQzEjab4baxIhPEZD4lsqECc6SKYnp7BslT4cSGVLGDhV/04kiGs94aHt5MiM9LKXif95fmwGtSChIooNEXi2aBAzaCTM/od9qgg2bGIJworaWyEeIYWwsSktbAl5lom3nMAqaVUr3kXl/M6GUwMz5MAJOAVnwAOXoA5uQQM0AQYSPIFn8OI8Om/Ou/Mxa11z5jPHYAHO5y99Ipo2</latexit>

A21

<latexit sha1_base64="IQJB0Fnc9HJ038cis6DK8HGzc68=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6teUq2maa9YcivuFHCVeHNSqhe+4vJN/rXRK/50+xLHnAiDGdLa99zIBAlShmJG0nw31iRCeIyGxLdUIE50kExPTmHZKn04kMqWMHCq/p1IENd6wkPbyZEZ6WUvE//z/NgMakFCRRQbIvBs0SBm0EiY/Q/7VBFs2MQShBW1t0I8QgphY1Na2BLyLBNvOYFV0qpWvIvK+Z0NpwZmyIETcArOgAcuQR3cggZoAgwkeALP4MV5dN6cd+dj1rrmzGeOwQKcz19+t5o3</latexit>

A22

(b)

<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

<latexit sha1_base64="WtOPE+NHlkgaYpiS+mW9HW3eMYo=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UrWVZr1xxqs4E9jJxZ6RSLzS/Px/vXxq98k+3L1DCMNeIQqV814l1kEKpCaI4K3UThWOIRnCAfUM5ZFgF6eTkzD4xSt+OhDTFtT1R/06kkCk1ZqHpZFAP1aKXi/95fqKjyyAlPE405mi6KEqorYWd/2/3icRI07EhEElibrXREEqItElpbkvI8kzcxQSWSatWdc+rZ00TTg1MUQRH4BicAhdcgDq4Bg3gAQQEeABP4Nm6s16tN+t92rpizWYOwRysj1+WgJuv</latexit>

U12

<latexit sha1_base64="+UmT6HVQxuwZuLY+crn6T4Zlbgg=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue0m1mqa9Utmu2BPAZeLMSLmWb3x/Pt6/1Huln24/xDEnQmOGlHIdO9JegqSmmJG02I0ViRAeoQFxDRWIE+Ulk5NTeGyUPgxCaUpoOFH/TiSIKzXmvunkSA/VopeJ/3lurIMLL6EiijUReLooiBnUIcz+h30qCdZsbAjCkppbIR4iibA2Kc1t8XmWibOYwDJpVSvOWeW0YcKpgikK4BAcgRPggHNQA1egDpoAgxA8gCfwbN1Zr9ab9T5tzVmzmQMwB+vjF4m1m6c=</latexit>

L22

<latexit sha1_base64="Yo0MLuLmlQJhf2HEy1YQuSWYTqo=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue4njpGmvVLYr9gRwmTgzUq7lG9+fj/cv9V7pp9sPccyJ0JghpVzHjrSXIKkpZiQtdmNFIoRHaEBcQwXiRHnJ5OQUHhulD4NQmhIaTtS/EwniSo25bzo50kO16GXif54b6+DCS6iIYk0Eni4KYgZ1CLP/YZ9KgjUbG4KwpOZWiIdIIqxNSnNbfJ5l4iwmsExa1YpzVjltmHCqYIoCOARH4AQ44BzUwBWogybAIAQP4Ak8W3fWq/VmvU9bc9Zs5gDMwfr4BYaKm6U=</latexit>

L11

<latexit sha1_base64="yhsdbwupUHNS2pNDZ+eMVmDJG60=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UdbOsV644VWcCe5m4M1KpF5rfn4/3L41e+afbFyhhmGtEoVK+68Q6SKHUBFGclbqJwjFEIzjAvqEcMqyCdHJyZp8YpW9HQpri2p6ofydSyJQas9B0MqiHatHLxf88P9HRZZASHicaczRdFCXU1sLO/7f7RGKk6dgQiCQxt9poCCVE2qQ0tyVkeSbuYgLLpFWruufVs6YJpwamKIIjcAxOgQsuQB1cgwbwAAICPIAn8GzdWa/Wm/U+bV2xZjOHYA7Wxy+U65uu</latexit>

U11

<latexit sha1_base64="XwzHPrnwweq/1WhVofTj6ztBCp4=">AAACBHicbVDLSgMxFM34rOOr6tJNsAgVocwUUTdixY3LCvYB7bRk0rQNTTJDkhHKMFu/wa26dSfizt8Ql/6JmbYL23rgwuGcezmX44eMKu0439bC4tLyympmzV7f2Nzazu7sVlUQSUwqOGCBrPtIEUYFqWiqGamHkiDuM1LzB9epX7snUtFA3OlhSDyOeoJ2KUbaSK2mz+OrVpwfHLtHSdLO5pyCMwKcJ+6E5C4/7Ivw5csut7M/zU6AI06Exgwp1XCdUHsxkppiRhK7GSkSIjxAPdIwVCBOlBePvk7goVE6sBtIM0LDkfr3IkZcqSH3zSZHuq9mvVT8z2tEunvuxVSEkSYCj4O6EYM6gGkFsEMlwZoNDUFYUvMrxH0kEdamqKkUn6eduLMNzJNqseCeFk5unVypCMbIgH1wAPLABWegBG5AGVQABhI8gifwbD1Yr9ab9T5eXbAmN3tgCtbnL96xm5Q=</latexit>

A(k+1)

(c)

Fig. 1: The 𝑘th step of block LU factorization. (a) The layout right
before the 𝑘th step. (b) Partitioning of the trailing matrix. (c) The
outcome of the 𝑘th step.

nels, and we explore and report on the general algorithmic
strategies and optimization processes to exploit system
hardware in a portable way. We discuss the holistic
optimization of communication, computation, memory
placement, and algorithm design for complex codes. We
benchmark each component and optimization technique
in HPL-AI both separately and as a whole so that results
can be utilized to help deploy applications at scale.

• We share lessons learned and practical advice that are
applicable to other development efforts on leadership
class systems. Observations are derived from experience
with the newly deployed supercomputer Frontier. The
subsequent insight can enable one to achieve sustainable
performance at scale in the newly minted exascale era.

The remainder of the paper is organized as follows. We
begin by providing the background of theoretical and nu-
merical aspects of the HPL and HPL-AI benchmarks, with
a review of the past literature. We continue with the design
and implementation of our distributed, GPU-centric HPL-
AI algorithm. We outline our approach for achieving and
sustaining state-of-the-art performance. Focus is given to
practical issues such as algorithms, communication strategies,
data layouts, parallelization and cross-platform development.
We discuss and contrast critical performance tuning and opti-
mization strategies. Finally, we share the insights gained and
best practices discovered through this experience to help the
broader computational community.

II. BACKGROUND AND RELATED WORK

The HPL-AI benchmark [3] is concerned with finding the
unique solution to a dense system of linear equations Ax = b,
where A ∈ R𝑁×𝑁 is a full rank matrix and x, b ∈ R𝑁 are
the solution and right-hand side vectors, respectively. The
solution employs Gaussian elimination to transform a generic
system of linear equations into a triangular form [4]. It applies
elementary row transformations to zero out entries below each
diagonal element of A until the resulting matrix U is upper
triangular. For every diagonal element A𝑘,𝑘 , such a set of
transformations can be represented as a left multiplication
by a unit lower triangular matrix L𝑘 , whose only nonzero
off-diagonal entries are in the 𝑘th column. Once the LU
factorization of A = LU is obtained, the solution to Ax = b
can be efficiently obtained by solving two triangular systems
of linear equations.

In contrast to the HPL benchmark, HPL-AI allows for
the input matrix to have an appropriate condition number
to omit the pivoting step during the LU factorization [5].
More importantly, it allows the use of a mixed precision
solution process to obtain lower precision L̃ and Ũ factors.
The solution x̃ in HPL-AI is corrected to higher precision by
using an FP64 iterative refinement method.

Block LU factorization: Gaussian elimination at scale
utilizes a distributed matrix A which is partitioned into 𝐵 × 𝐵
blocks that are distributed across the processes. The block
size 𝐵 is chosen to balance communication and computation.
Consequently, transforming A into its LU factorization occurs
in blocks, that is, each step of the Gaussian elimination
computes 𝐵 columns of L and 𝐵 rows of U [6], [7].

