Evaluating Nonuniform Reduction in HIP and SYCL on GPUs

Zheming Jin
Oak Ridge National Laboratory
jinz@ornl.gov

Abstract—Motivated by maturing programming models and
portability for heterogeneous computing, we describe the
challenges posed by hardware architectures and programming
models when migrating an optimized implementation of
nonuniform reduction from CUDA to HIP and SYCL. We explain
the migration experience, evaluate the performance of the
reduction on GPU-based computing platforms, and provide
feedback on improving portability for the development of the
SYCL programming model.

Keywords— Nonuniform reduction, programming model,
heterogeneous computing

I. INTRODUCTION

Nonuniform reductions filter out data based on its content on
a per-element basis. Such reduction realizes data filtering
through a method of stream compaction [1]. Data filtering is
useful in collision detection [2], tree traversal [3], ray tracing [4],
etc. The reductions can be considered as a form of load
balancing because a filtered input range makes it easier to
provide an equal workload for all workers in a processor [5].

Previous studies focus on the designs and optimizations of
the parallel reduction on NVIDIA graphics-processing units
(GPUs) using the CUDA programming language [1,5,6]. With
the advancement of AMD GPUs and their adoption in facilities
and datacenters for scientific computing [7,8], migrating the
nonuniform reduction from CUDA to programming models
targeting these computing platforms will promote an
understanding of the challenges and opportunities of portability.
GPU computing platforms are different in the details of vendors’
hardware architectures and the software stacks, so vendor-
specific programming libraries and languages have been
addressing the differences. However, the commonalities among
these programming models exist that several portable
programming approaches allow for writing code that supports
multiple target platforms [9].

In this study, we describe the experience of migrating an
optimized implementation of the nonuniform reduction from
CUDA to other programming models. More specifically, we
explain our approach to addressing the challenges posed by the
differences in portable programming models and hardware
architectures. Then, we evaluate the performance of the
reductions on NVIDIA and AMD GPUs. Finally, we explain the
performance gap and suggest performance improvement for the
reduction.

We have described the motivation of our work. The rest of
the paper is organized as follows. Section II introduces the
programming models in our study, the nonuniform reduction
and its implementation. Section III describes the challenges
posed by the differences in software/hardware and our migration
paths to address them. Section IV presents the experimental
results. Section V discusses related work, and Section VI
concludes the paper.

Jeffrey S. Vetter
Oak Ridge National Laboratory
vetter@computer.org

II. BACKGROUND

A. A briefintroduciton to programming models

CUDA is a parallel computing platform and application
programming interface (API) that allows software to use
NVIDIA GPUs for general-purpose processing [10]. Because
CUDA is a mature and widely used programming model, we
will focus on an introduction to the programming models that
progress to maturity in this section.

Heterogeneous-Computing Interface for Portability (HIP) is
a C++ runtime application programming interface (API) and
kernel language developed mainly for programs executing on
AMD GPUsg. It offers a C-style API and C++ kernel language.
While CUDA and HIP are very similar in the naming of APIs,
HIP is a strong subset of CUDA in terms of functionality. On
the other hand, AMD and NVIDIA GPUs are not the same in
microarchitecture [11], so HIP supports architecture- and
language-specific features for AMD accelerators. A HIP
program is compiled with the HIP compiler in ROCm, an open
software platform composed of tools, libraries, models,
compilers, and runtimes [12].

SYCL is a promising programming model that builds on the
underlying concepts, portability, and efficiency of Open
Computing Language while adding much of the ease of use and
flexibility of single-source C++ [13]. The higher abstractions in
SYCL, such as device selectors, buffers, atomic reference,
significantly improve productivity and efficiency of writing a
parallel program for heterogenous computing devices. The Intel
DPC++ is a compiler implementation of the SYCL
specification based on the open-source LLVM technology [14].
The compiler allows code reuse across different Intel hardware
platforms. While the compiler is optimized with vendor-
specific features, it offers support of running a SYCL program
on AMD and NVIDIA GPUs [15].

Portability is an important aspect of SYCL. When a SYCL
program executes on a variety of platforms, it is desirable that
the program can achieve reasonable performance on these
platforms. However, a language and compiler can only
guarantee that they can make it a little easier for developers to
achieve portability for an application [13]. Hence, it is
worthwhile to investigate and improve portability using SYCL.