At the 𝑘th step of the process, the first (𝑘 − 1)𝐵 rows
and columns of A are finalized and store the corresponding
nontrivial entries of L and U , see part (a) of Figure 1. To
factor the remaining (𝑁 − 𝑘𝐵 + 𝐵) × (𝑁 − 𝑘𝐵 + 𝐵) submatrix
A(𝑘) as L(𝑘)U (𝑘) , we represent as

A(𝑘) =

[
A1,1 A1,2
A2,1 A2,2

]
,

where A1,1, A1,2, A2,1, and A2,2 are of sizes 𝐵×𝐵, (𝑁−𝑘𝐵)×𝐵,
𝐵 × (𝑁 −𝑘𝐵), and (𝑁 −𝑘𝐵) × (𝑁 −𝑘𝐵), respectively (part (b)
of Figure 1). Under the analogous partition of L(𝑘) and U (𝑘) ,
the LU factorization can be viewed as the matrix equations[

A1,1 A1,2
A2,1 A2,2

]
=

[
L1,1 0
L2,1 L2,2

] [
U1,1 U1,2
0 U2,2

]
=

[
L1,1U1,1 L1,1U1,2
L2,1U1,1 L2,1U1,2 +L2,2U2,2

]
,

where L1,1 and L2,2 are unit lower-triangular and U1,1 and
U2,2 are upper-triangular. The 𝑘th step is then carried out by
the following steps (see part (c) of Figure 1):
Step 1) Gaussian elimination for A1,1 to find L1,1 and U1,1;
Step 2) Compute L2,1 = A2,1U

−1
1,1 ;

Step 3) Compute U1,2 = L−1
1,1A1,2;

Step 4) Compute A(𝑘+1)
def
= L2,2U2,2 = A2,2 −L2,1U1,2.

The above steps illustrate the high-level algorithmic steps
for block-based LU factorization. For state-of-the-art results
the algorithmic design must be broken down much further—
data distribution, dependencies and potential data movement,
the critical execution path, communication strategy and the
delivered floating point performance. We detail our design and
implementation using pseudocode in Section III.

Iterative refinement: Even when A is well-conditioned,
computing its LU factorization suffers from precision limi-
tations of floating point arithmetic, especially when working
in mixed precision. As a result, the equality A = LU holds
only approximately for the computed L and U . To indicate
the discrepancy between the practical and theoretical results
of Gaussian elimination, we use the notation L̃ and Ũ for the
numerically-obtained matrices, implying that Ã def

= L̃Ũ ≈ A.
In a similar vein, we use x̃ to denote the approximate solution

to Ax = b obtained by solving Ãx̃ = L̃(Ũ x̃) = b as two
triangular systems.

The accuracy of x̃ can be improved by a procedure called
iterative refinement (IR) [8], based on reusing the LU fac-
torization of Ã. Performing IR amounts to repeating the
following steps until the required solution accuracy is reached:

Step 1) Compute the residual r def
= b−Ax̃ in higher precision;

Step 2) Find an approximation d̃ of solution discrepancy d
def
=

x − x̃ by solving Ãd̃ = r (note that Ad = r);
Step 3) Refine the approximate solution x̃ by assigning x̃←

x̃ + d̃.
Every iteration of the above steps adjusts x̃ closer to the ac-

tual solution x. Typically IR is stopped once the approximated
solution discrepancy d̃ gets below some predefined threshold.
Computationally, it is a relatively inexpensive process to
recover the lost accuracy and thus worth the tradeoff.

Related Work: The 2006 seminal work of Kurzak and
Dongarra [9] solved Ax = b in mixed precision followed
by iterative refinement. In 2010, Wang et al. offered a GPU-
accelerated version of the algorithm for the first time and
demonstrated its performance on several heterogeneous archi-
tectures [10]. The dense linear algebra library ScaLAPACK
[11] supported distributed computing, and the MAGMA li-
brary enabled GPU support [12], [13]. In 2017, Haidar et
al. added mixed precision variants to MAGMA [14], [15]. In
2019, a library called SLATE [16] supported the capability in
multiple precisions.

The Fugaku HPL-AI code [17], [18] broke the exascale
barrier in 2020 with a CPU only implementation supporting
ARM processors and optimized for the proprietary Tofu in-
terconnect. As in our paper, their HPL-AI benchmark used a
linear congruential generator for the entries of A, allowing
regenerating them from any place in the code at low cost.
Our design and implementation has been heavily influenced
by these prior works, including using the Fugaku code as
a baseline, but have taken it further on model-based perfor-
mance tuning, optimization strategies, GPU support and cross-
platform portability.

III. GPU-CENTRIC PARALLEL DESIGN AND
IMPLEMENTATION

This section gives a comparative overview of Summit and
Frontier architectures in the context of a cross-platform GPU
implementation. We provide detailed algorithmic steps for our
work. We also present design rationales on data distribution
and data movement, along with considerations of matrix
initialization and iterative refinement.

A. Summit and Frontier architectures

The OLCF currently hosts two different leadership class
supercomputers: Summit and Frontier. We provide a brief
overview of the key architectural specifications (cf. Table I).

Certain features directly impact the choice of parameters,
optimization, and ultimately the performance of the HPL-AI
code at scale. The GPU memory dictates the maximum size

Summit Frontier

Number of Nodes 4608 9408
Processor Power9 3rd Gen EPYC
CPU memory (Node) 512 GB 512 GB
GPU / # of GCDs (Node) NVIDIA V100 / 6 AMD MI250X / 8
per GPU / per Node memory 16 / 96 GB 128 / 512 GB
GPU Interconnect NVLINK Infinity Fabric
GPU Interconnect B/W 50+50 GB/s 50+50 GB/s
FP16/FP64 TFLOPS (GCD) 125 / 7.8 298 / 54.5
FP16 TFLOPS (Node) 750 1192
of NICs 2x Mellanox EDR IB 4x Slingshot-11
NIC B/W (node) 12.5+12.5 GB/s 25+25 GB/s

TABLE I: Key architectural specifications for Summit and Frontier

of the problem that can be solved. The graphics complex die
(GCD) count per node impacts the number of MPI ranks per
node. Contrasting the two systems, Frontier’s AMD GPUs can
solve larger problems with 4× memory per GCD over Summit.

Most importantly, GCD performance is highly correlated
with the performance of HPL-AI. Frontier has 1.58× per-node
performance in half precision and 2×+ the number of nodes
over Summit. Frontier is expected to see about 3× HPL-AI
performance improvement when compared to Summit at full
scale. Further, Frontier will be 8× more powerful than Summit
in double precision.

Considering communication costs, the time required for
the exchange of the matrix is directly tied to the number of
network interface cards (NICs) and their performance. The
Frontier NIC is directly connected to the GPU, which in
general enhances the performance of using GPU-aware MPI,
as the data can be transferred directly between GPUs.

B. Cross-platform Design Considerations

The OLCF hosts two leadership supercomputers with two
different GPU architectures, creating strong motivation for a
cross-platform capability. NVIDIA CUDA libraries [19] and
the AMD ROCm libraries [20] provide the building blocks
for accelerator-based application development. To enhance
compatibility and provide a migration path for existing CUDA-
based applications, AMD provides a suite of tools based on the
Heterogeneous-Compute Interface for Portability (HIP) [21],
which greatly aids in developing portable software.

We built a thin shim layer using a macro approach to support
both GPU architectures instead of using HIP insofar as it did
not allow for a seamless transition for all required library calls.
In the future, we will likely use a wholly HIP implementation.
Our code leverages many optimized and tuned GPU libraries
such as cuBLAS/rocBLAS and cuSOLVER/rocSOLVER, but
there are instances where differences in CUDA/ROCM library
API signatures require a non-HIP implementation. A concrete
example is the GETRF call, for which cuSOLVER requires a
separate step to compute the additional workspace memory
needed, cusolverDnSgetrf_bufferSize, unlike roc-
SOLVER which supports a single call.

The major basic linear algebra subprograms (BLAS) library
functions used in our implementation are shown in Table II.
GEMM is a general matrix-matrix product, TRSM/TRSV is
a triangular solve with matrix/vector right-hand sides, and

GETRF is a general triangular factorization. The naming is
defined in the BLAS Technical Forum standard [22].

BLAS Mapping Summit Frontier
GEMM cublasSgemmEx rocblas_gemm_ex
TRSM cublasStrsm rocblas_strsm
GETRF cusolverDnSgetrf rocsolver_sgetrf
TRSV openBLAS openBLAS

TABLE II: Cross-platform BLAS library functions

C. GPU-centric Distributed Implementation

Pseudocode for the distributed GPU-enabled HPL-AI algo-
rithm is shown in Algorithm 1. Our implementation takes four
input parameters 𝐵, 𝑁 , 𝑃𝑟 and 𝑃𝑐 , which are the block size,
total matrix size, processor count down rows, and processor
count across columns, respectively. We begin by generating
the global matrix A, right-hand side vector b and solution
vector in double precision (FP64) on the CPU. The size of A
is determined by 𝑁 and adjusted to a multiple of 𝑃𝑟 , 𝑃𝑐 and
𝐵. For generating the entries of A, we use the 64-bit linear
congruential generator (LCG), which yields random numbers
in a sequence based on a chosen random seed. Importantly,
LCG can jump start the sequence at low computational cost
and is capable of generating a number 𝑛 steps ahead of the
current one in 𝑂 (log𝑛) time. This means LCG can quickly
generate any 𝐴𝑖, 𝑗 as a function of 𝑖, 𝑗 , making it easily
parallelizable and also allowing each process to access any part
of A by regenerating it on the fly. The ability to regenerate
the entries of A alleviates the need to permanently store the
matrix.

The responsibility for generating and hosting the global
matrix 𝐴 is partitioned across the total processor count 𝑃 using
a 2D block cyclic decomposition with process grid dimensions
𝑃 = 𝑃𝑟 × 𝑃𝑐 and blocksize 𝐵. Each MPI rank is mapped with
an index 𝑃𝑖𝑟 , 𝑃𝑖𝑐 representing its location in the process grid
and allocates a contiguous local matrix with size 𝑁𝐿𝑟 = 𝑁

𝑃𝑟
by 𝑁𝐿𝑐 = 𝑁

𝑃𝑐
that represents a part of the global matrix. Since

the local matrix is stored contiguously, the leading dimension
𝐿𝐷𝐴 of the local matrix A′ is fixed for the whole run.

The full local matrix is then converted to single precision
(FP32) and copied to the GPU as input for LU factorization.
We did not use data pipelining between CPU and GPU during
the factorization. Making the whole matrix resident on the
GPU removes the performance lost by coping data back and
forth between CPU and GPU. The relative speeds of transfers
versus mixed precision operations would require a block size
𝐵 that is too large to amortize transfer costs.

Our GPU-based right looking recursive LU factorization
is labeled to match the Block LU factorization algorithm
described in Section II with the iterator 𝑘 = 1...𝑁𝐵 and is broken
into three subproblems. The Diagonal Update subproblem
solves L1,1 and U1,1 for A1,1 in FP32; Panel Update computes
L2,1 = A2,1U

−1
1,1 and U1,2 = L−1

1,1A1,2 in FP32; and Update
Trailing Matrix computes A(𝑘+1) = A2,2 −L2,1U1,2 in mixed
precision where (L and U are FP16 and A is FP32).

In the following, we explain HPL-AI iteration details with
line numbers referring to the Algorithm 1. On Line 7-10, iter-

ation 𝑘 begins with the owner process factoring the diagonal
block A𝑘,𝑘 = L𝑘,𝑘U𝑘,𝑘 using BLAS operation GETRF on
the GPU. The factors L and U are then broadcast to the
processes that own the 𝑘th block rows and 𝑘th block columns .
Subsequently, on Line 11-13/20-23, the processes that own the
𝑘th block row or column solve for the remaining L𝑘+1:,𝑘 and
U𝑘,𝑘+1: panels using the received factors. The BLAS operation
TRSM [R|L] [UP|LOW], performed on the GPU, solves the
triangular matrix equations, where [R|L] represents which side
the triangular matrix is on and [UP|LOW] represents whether
the matrix is upper or lower triangular.

Once the panels are solved, on Line 15-16/24-25, L is
converted to half precision (FP16) in the CAST phase, and
U is conveniently transposed and cast simultaneously using
TRANS CAST. After the cast, on Line 16/25, the panel-owner
processes broadcast the L:,𝑘 and U𝑘,: to the processes that
reside on the same process rows and process columns.

Once the panels are transferred, on Line 29, the rest of the
matrix is updated with a mixed precision GEMM BLAS op-
eration A𝑘+1:,𝑘+1: = A𝑘+1:,𝑘+1: −L𝑘+1:,𝑘U𝑘,𝑘+1: to update FP32
A𝑘+1:,𝑘+1: with FP16 L𝑘+1:,𝑘 and U𝑘,𝑘+1:. The GEMM phase is
at the heart of the HPL-AI benchmark and enables accelerated
performance through the mixed precision calculation.

Once the Block LU factorization is fully completed, we
transfer the factored matrix A back to the CPU for Iterative
Refinement from Line 33-49. To recover the accuracy lost in
the mixed precision GEMM, on Line 33-43, we first regenerate
the entries of A in FP64 on the fly and compute the residual
r = b − Ax̃ with b in FP64. The residual is calculated
using a parallel GEMV matrix-vector product on the CPU
with minimal communication. Taking advantage of the ease
of regenerating A, each process owning a diagonal block
A(𝑘, 𝑘) regenerates the entries in the block-column A(:, 𝑘)
and multiplies it by x(𝑘). The only communication needed
for the procedure is a single MPI Allreduce at the end that
sums the resulting 𝑁 × 1 vectors to Ax. Once we obtain the
residual,on Line 47-48, the solution discrepancy d̃ is solved
with mixed precision (FP32/FP64) and stored in double, then
the solution 𝑥 is updated. The discrepancy d̃ is calculated
using both TRSV [UP|LOW] for two triangular matrix-vector
solves on the CPU. The Iterative Refinement step is complete
when the discrepancy converges below a threshold providing
a solution converged to double precision accuracy.
Finding 1. The Frontier CPU and GPU memory ratio is 1:1,
but total available GPU memory is actually larger than the
available CPU memory (over 30GB) due to CPU memory
containing the OS, cached files, and libraries. This makes
a traditional pipelined offload scheme for accelerators less
useful. Moreover, codes should attempt to run as much as
possible on GPUs given the performance advantages over
CPUs and the larger high bandwidth memory.

IV. STRATEGIES FOR TUNING AND OPTIMIZATION

The theoretical constraints derived from hardware, software
and algorithms can provide a ceiling and general guidance
for performance tuning and optimizations. In this section, we

Algorithm 1 Distributed GPU HPL-AI
1: Input: 𝑁, 𝐵, 𝑃𝑟 , 𝑃𝑐
2: Fill global matrix A with random numbers.

(1) Block LU factorization
3: On each MPI process 𝑝𝑖𝑑 do in parallel:
4: for 𝑘 = 1, 2, 3 . . . 𝑛𝑏 do
5: Synchronize all processes
6: 𝑃𝑖𝑟 , 𝑃𝑖𝑐 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑘) // A𝑘,𝑘 owner process index

(1a) Diagonal Update
7: if 𝑝𝑖𝑑 == 𝑃 (𝑃𝑖𝑟 , 𝑃𝑖𝑐) then
8: A(𝑘, 𝑘) ← GETRF(A(𝑘, 𝑘))
9: Broadcast A(𝑘, 𝑘) to 𝑃 (𝑃𝑖𝑟 , :) and 𝑃 (:, 𝑃𝑖𝑐)

10: end if
(1b) Panel Update

11: if 𝑝𝑖𝑑 ∈ 𝑃 (𝑃𝑖𝑟 , :) then
12: Receive A(𝑘, 𝑘)
13: A(𝑘, 𝑘 + 1 : 𝑛) ←
14: TRSM L LOW (A(𝑘, 𝑘),A(𝑘, 𝑘 + 1 : 𝑛))
15: U ← TRANS CAST(A(𝑘, 𝑘 + 1 : 𝑛))
16: Broadcast U to processes in 𝑃 (:, 𝑝𝑖𝑐)
17: else
18: Receive U
19: end if
20: if 𝑝𝑖𝑑 ∈ 𝑃 (:, 𝑃𝑖𝑐) then
21: Receive A(𝑘, 𝑘)
22: A(𝑘 + 1 : 𝑛, 𝑘) ←
23: TRSM R UP(A(𝑘, 𝑘),A(𝑘 + 1 : 𝑛, 𝑘))
24: L← CAST(A(𝑘 + 1 : 𝑛, 𝑘))
25: Broadcast L to processes in 𝑃 (𝑝𝑖𝑟 , :)
26: else
27: Receive L
28: end if

(1c) Update Trailing Matrix
29: A(𝑘+1 : 𝑛, 𝑘+1 : 𝑛) ← GEMM(L,U ,A(𝑘+1 : 𝑛, 𝑘+1 : 𝑛))
30: end for
31: A𝑐𝑝𝑢 ← A

(2) Iterative Refinement
32: 𝑥 ← 𝑏/diag(A)
33: for 𝑖 = 1, 2, 3 . . . 𝑖max do
34: for 𝑘 = 1, 2, 3 . . . 𝑛𝑏 do
35: 𝑃𝑖𝑟 , 𝑃𝑖𝑐 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑘)
36: if 𝑝𝑖𝑑 == 𝑃 (𝑃𝑖𝑟 , 𝑃𝑖𝑐) then
37: Broadcast 𝑥 (𝑘) to 𝑃 (:, 𝑃𝑖𝑐)
38: 𝑟 ← GEMV(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 (A𝑐𝑝𝑢 (:, 𝑘)),−𝑥 (𝑘), 𝑏)
39: else
40: 𝑟 ← 0
41: end if
42: end for
43: Sum 𝑟 across all processes using Allreduce
44: if ∥𝑟 ∥∞ < 8𝑁𝜖 (2∥diag(A)∥∞∥𝑣 ∥∞ + ∥𝑏∥∞) then
45: break
46: end if
47: 𝑑 ← U−1 (L−1𝑟) // using TRSV LOW and TRSV UP
48: 𝑥 ← 𝑥 + 𝑑
49: end for

propose and structure such a performance model to facilitate
the following tuning and optimization discussion, with the goal
of rationalizing and highlighting the performance implications
and improvements. Importantly, the model we constructed is
used solely as a guideline for tuning and is not a complete
model since it is incapable of representing the total complexity.
Thus one cannot directly backsolve for the optimal parameters
from the model.