B. Nonuniform reduction and its implementation

Listing 1 shows the sequential execution of nonuniform
reduction over “N” elements. When the value of an element does

3 =0
for (1 = 0; i < N; 1i++)
if input[i] is wvalid
output[j] = input[i]
g4+

Listing 1. Sequential nonuniform reduction

// Phase 1 counts valid elements per thread block
parallel for each block in blocks[0..GS-1]
count = 0
for each input element e in the block
if e is valid
count++
blocks[bid] = count

// Phase 2 computes offsets of these blocks
offsets[0..GS-1] = xscan over blocks[0..GS-1]

// Phase 3 reduces the input nonuniformly
parallel for each offset in offsets[0..GS-1]
j = offsets[oid]
for each input element e processed by a processor
if e is valid
output[j] = e
J++

Listing 2. Parallel nonuniform reduction implemented with three phases
described in [5]. “GS” is the total number of thread blocks allocated for
the workload and “BS” the total number of threads in a thread block.
Each thread holds the value of an input element. The “range[..]”” notation
indicates the number of input elements in the range. “xscan” indicates
exclusive scan. “bid” stands for block index and “oid” offset index.

1 template <typename T, typename Predicate>
2 void computeBlockCounts (

3 const T* restrict d input,

int length,

int* restrict d BlockCounts,
Predicate predicate,

nd item<l> &item)

0 J oy U >

9 int idx = item.get global id(0);
10 if(idx < length) {

11 int pred = predicate(d input[idx]);

12 int ¢ = sycl::reduce over group (
item.get group(), pred,
sycl::ext::oneapi::plus<>());

13 if (item.get local id(0) == 0) {

14 d BlockCounts[item.get group(0)] = c;

15 }

16 1}

17 }

Listing 3. The SYCL kernel for the phase 1 of the reduction. The CUDA
intrinsic “__syncthreads_count()” is mapped to the SYCL group
reduction function. The indices of work-items and work-groups are
queried with the methods of the SYCL class “nd_item”.

not meet some condition (i.e., invalid), the element will be
filtered out. Hence, only valid elements will be stored
consecutively in the output. The challenge of the parallel
reduction lies in the dependency of output location of each
element on the validity of every element before it [5].

In [16], the author presented a highly optimized CUDA
implementation of the reduction targeting an NVIDIA GPU.
The method consists of three phases as shown in Listing 2. The
first phase counts the number of valid elements per thread block.
Then, the first thread in each thread block stores the result in the
device memory. In the second phase, a prefix-sum operation
[17] on the number of valid elements of each thread block is
performed to produce a vector of offsets for all thread blocks.
The prefix sum is implemented using the Thrust library for
productivity [18]. The last phase reduces the input values with
compaction and outputs the compacted values with the block
offsets computed in the second phase. The implementation of
the compaction is optimized with the CUDA intra-warp voting
function [19], population count operation [19], and bit
manipulation to achieve efficiency and performance on an
NVIDIA GPU.

III. MIGRATION CHALLENGES FROM CUDA 1O HIP AND SYCL

Previous studies described the migration of benchmarks and
applications from CUDA to HIP and/or SYCL [20,21,22,23,24].
For the reduction, we will focus on the challenges of migrating
the CUDA implementation and how they are addressed. Before
diving into the implementation details, we should clarify the
terminology commonly used in the kernel languages. Thread,
thread block, and warp in CUDA correspond to thread, thread
block, wavefront in HIP, respectively; they correspond to work-
item, work-group, and sub-group in SYCL, respectively. In the
SYCL specification, work-items have access to group functions
that implement common communication routines and parallel
patterns such as reduction and scan [25]. A sub-group refers to
subsets of work-items in a work-group. The size of a sub-group
can be specified at compile-time as a kernel attribute, but it must
be compatible with the sizes supported by a target device. Like
CUDA warp-level optimizations, the execution of work-items at

the granularity of sub-group (i.e., close to hardware) may
achieve higher level of performance across GPU platforms.

The CUDA kernel for the first phase of the reduction calls a
barrier intrinsic function “__syncthreads _count(p)” that counts
the number of non-zero predicates (p) of all threads in a thread
block and synchronizes the operations to return the result to all
threads [19]. Migrating the intrinsic to HIP is straightforward as
it is natively supported by the language. In SYCL, the intrinsic
is mapped to the “reduce over group()” function provided by
the group algorithms library [25]. Since there are no code
changes from CUDA to HIP for the first phase, we list the SYCL
kernel in Listing 3.