As described in the previous section, the HPL-AI bench-

mark can be divided into four main parts: Diagonal Update
(GETRF), Panel Update (TRSM), Update Trailing Matrix
(GEMM) and the post-factorization Iterative Refinement. We
begin by particularly focusing on the LU factorization part, as
it is asymptotically the most time consuming portion, 𝑂 (𝑁 3).
The total runtime is approximated as

𝑇 (𝐿𝑈) = 𝑇 (𝐺𝐸𝑇𝑅𝐹) +𝑇 (𝐵𝐶𝐴𝑆𝑇 𝐷𝐼𝐴𝐺)+
𝑇 (𝑇𝑅𝑆𝑀) +𝑇 (𝐵𝐶𝐴𝑆𝑇 𝑃𝐴𝑁𝐸𝐿) +𝑇 (𝐺𝐸𝑀𝑀).

(1)

The LU runtime is estimated by the relationship of each
parameter, including problem size 𝑁 and block size 𝐵, as
well as library kernel performance and network performance.
This guideline is then used in a parameter search to yield the
highest performance at scale. The serial upper bound runtime
per iteration in terms of each subproblem is

𝐵3

𝐺𝐸𝑇𝑅𝐹 𝑓 𝑟 (𝐵) +
2 × 𝑁 × 𝐵2

𝑇𝑅𝑆𝑀 𝑓 𝑟 (𝐵) +
𝑁 2 × 𝐵

𝐺𝐸𝑀𝑀 𝑓 𝑟 (𝑁, 𝐵) . (2)

Let 𝐺𝐸𝑇𝑅𝐹 𝑓 𝑟 denote the GETRF flop rate for the trian-
gular factorization of the diagonal block (FP32), 𝑇𝑅𝑆𝑀 𝑓 𝑟
for the panel solve on the upper and lower panel (FP32),
and 𝐺𝐸𝑀𝑀 𝑓 𝑟 for the matrix-matrix multiply (FP16/FP32)
update. The performance of each subproblem is not trivially
known as they all have a complex dependency on the block
size 𝐵 due to vendor library implementation decisions.

We construct a projected upper bound for the total runtime
by multiplying (2) by the 𝑁 /𝐵 iterations and including the
process grid dimension (𝑃𝑟 , 𝑃𝑐) and parallel data transfer time
yielding

𝑇 (parallel) = 𝑁 × 𝐵2

𝐺𝐸𝑇𝑅𝐹 𝑓 𝑟 (𝐵) +
𝑁 2 × 𝐵

𝑃𝑟 ×𝑇𝑅𝑆𝑀 𝑓 𝑟 (𝐵)

+ 𝑁 2 × 𝐵
𝑃𝑐 ×𝑇𝑅𝑆𝑀 𝑓 𝑟 (𝐵) +

2 × 𝑁 2

𝑃𝑟 × 𝑁𝐵𝐵

+ 2 × 𝑁 2

𝑃𝑐 × 𝑁𝐵𝐵
+ 𝑁 3

𝑃𝑟 × 𝑃𝑐 ×𝐺𝐸𝑀𝑀 𝑓 𝑟 (𝑁𝐿, 𝐵)

(3)

where 𝑁𝐿 is local matrix dimension, 2×𝑁 2 is the size of each
FP16 panel, and 𝑁𝐵𝐵 is the network broadcast bandwidth.
𝑁𝐵𝐵 encapsulates the size of transfer, distance of transfer,
iteration effects, memory bandwidth and network bandwidth
per node. The diagonal broadcast time and latency can be
safely ignored in the final model because it is relatively small
in comparison to the total runtime of the other portions.

A. Computation Optimization

We can see in the performance model that problem size 𝑁
and block 𝐵 critically influence the overall runtime, and so we
discuss their optimal selection and the rationales below.

B selection: The size of 𝐵 not only determines the number
of FP32 operations but also impacts the performance of
each individual subproblem. Most computational kernels favor
the larger sizes of 𝐵. However, to achieve the maximum
algorithmic parallel performance, it is necessary to determine
a B such that kernels on the critical path (i.e. GETRF) do not
degrade the overall performance. The best performance comes

from minimizing the time of each iteration step and not by the
maximizing the flop rates for each subproblem.

The GPU-enabled BLAS libraries have distinct performance
behaviors with respect to 𝐵 on different systems and even with
different versions of the same library. The general strategy is
to search the parameter space of 𝐵 and plot the performance
of each subproblem to estimate for the total runtime. We
thoroughly discuss 𝐵 tuning results in Section V for both
Summit and Frontier.

N selection: In HPL-AI, one has the luxury of choosing any
𝑁 that delivers the highest performance. Due to the complex
interactions between parameters and subproblems, choosing
the largest 𝑁 does not always yield the highest performance.
In our study, we consider local square blocks, or 𝑁𝐿𝑟 = 𝑁𝐿𝑐 ,
and 𝑃𝑟 = 𝑃𝑐 with the local matrix size (𝑁𝐿) being a multiple
of B; therefore, 𝑁 = 𝑁𝐿𝑟 ×𝑃𝑟 = 𝑁𝐿𝑐 ×𝑃𝑐 . The reasoning is that
this creates a matrix of full blocks without needing padding on
any node. We record the 𝑁𝐿 tuning for Frontier in Section V.

B. Communication Optimization

As performance increases through reduced precision com-
putations, the fraction of time taken in network communication
becomes a dominant bottleneck. In this section, we provide
comprehensive optimization information on how to reduce
communication costs by overlapping the communication and
computations not on the critical path and how to improve the
broadcast performance.

Look-ahead: Look-ahead is a standard optimization in-
cluded in most HPL and HPL-AI implementations. The idea is
not to perform the full Update Trailing Matrix phase in the
current iteration but instead to update the trailing matrix only
during the next iteration’s Diagonal Update and Panel Up-
date. The procedure completes the next iteration’s Diagonal
Update and Panel Update, proceeds with the panel broadcast,
then finishes the full Update Trailing Matrix phase from the
previous iteration. This optimization overlaps the panel broad-
cast communication and GEMM computation, changing the
last two terms of (1) to𝑚𝑎𝑥 [𝑇 (𝐵𝐶𝐴𝑆𝑇 𝑃𝐴𝑁𝐸𝐿),𝑇 (𝐺𝐸𝑀𝑀)].
HPL-AI can be communication bound depending on the
performance of the network and BLAS kernel, and so finding
the parameters that balance the two overlapped terms becomes
important.

Node local grid tuning: We assume each node on the
system contains 𝑄 GCDs and the binding of GCDs to MPI-
ranks is using a node local grid 𝑄𝑟×𝑄𝑐 , where 𝑄 = 𝑄𝑟 ×𝑄𝑐 . A
2D partition with this node local grid results in a node layout
𝐾𝑟×𝐾𝑐 , where 𝐾𝑟= 𝑃𝑟

𝑄𝑟
, 𝐾𝑐 = 𝑃𝑐

𝑄𝑐
. The amount of data that one

node has to transfer through the network (cross-node NICs) is

𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 =

(
2 × 𝑁 2

𝐾𝑟
+ 2 × 𝑁 2

𝐾𝑐

)
. (4)

Since the inter-node communication goes through the NICs,
its bandwidth is significantly smaller than the bandwidth
of intra-node communication. Letting 𝑁𝐵𝑁 be the network
bandwidth per node, which is easier to quantify, we now

redefine our communication time to consider the shared NICs
effect on inter-node communication, obtaining

𝑇 (inter-node comm.) =
(
2 × 𝑁 2 ×𝑄𝑟

𝑃𝑟 × 𝑁𝐵𝑁
+ 2 × 𝑁 2 ×𝑄𝑐

𝑃𝑐 × 𝑁𝐵𝑁

)
. (5)

This model captures the impact of NICs being shared by
processes on the same node. To minimize the communication
volume and the total time we suggest having 𝐾𝑟 ≈ 𝐾𝑐 , 𝑃𝑟 ≈ 𝑃𝑐
and 𝑄𝑟 ≈ 𝑄𝑐 . We provide an example of two node-level grid
configurations in Figure 2 and present numerical results with
various node local grid tunings in Section V.

0 1 2 3 4 5

0

1

2

3

4

5

node
1

node
2

node
3

node
4

node
5

node
6

0 1 2 3 4 5

0

1

2

3

4

5

node
1

node
2

node
3

node
4

node
5

node
6

<latexit sha1_base64="BtmTVU0kGPAQAFX0JfG9h24JFhU=">AAACR3icbVC7SgNBFJ1NfCQ+Ey1tBkWwCGFXJNosCDaCTQLmAcmyzE5udHB2dpmZVcNiY2Pvf9jbaucn+BV2YqeTTQoTvTDcM+e+TxBzprRtv1u5/Nz8wmKhuLS8srq2XipvtFSUSApNGvFIdgKigDMBTc00h04sgYQBh3ZwdTKKt69BKhaJcz2MwQvJhWADRok2lF+q1H2JXVyr4LpPx6DhSzdz1HUq+Mz8Mkfdml/asat2ZvgvcCZg57j40H/6vjety1a+149oEoLQlBOluo4day8lUjPK4W6plyiICb0iF9A1UJAQlJdmZ93hXcP08SCS5gmNM/Z3RUpCpYZhYDJDoi/VbGxE/hfrJnpw5KVMxIkGQceDBgnHOsIjjXCfSaCaDw0gVDKzK6aXRBKqjZJTU4Jw+gbOAjC3CfBSATf6NlvByObMivQXtParTq160DD62WhsBbSFttEectAhOkanqI6aiKJH9Ixe0Kv1Zn1Yn9bXODVnTWo20ZTlrB8G3LBQ</latexit>

%A = 6, %2 = 6, &A = 6, &2 = 1, A = 1, 2 = 6
<latexit sha1_base64="GUVMPFCR29CNg3Nd1R3wpcZ/OtE=">AAACTXicbVDLSsNAFJ3Ud321unQzKIKLUpIq6qZQcCO4qWBVqCFMprft0MkkzEzUErpx4y/4E/6CW9259kPciTpJXFjrhWEO59zLvef4EWdK2/abVZianpmdm18oLi4tr6yWymvnKowlhRYNeSgvfaKAMwEtzTSHy0gCCXwOF/7gKNUvrkEqFoozPYzADUhPsC6jRBvKK9WansR1vF/BTY/m4DRjaimg9d0KPvFk/qV6DRe90pZdtbPCk8D5AVuNhfvO49ddpemVramrTkjjAISmnCjVduxIuwmRmlEOo+JVrCAidEB60DZQkACUm2TmRnjbMB3cDaV5QuOM/T2RkECpYeCbzoDovvqrpeR/WjvW3UM3YSKKNQiaL+rGHOsQp0nhDpNANR8aQKhk5lZM+0QSqk2eY1v8YNwDZz4YbwLcRMCNvs1OMLE5f0OaBOe1qrNf3Ts1+dkor3m0gTbRDnLQAWqgY9RELUTRA3pCz+jFerXerQ/rM28tWD8z62isCnPfQxqxMg==</latexit>

%A = 6, %2 = 6, &A = 2, &2 = 3, A = 3, 2 = 2

Distance of column
broadcast

Distance of row
broadcast

Transfer data size

node 1 to 3

node 1 to 4

<latexit sha1_base64="dMi7JwBtpPQe8xwYUycXUuvlqCY=">AAACCHicbVDLSsNAFL3xWesr6tKFg0UQhJLEoi4LblxJBfuANpbJdNIOnTyYmQglZOnGX3HjQhG3foI7/8Zpm0VtPXDhcM693HuPF3MmlWX9GEvLK6tr64WN4ubW9s6uubffkFEiCK2TiEei5WFJOQtpXTHFaSsWFAcep01veD32m49USBaF92oUUzfA/ZD5jGClpa551PEFJqlz++Bk6XmGztCs4GRds2SVrQnQIrFzUoIcta753elFJAloqAjHUrZtK1ZuioVihNOs2EkkjTEZ4j5taxrigEo3nTySoROt9JAfCV2hQhN1diLFgZSjwNOdAVYDOe+Nxf+8dqL8KzdlYZwoGpLpIj/hSEVonArqMUGJ4iNNMBFM34rIAOsglM6uqEOw519eJA2nbF+UK3eVUtXK4yjAIRzDKdhwCVW4gRrUgcATvMAbvBvPxqvxYXxOW5eMfOYA/sD4+gXryJiY</latexit>

2N2

3
+

2N2

2

<latexit sha1_base64="dMi7JwBtpPQe8xwYUycXUuvlqCY=">AAACCHicbVDLSsNAFL3xWesr6tKFg0UQhJLEoi4LblxJBfuANpbJdNIOnTyYmQglZOnGX3HjQhG3foI7/8Zpm0VtPXDhcM693HuPF3MmlWX9GEvLK6tr64WN4ubW9s6uubffkFEiCK2TiEei5WFJOQtpXTHFaSsWFAcep01veD32m49USBaF92oUUzfA/ZD5jGClpa551PEFJqlz++Bk6XmGztCs4GRds2SVrQnQIrFzUoIcta753elFJAloqAjHUrZtK1ZuioVihNOs2EkkjTEZ4j5taxrigEo3nTySoROt9JAfCV2hQhN1diLFgZSjwNOdAVYDOe+Nxf+8dqL8KzdlYZwoGpLpIj/hSEVonArqMUGJ4iNNMBFM34rIAOsglM6uqEOw519eJA2nbF+UK3eVUtXK4yjAIRzDKdhwCVW4gRrUgcATvMAbvBvPxqvxYXxOW5eMfOYA/sD4+gXryJiY</latexit>

2N2

3
+

2N2

2

node 1

node 1 to 6

<latexit sha1_base64="WkyEXArAsz7nvEutrat6Euhuwio=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfVY8OJJKtgPaNeSTbNtbDZZkqxQlv4HLx4U8er/8ea/Md3uQVsfDDzem2FmXhBzpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxtczv/1ElWZS3JtJTP0IDwULGcHGSq3a7UPtzO2XK27VzYCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUoEjqv00u3aKTqwyQKFUtoRBmfp7IsWR1pMosJ0RNiO96M3E/7xuYsIrP2UiTgwVZL4oTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxAZVsCN7iy8ukVat6F1Xv7rxSd/M4inAEx3AKHlxCHW6gAU0g8AjP8ApvjnRenHfnY95acPKZQ/gD5/MHD6OOFQ==</latexit>

2N2 + 0
<latexit sha1_base64="WkyEXArAsz7nvEutrat6Euhuwio=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMpuEfVY8OJJKtgPaNeSTbNtbDZZkqxQlv4HLx4U8er/8ea/Md3uQVsfDDzem2FmXhBzpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxtczv/1ElWZS3JtJTP0IDwULGcHGSq3a7UPtzO2XK27VzYCWiZeTCuRo9MtfvYEkSUSFIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUoEjqv00u3aKTqwyQKFUtoRBmfp7IsWR1pMosJ0RNiO96M3E/7xuYsIrP2UiTgwVZL4oTDgyEs1eRwOmKDF8YgkmitlbERlhhYmxAZVsCN7iy8ukVat6F1Xv7rxSd/M4inAEx3AKHlxCHW6gAU0g8AjP8ApvjnRenHfnY95acPKZQ/gD5/MHD6OOFQ==</latexit>

2N2 + 0

Fig. 2: Example of different node local grid, and the metric that
impact the communication time.

Communicator Choice: In order to extract the best broad-
cast bandwidth of the system, we have implemented and tested
several broadcast strategies for both systems. We consider the
library based MPI broadcast (Bcast), MPI nonblocking broad-
cast (IBcast), single ring-based broadcast (Ring1), modified-
ring (Ring1M), and modified double-ring (Ring-2M). Ring-
based broadcasts are designed to overlap the communication
into a pipeline, which increases the total effective network
bandwidth at the cost of higher broadcast latency and can
potentially reduce the length of the critical path.

The critical path is the sequence of the diagonal blocks
that must be factored and distributed. Four synchronized MPI
library broadcasts are needed to send the required data to
the next diagonal block. Ring-based broadcasts effectively
shrink the communication latency of the critical path, by
breaking the MPI library broadcast into point-to-point sends
and receives. The potential downside of a ring-based broadcast
strategy is that it may increase the end-to-end latency of the
full communication. Rings may also preclude potential vendor
optimizations in their MPI implementation. The details of ring
broadcast can be found in HPL [23], [24]. We describe the per-
formance implications of different communication strategies
on both Summit and Frontier in Section V.