The input elements and output results are stored on GPU
device memory before the kernel starts executing. In the kernel,
the predicate is true when the value of an input element is
positive (L11). In a real application, a predicate’s value may be
computed by comparing each element’s value with a threshold.
The SYCL group function (L12) is specialized to sum up the
number of valid elements in a work-group. Finally, the first
work-items (L13) of all work-groups store the results of the
group reduce function in “d BlockCounts” at the locations
corresponding to the work-group indices (L14). Besides reads
from and writes to device memory by work-items in each work-
group, most of the kernel execution time is spent on counting the
number of valid elements of all work-items in each work-group
and synchronizing the operations.

In the second phase of the reduction, an exclusive scan over
the valid predicates counted in the first phase produces a vector

1 auto policy =
oneapi::dpl::execution::make device policy(q);

2 oneapi::dpl::exclusive scan(

policy,

d BlocksCount,

d BlocksCount + numBlocks,

d_BlocksOffset,

(T)0);

Listing 4: The library-based approach for exclusive scan in the SYCL
kernel

of block offsets (d_BlocksOffset). Both the CUDA and HIP
programs call the “thrust::exclusive scan()” function in the
Thrust library for the scan operation. In the SYCL program, the
Thrust scan is migrated with the Intel oneAPI DPC++ Library
(oneDPL) [26].

Listing 4 shows the oneDPL exclusive scan function. Both
the Thrust and oneDPL functions require the beginning and end
of an input sequence, the beginning of an output sequence, and
an appropriate initial value. However, the oneDPL scan requires
an execution policy for specifying that the parallel algorithm’s
execution may be parallelized on a target device. Additionally,
the scan function depends on the Intel performance library for
thread building block (oneTBB) [27]. Though we no longer need
to implement scan operation from scratch, the comparison
shows that migrating the scan function from CUDA to SYCL
depends on the support of multiple libraries and SYCL-specific
scan function. Apparently, the performance of the scan depends
on the performance of the library implementation.

The last phase of the reduction computes the predicate offset
for each thread in a thread block by dividing a thread block into
warps. Migrating the CUDA kernel for this phase to HIP is less
straightforward than the process in the first two phases due to
the architectural differences.

Listing 5 shows the kernel in HIP. We will explain the
differences between the CUDA and HIP kernels when going

#define warpSize (64)
#define FULL MASK OxffffffffffffffffUL
1 template <typename T, typename Predicate>
2 _global void compactK/(
3 const T* restrict d input,
4 int length,
5 T* restrict d output,
6 const int* restrict d BlocksOffset,
7 Predicate predicate)
8 {
9 extern shared int warpTotals[];
10 int idx = threadIdx.x + blockIdx.x * blockDim.x;
11 if (idx < length) {

12 int pred = predicate(d_input[idx]);

13 int w i = threadIdx.x / warpSize;

14 int w 1 = idx % warpSize;

15 size t tm= (w1 ==20) 20 :
(FULL MASK >> (warpSize-w 1));

16 size t b = ballot(pred) & t m;

17 unsigned int t u = popcll(b);

18 if(w 1 == warpSize-1)

19 warpTotals[w_i]=t u+pred;

20 ~_syncthreads();

21 int numWarps = blockDim.x / warpSize;

22 if (w_i==0 && w_l<numWarps) {

23 int w i u=0;

24 for (int j=0;3<=6;J++) {

25 int b j = ballot(warpTotals[w 1] &
pow2i (3)) ;

26 w i u+= (_popc(b j & (t m &
OxFFFFFFFF))) << j;

27 }

28 warpTotals[w_l]=w_i u;

29 }

30 __syncthreads() ;

31 if (pred) {

32 d output[t u + warpTotals[w il+

d_BlocksOffset[blockIdx.x]]=
d input[idx];
33 Pyl

Listing 5. The HIP kernel for the phase 3 of the reduction. The
wavefront size is 64 for the kernel.