V. EVALUATION AND ANALYSIS

A. Methodology
Measurement: The units of performance used are GFLOP-

S/GCD (effective GFLOP rate per GCD). A Summit V100

GPU is shown as one GCD, while a Frontier MI250X GPU
has two GCDs. Each MPI process (rank) is mapped to a
single GCD. For distributed performance, HPL-AI average
GFLOPS/GCD is thus calculated as (2/3)𝑁

3+(3/2)𝑁 2

𝑃 × 𝑅𝑢𝑛 𝑡𝑖𝑚𝑒 , with flop
count based on the HPL-AI submission rules. The performance
we present in the figures are the highest performing runs, and
run variability is discussed in Section VI-B.

Problem sizes: We set 𝑁 near to the maximum the system
can hold in GPU memory, excluding any strong scaling, since
the HPL-AI benchmark’s objective is to maximize sustained
performance. We select the local matrix size per GCD, 𝑁𝐿 =
61440 for Summit and, 𝑁𝐿 = 119808 for Frontier, leading to
𝑁 = 𝑁𝐿 × 𝑃𝑟 . These values 𝑁𝐿 correspond to approximately
14GB and 53GB of single precision matrix storage, and the
rest of GPU memory contains the diagonal block (FP32),
panel blocks (FP16) and additional look-ahead buffers (FP16).
Frontier’s 𝑁𝐿 is smaller than the MI250X GCD capacity due
to available CPU memory being smaller than the combined
GPU memory as well as performance issues (discussed in
Section V-D).

B. rocBLAS Performance

HPL-AI depends heavily on performance of the mixed
precision FP16/FP32 GEMM matrix product. Figure 3 shows
performance of this operation on a MI250X GCD for C =
A𝑇B where A is 𝑘 × 𝑚 and B is 𝑘 × 𝑛. Noting that 𝑚
(= 𝑛) is equivalent to blocksize 𝐵, one sees that highest
performance (red) is not uniformly achievable across all matrix
sizes encountered in a typical HPL-AI run. In particular, the
optimal 𝐵 of 3072 would generate highest performance only
for a few matrix sizes. This is in agreement with our findings
with other GPU vendors’ BLAS libraries, that performance can
depend in complex ways on the sizes of the input matrices.
Finding 2. BLAS library behaviors affect performance of the
full code, and applications heavily using BLAS operations can
benefit from evaluating a performance heat map. Future tuning
of libraries by vendors is expected to improve performance.

Fig. 3: rocBLAS GEMM flop rate as a function of matrix size.

C. Computation Tuning with Block Size 𝐵

To tune the block size 𝐵 of the LU factorization, we
examine the performance of each BLAS component on the two
systems. In Figure 5, we plot the single cuBLAS V100 GPU
performance of each computational component for all steps of

the LU factorization. The x-axis represents the trailing matrix
size, and the y-axis is performance, with each line representing
a different block size 𝐵. Figure 6 shows the same set of plots
with rocBLAS on one MI250X GCD.
Finding 3. We observed that rocBLAS will require additional
tuning of GEMM kernel parameters to achieve more uniform
performance across the range of matrix sizes. The critical path
includes rocsolver getrf which has lower performance than
expected. We anticipate these issues to be updated in later
versions of rocBLAS.

In Figure 5 and 6, the data shows that the flop rate for each
operation grows with the block size 𝐵, as expected. However,
as described in Section IV, maximizing the performance of
each subproblem may result in lower total performance due
to the increased number of single precision operations and the
greater time spent in the critical path (GETRF). From the plot,
we chose the optimal 𝐵 based on the smallest 𝐵 able to deliver
an acceptable performance in GEMM, GETRF, and TRSM.
We also limited the runtime of GETRF to be less than 5% of
the GEMM to better project the best 𝐵 at scale. The results
show 𝐵 = 768 or 1024 for Summit’s V100s and 𝐵 = 3072 for
Frontier’s MI250Xs provide optimized performance.

Fig. 4: Total performance relative to 𝐵 with distinct communication
layouts and scale.

In Figure 4, we verify the selected 𝐵 values were near
optimal by examining the flop rate per GCD in a distributed
setting. The number of GCDs used was 2916 (𝑃𝑟=54) on
Summit and 1024 (𝑃𝑟=32) on Frontier.
Finding 4. The optimal value of 𝐵 is crucial for total per-
formance and depends on the problem size and BLAS library.
This must be carefully chosen by benchmarking and evaluating
imbalance issues caused by changes in the critical path’s
serial workload.

D. Computation Tuning of 𝑁𝐿

We considered various 𝑁𝐿 at 64 (𝑃𝑟=8), 256 (𝑃𝑟=16) and
1024(𝑃𝑟=32) GCDs scale, and found that 𝑁𝐿 = 119808
provides better performance over 𝑁𝐿 = 122880. The Frontier
performance drop at larger 𝑁𝐿 is due to peculiarities in
BLAS performance. The local matrix is stored on the GCD
with the leading dimension equal to the initial problem size
𝐿𝐷𝐴 = 𝑁𝐿 . The trailing matrix update of each factorization
step is performed on the submatrix without changing 𝐿𝐷𝐴. In
Figure 7, we plot the GEMM flop rate from a single GCD.

Fig. 5: Per iteration LU-Factorization performance of the GEMM, GETRF, and TRSM library kernel on a V100 GPU. Each color represents
a different block size 𝐵. The trailing problem size proceeds from left to right on the x-axis.

Fig. 6: Per iteration LU-Factorization performance of the GEMM, GETRF, and TRSM library kernel on a MI250X GCD. Each color
represents a different block size 𝐵. The trailing problem size proceeds from left to right on the x-axis.

The x-axis represents the GEMM size in each iteration and the
y-axis represents the flop rate that the GEMM kernel achieves.
The legends shows the 𝐿𝐷𝐴 of the local matrix, we observe
that the rocBLAS GEMM performance was impacted by the
leading dimension of the local matrix. 𝐿𝐷𝐴 = 122880 has a
significantly lower performance compared with the others.

Fig. 7: Single MI250X GCDs GEMM performance on different
GEMM size with different leading dimensions (LDA) with each color
represents a different 𝐿𝐷𝐴.

E. Communication Tuning

Selecting a communication scheme and a local node grid
also has considerable impact on performance. We denote the

MPI library synchronized broadcast as Bcast and asynchro-
nized broadcast as IBcast. The ring communicators are built
with MPI point-to-point send and receives. In Figure 8, we
plot the GFLOPS/GCD against different communications op-
timization strategies. The experiment was conducted with 2916
(𝑃𝑥=54) GCDs for Summit and 1024 (𝑃𝑥=32) for Frontier.
Port Binding: A Summit node contains two NICs that
are each connected to a socket. Given that HPL-AI sends
𝐵 × (𝑁 − 𝑘 × 𝐵) data per iteration, where 𝑘 is the iteration
number of the factorization step, we see the application having
bandwidth bounded communication. Port binding to increase
effective bandwidth yields a 35.6% to 59.7% overall perfor-
mance improvement across different communication strategies
on Summit with only a minor increase in latency.
Finding 5. Port Binding features should be considered for
bandwidth bounded communication for better performance.

Ring Broadcast: The ring broadcasts are designed to decom-
pose the synchronized broadcast into smaller point-to-point
communications that can be pipelined to increase the effective
bandwidth. We see a 20.0% to 34.4% overall performance
improvement using different rings over MPI broadcast on the
Frontier architecture, with ring2M as the best. However, we
see a 2.3% to 11.5% decrease of performance on Summit. It
is reasonable to assume that the Summit broadcast is highly
optimized for the underlying fat tree network, whereas a ring

Binding Grid Tuning

Grid TuningGPU Aware

Fig. 8: Per GCD performance of distinct communication techniques
and local node grid (𝑄𝑟 ×𝑄𝑐)

broadcast may not significantly improve the bandwidth but
may still increase the message latency.
Finding 6. Ring broadcast currently outperforms the opti-
mized MPI broadcast on Frontier. For applications that have
similar communication patterns to LU factorization, alterna-
tive broadcast algorithms such as ring broadcast should be
investigated as an option.

GPU-aware MPI: GPU-aware MPI is designed to remove
data transfer overhead for distributed GPU applications. On
Frontier, NICs are directly attached to the GPUs, and we see
a 40.3% to 56.6% overall performance improvement across
all settings by sending diagonal and panel data directly from
GPU memory.
Finding 7. GPU-aware MPI has the potential to significantly
improve performance of data transfers, and we verify this at
scale on Frontier. Applications should make the problem resi-
dent on GPUs especially if they have both heavy computation
and communication. The Frontier NIC is directly connected
to the GPU which means CPU-based communication is less
emphasized and node level network bandwidth may change
based on the GPU binding. We note that there are temporary
limitations with MPI on Frontier, such as not allowing a single
MPI rank to control all 8 GCDs and utilize all 4 NIC ports.
Node Local Grid Tuning: Optimizing the MPI rank mapping

to the physical GCDs allows the broadcast to reduce inter-node
communication volume and balance the impact of sharing the
NICs on one side of the communication. It can also balance the
communication distance (hops across network) between the
process row and process column. Shown in Figure 8, Summit
MPI broadcast obtains a 14.1% improvement with the 𝑄𝑟 = 3
over 𝑄𝑟 = 6, and Frontier Ring2M sees a 2.7% improvement
with 𝑄𝑟 = 2 over 𝑄𝑟 = 8. The effect of grid tuning tends to be
more observable as the scale increases as shown in the weak
scaling study in Figure 9.
Finding 8. Grid tuning has shown improvement across both
systems, and we recommend similar 2D-partitioned applica-
tions to investigate a grid-based mapping that considers the
physical GPU layout for optimal performance. Column-major
node level mapping that uses a 3x2 grid on Summit and a 2x4
grid on Frontier appeared to work best. We observed that the
grid tuning benefit on Frontier is not as strong as on Summit
and that reduced improvement may be due to the unique node
NIC architecture. Our performance model on a node local grid
does not account for this behavior.

In conclusion, Summit achieves the highest performance
with (Broadcast, 2×3 Grid, B=768) which is a 603% im-
provement over the poorest settings. Frontier’s highest perfor-
mance configuration is (Ring2M, 4×2 Grid, B=3072) which
achieves 94.6% improvement over the poorest settings. The
high improvement rate on Summit is due to the asynchronous
broadcast having extremely low performance with the current
MPI library, IBM’s Spectrum MPI.

VI. HPL-AI PERFORMANCE AT EXTREME SCALE

The design, performance model, optimization and tuning
strategies and evaluations conclude in this section, as we
present scaling results along with the exascale achievement
runs, the best performance results obtained, conditioned on
resource availability and system readiness.

A. Strong and Weak Scaling of HPL-AI

Analyzing the Summit results that use a column-major grid,
we see that application performance under strong scaling is
communication bound when performed at scale. The strong
scaling behavior matches the communication and panel solve
part of the performance model. We do not include the chart
due to limited space.

Figure 9 illustrates the memory weak scaling characteristics
of our implementation. Unlike a traditional weak scaling chart,
we keep the required memory size for each GCD constant
instead of the number of operations. The problem size is
limited by GPU memory, and so memory-size weak scaling
provides a better projection of the whole system’s capability.
Another difference is that we plot GFLOPS/GCD against the
scaled number of GCDs, as opposed to the time to solution
against GCDs, to track any degradation in parallel efficiency.

Weak memory scaling may result in an increase in GFLOP-
S/GCD at the beginning of the scaling plot due to the increased
GPU workload and smaller fraction of run time in the serial

Fig. 9: Weak scaling with regard to memory size on both systems,
with different node local grid settings

section. Eventually weak scaling flattens and then decreases as
network communication overhead becomes more significant.

On Summit, we used 36 GCDs as the baseline to measure
the parallel efficiency,

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒 𝑓 𝑓 =
𝐹𝐿𝑂𝑃𝑆/𝐺𝐶𝐷 on # 𝑜 𝑓 𝐺𝐶𝐷𝑠
𝐹𝐿𝑂𝑃𝑆/𝐺𝐶𝐷 on 36 𝐺𝐶𝐷𝑠

.

The column-major process mapping achieves 91.4% parallel
efficiency on 2916 GCDs and a 3 × 2 Grid mapping achieves
104.6% parallel efficiency; the superlinear scaling behavior is
due to the effects described above for weak memory scaling.
On Frontier, we used 64 GCDs as the baseline and saw
column-major achieving 92.2% parallel efficiency on 16384
GCDs. We suspect that the drop seen on Frontier at higher
GCD counts is due to the interconnect fabric and will improve
as the newly deployed system further stablizes.
Finding 9. From the weak memory scaling data, we observe
that tuning the process mapping can potentially improve
the communication and scalability (measured by parallel
efficiency) by as much as 10%, thus making it a valuable
optimization technique.

Fig. 10: Timing Breakdown of components per iteration on Frontier
with 64 GCDs.

In Figure 10, we recorded the per iteration runtime for each
kernel and the communication wait time. The data is based
on MPI rank 0. We observed that the HPL-AI benchmark is
computational bounded until the final trailing iterations.

B. Exascale Achievement Runs and Best Practices
In the end, as shown in Figure 11, we obtained our best

number on Summit with a column major 3× 2 grid, 𝑃𝑟 = 𝑃𝑐 =

Fig. 11: Greater than Exascale performance on both of the OLCF
leadership platforms, Summit and Frontier, with separate node local
grid settings

162, 𝐵 = 768, 𝑁 = 1368570 at 1.411 EFLOPS. On just a
fraction of the Frontier system, we obtained 2.387 EFLOPS
with 𝑁 = 20606976, 𝐵 = 3072, 𝑃𝑟 = 𝑃𝑐 = 172, with Ring2M
as the communication technique. It is important to note the
disparity between the problem sizes solved. Even using less
than half of Frontier, the 𝑁 is over 20M compared with the
14M for Summit showing the potential to compute much larger
problems on Frontier. We share the following best practices
applicable to leadership system runs:

Identify slow nodes: Large systems such as Summit and
Frontier contain tens of thousands of GPUs, and the per-
formance of each GPU in such systems can vary due to
manufacturing variability and nonuniformity of power/thermal
management. On new systems we suggest to identify and
exclude those nodes when running for top performance, since
a single slow GPU can severely worsen total performance by
stalling the pipeline. Using a mini-benchmark code, we scan
through the GCDs, and thereby whole nodes, to exclude them
from scaling runs. The mini-benchmark code is implemented
with a single GPU 𝐿𝑈 factorization and an MPI aggregator
to identify the slow GCDs. We observed approximately 5%
maximum variation between GCDs on Frontier. We believe
this difference will be minimized as Frontier moves to pro-
duction.

Warm up: The system may require a warm up to achieve
the expected performance. We have observed a performance
difference larger than 20% between warm up and non-warm up
runs on Summit. In the case of HPL-AI at scale, the total run
times could be in the multiple hours range, so we developed
a small warm up mini-benchmark to run prior to the HPL-AI
run to improve the performance of the HPL-AI benchmark.
In Figure 12, six full HPL-AI runs are launched consecutively
within the same batch job, keeping allocated nodes constant.
On Summit, we observe the first whole run is 20% slower
than subsequent runs, which cap at a 0.12% performance
discrepancy. An interesting Summit observation is that all
compute kernels and communication are slower throughout
the entire first run, not just the first few iterations. On the
other hand, we observe on Frontier that the first two runs
achieve higher performance than subsequent runs, which cap at
a 0.34% performance discrepancy. We suspect the degradation
of performance over runs is due to power, frequency and

thermal controls on the GPU. This is likely to be minimized
as stability work continues on Frontier.
Finding 10. In view of the data in Figure 12, the suggested
strategy to warm up Summit is with a full run of the mini-
benchmark to improve potential file system caching issues
for binaries and dynamic libraries. Conversely, the strategy
to warm up Frontier, if one has to, is to embed the small
GEMM kernels at the beginning of the run, to produce the
best performance. We suggest examining possible degradation
behaviors due to warmup issues if this is a suspected problem
for any specific application.

Fig. 12: Variability of performance with 2916 GCDs
Progress monitoring: Large runs at full scale are always

at the peril of process and node failures and overall system
instability. Since runs at scale may require hours to complete,
without carefully monitoring the progress, one could ineffi-
ciently use these valuable node hours. It is therefore prudent to
have built-in mechanisms to track and report the calculation’s
progress, and be able to terminate abnormal runs.

Our benchmark code has a detailed progress report for
each component at definable iterations. We compare each
component’s performance to our previously recorded data in
Figures 5 and 6. Other practices include monitoring the power
utilization, which in our experience has often revealed early
problems. We quickly terminate runs that incur a significant
slowdown in performance. An example of progress output is
given in Figure 10. We observed several fabric hangs during
this Frontier run which could have been shutdown by our early
termination mechanism to save system resources. We expect
this to become less of a concern on Frontier as the system
becomes more stable prior to production launch.

VII. DISCUSSION AND LESSONS LEARNED

In this section we summarize lessons learned from porting,
optimizing and running the HPL-AI on Frontier and Summit
that are broadly relevant to leadership-scale HPC applications.
HPL-AI achieves over 9× performance of HPL on Summit,
and further performance on just a fraction of Frontier substan-
tially exceeds peak double precision performance of the full
Frontier system. This has potential impact on the performance
of many science applications relying on distributed multipli-
cation of dense matrices. While training deep learning models
[25] is likely the most salient example, other applications

include quantum chemistry [26], [27], nuclear physics [28],
[29], image processing [30], and numerical methods ranging
from solving linear systems to inverting a matrix [31] or using
Newton’s method for optimization problems [32], [33].

Frontier is a world-leading system deploying many new
features, and, like its predecessors Jaguar, Titan and Summit,
requires considerable time and effort to stabilize. Only part
of Frontier was available for our use; thus our results are
preliminary. Even so, we have found Frontier to be a capable,
powerful system able to run HPL-AI effectively at record-
achieving speed. For this work, portability layers like HIP were
found helpful for cross-platform application development but
do not capture all idiosyncrasies of library APIs from different
vendors, thus requiring custom code in the form of macros, for
example. This is true with respect to NVIDIA versus AMD
GPUs and expected to be the case also for Intel GPUs.

Kernel benchmarks, though not fully representing perfor-
mance of an operation as used in situ in an application,
were nonetheless useful for tuning. Individual GPUs can have
slight performance differences as the inevitable result of small
manufacturing variances. If needed, the user can map these out
of an application run to increase performance.

Certain features of Frontier enabled high performance of
HPL-AI, such as NICs directly attached to the GPUs enabling
efficient communication from GPU memory as well as the
huge high bandwidth memories of the GPUs enabling high
efficiencies for the GEMM computations. Also the large GPU
memory with respect to CPU memory size obviates the need
for double- and triple-buffering for memory management.

Codes like this have different performance regimes over
the course of a run, requiring special considerations for
optimization—in this case, compute-bound early in the run and
communication-bound later. The node architecture of both sys-
tems has nonuniform interconnect speeds between the GCDs
on the node, an important consideration for performance.

Accelerated applications must continue the trend of moving
more computations to the GPU and, when appropriate, com-
municating directly between the system’s GPUs. In addition
to improving the performance, this would also reduce the
associated carbon footprint by decreasing the execution time.

VIII. CONCLUSION

We have developed a cross platform implementation of
HPL-AI that delivers state-of-the-art exascale performance on
two of the world’s fastest supercomputer systems, Summit and
Frontier. We demonstrate how mixed precision can be utilized
effectively to deliver defined double precision accuracy.

As we embarked on developing and optimizing this bench-
mark for Summit and Frontier, we focused on the flop rates
of core BLAS routines such as GEMM, TRSM, GETRF.
As important as these key subproblems are, the performance
sweetspot for parameters at this scale is an at-times elusive
moving target, with shifting performance characteristics in
each phase. Ultimately, no kernel particularly emerged as a
singular bottleneck. The aforementioned techniques, such as
reducing variability, overlapping compute and communication

as much as possible, judicious design of data placement and
movement, combined with an architecturally well balanced
system made this effort possible.

Further, we have reason to believe that full scale Frontier
runs will be able to achieve 5 EFLOPS and that these develop-
ments demonstrate future opportunities for massively parallel
applications on GPUs. The mixed precision routines can serve
as a model for new techniques to be developed that enable new
science to be conducted efficiently and effectively. Of great
interest would be investigating how mixed precision operations
effects the energy profile required for various calculations.
One would expect that the improvements seen in performance
would translate directly to energy utilization and sustainable
computing which are ultimately critical for all data centers.

IX. ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] AMD, “AMD Instinct MI250 Accelerator,” Accessed Apr.
21, 2021. [Online]. Available: https://www.amd.com/en/products/
serveraccelerators/instinct-mi250/

[2] TOP-500, “TOP-500 Benchmark,” Accessed Apr. 21, 2021. [Online].
Available: https://www.top500.org/

[3] ICL, “HPL-AI Mixed-Precision Benchmark,” Accessed Aug. 1, 2021.
[Online]. Available: https://hpl-ai.org/

[4] G. Strang, Introduction to Linear Algebra, 5th ed. Wellesley, MA:
Wellesley-Cambridge Press, 2016.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
USA: Society for Industrial and Applied Mathematics, 2002.

[6] R. Schreiber, “Block algorithms for parallel machines,” in Numerical
Algorithms for Modern Parallel Computer Architectures, M. Schultz,
Ed. New York, NY: Springer US, 1988, pp. 197–207.

[7] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh, “Parallel algorithms
for dense linear algebra computations,” SIAM Rev., vol. 32, no. 1, p.
54–135, Mar. 1990. [Online]. Available: https://doi.org/10.1137/1032002

[8] J. H. Wilkinson, Rounding Errors in Algebraic Processes. USA: Dover
Publications, Inc., 1994.

[9] J. Kurzak and J. Dongarra, “Implementation of the mixed-precision high
performance linpack benchmark on the cell processor,” University of
Tennessee Computer Science Tech Report, no. UT-CS-06-580, LAPACK
Working Note #177, 2006.

[10] W. Lei, Z. Yunquan, Z. Xianyi, and L. Fangfang, “Accelerating lin-
pack performance with mixed precision algorithm on CPU+GPGPU
heterogeneous cluster,” in 2010 10th IEEE International Conference on
Computer and Information Technology, 2010, pp. 1169–1174.

[11] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers,” in The Fourth Symposium on the Frontiers of Massively
Parallel Computation, 1992, pp. 120–121.

[12] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” vol. 180,
no. 1, p. 012037, 2009.

[13] C. Brown, A. Abdelfattah, S. Tomov, and J. Dongarra, “Design, opti-
mization, and benchmarking of dense linear algebra algorithms on amd
gpus,” in 2020 IEEE High Performance Extreme Computing Conference,
2020, pp. 1–7.

[14] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J.
Higham, “Mixed-precision iterative refinement using tensor cores
on GPUs to accelerate solution of linear systems,” Proceedings
of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 476, no. 2243, p. 20200110, 2020. [Online]. Available:
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2020.0110

[15] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp.
603–613.

[16] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
Design of a modern distributed and accelerated linear algebra library,”
in SC19:Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2019, pp. 1–18.

[17] S. Kudo, K. Nitadori, T. Ina, and T. Imamura, “Implementation and
numerical techniques for one EFlop/s HPL-AI benchmark on Fugaku,”
in 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA), 2020, pp. 69–76.

[18] RIKEN-RCCS, “HPL-AI implementation for Fugaku,” Accessed Apr.
21, 2021. [Online]. Available: https://github.com/RIKEN-RCCS/hpl-ai

[19] NVIDIA, “NVIDIA CUDA toolkit documentation,” Accessed Apr. 21,
2021. [Online]. Available: https://docs.nvidia.com/cuda/index.html

[20] AMD, “AMD ROCm platform portal,” Accessed Oct. 21, 2021.
[Online]. Available: https://rocmdocs.amd.com/en/latest/

[21] AMD, “AMD HIP programming guide,” Accessed Oct. 21, 2021.
[Online]. Available: https://rocmdocs.amd.com/en/latest/Programming
Guides/HIP-GUIDE.html

[22] J. Dongarra, “Basic linear algebra subprograms technical (blast) forum
standard ii,” IJHPCA, vol. 16, pp. 1–111, 05 2002.

[23] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.728

[24] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[25] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[26] E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev,
P. Manohar, I. Kaliman, A. Dreuw, and A. I. Krylov, “New implemen-
tation of high-level correlated methods using a general block tensor
library for high-performance electronic structure calculations,” Journal
of Computational Chemistry, vol. 34, no. 26, pp. 2293–2309, 2013.

[27] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Dem-
mel, “A massively parallel tensor contraction framework for coupled-
cluster computations,” Journal of Parallel and Distributed Computing,
vol. 74, no. 12, pp. 3176–3190, 2014.

[28] C. Lau, E. Jaeger, N. Bertelli, L. Berry, D. Green, M. Murakami, J. Park,
R. Pinsker, and R. Prater, “Aorsa full wave calculations of helicon waves
in diii-d and iter,” Nuclear Fusion, vol. 58, no. 6, p. 066004, 2018.

[29] P. Du, P. Luszczek, and J. Dongarra, “High performance dense linear
system solver with resilience to multiple soft errors,” Procedia Computer
Science, vol. 9, pp. 216–225, 2012.

[30] S. Eswar, K. Hayashi, G. Ballard, R. Kannan, R. Vuduc, and H. Park,
“Distributed-memory parallel symmetric nonnegative matrix factoriza-
tion,” in SC20: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2020, pp. 1–14.

[31] X. He, M. Holm, and M. Neytcheva, “Parallel implementation of the
sherman-morrison matrix inverse algorithm,” in International Workshop
on Applied Parallel Computing. Springer, 2012, pp. 206–219.

[32] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “Giant:
Globally improved approximate newton method for distributed optimiza-
tion,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, ser. NIPS’18, 2018, p. 2338–2348.

[33] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method
for network utility maximization–i: Algorithm,” IEEE Transactions on
Automatic Control, vol. 58, no. 9, pp. 2162–2175, 2013.