through the operations in the kernel. The warp and thread indices
within a warp are computed on L13 and L14, respectively. When
producing a thread mask for active threads in a warp (L15), we
find the result of shifting right the default 32-bit thread mask (all
ones) with a shift amount of 32 is zero in CUDA, yet the result
is unchanged in HIP for the 64-bit mask (L15). The intra-warp
voting function “__ ballot()’produces a bitmask whose i bit is
set when the value of the predicate held by the i thread’s true
(L16). For the NVIDIA GPU architecture, there are 32 parallel
threads in a warp. In contrast, the number of parallel threads is
64 in a wavefront (warp) for the AMD MlI-series GPUs
architecture [28]. Hence, the “ ballot()” returns a 64-bit result
from the predicate evaluation of 64 threads. Then, it is combined
with the population count for an efficient implementation of
Boolean reduction. The appropriate function for population
count is called to count the number of non-zero predicates in a
64-bit number (L17). The last thread in each warp stores the total
number of valid predicates in a warp in a shared memory (L18,
L19). L20 synchronizes memory writes of all warps in a thread
block. The number of warps (numWarps) is the size of a thread
block divided by the warp size (L21). It is assumed that the
number of warps in a thread block is no more than the warp size.
Then, threads of size “numWarps” in the first warp perform an
exclusive prefix sum to produce output offset for each warp in a
thread block. A naive way to compute the sum will loop over the
values in the shared memory with the trip count equal to
“numWarps”. Computing the accumulative warp offsets is
optimized with a binary-manipulation loop (L22 — L30) where
the trip count equals the number of bits that can represent the
maximum offset value for a warp. When the warp size is 64, the
trip count increases from 5 to 6 (L24). When the value of a
predicate held by a thread is true (L31), the value is stored in the
destination address computed with thread offset in a warp, warp
offset in a block, and block offset in a grid (L32).

The portability feature of SYCL does not necessarily mean
that a single SYCL kernel for the last phase can execute
correctly across different GPUs. The kernel needs to consider

1 auto sg = item.get sub group();

2 size t b = sycl::reduce over group (sg,
pred ? (1UL << sg.get local linear id()
: 0, sycl::ext::oneapi::plus<>());

Listing 6: Map the CUDA “_ ballot()” to the SYCL group reduction
function over a sub-group. The required sub-group size can be set at
compile time. It is 64 for the kernel targeting an AMD GPU.

1 int t = 0;

2 if (w i == 0 && w 1 < numWarps) {

3 t = warpTotals([w 1];

4}

5 if (w i == 0) {

6 for (int j=0;3<=6;J++) {

7 unsigned int b_j = reduce_over_ group (sg,
(t & pow2i(j)) 2
(0x1 << sg.get local linear id()) : O,
ext::oneapi::plus<>());

8 w i u += sycl::popcount(b j & t m32) << j;

9 }

10 }

Listing 7: Bit manipulation in the SYCL kernel. The required sub-
group size can be set at compile time. It is 64 for the kernel targeting an
AMD GPU. All work-items in a sub-group execute the group reduction
function; otherwise, the result of the reduction is incorrect.

the architectural differences between the AMD and NVIDIA
GPUs. The “ ballot()” function is converted to the SYCL
group function as shown in Listing 6. Instead of reducing over
the constituent work-group as in Listing 3, the function performs
a reduction over a sub-group in which all work-item participate
in computing the values of predicates. The sub-group size is
either 32 or 64, which is specified with the kernel attribute
“reqd_sub_group_size()” when launching the SYCL kernel on
the host.

We find that the result using the SYCL group reduction
function does not match that of the CUDA or HIP intra-warp
voting function when computing the accumulative warp offsets
with a binary-manipulation loop. The SYCL group function
expects that the number of work-items executing the function
equals the sub-group size. However, the actual number of active
work-items (i.e., numWarps) may be less than the sub-group
size. The issue can be addressed by allowing all work-items in a
sub-group to execute the function shown in Listing 7. We
suggest that the SYCL specification clarify the behavior of the
group reduction operation when the number of active work-
items is less than the sub-group size.

IV. EXPERIMENTS

A. Setup

We evaluate the performance of the reduction on three GPU-
based platforms. The first platform (P1) is NVIDIA Jetson AGX
Xavier that consists of an ARM v8.2 CPU and an integrated
Volta GPU. The second platform (P2) contains an Intel Xeon
E5-2698 v4 CPU and an NVIDIA V100 DGXS GPU. The third
platform (P3) contains an AMD EPYC 7272 CPU and an AMD

CUDA reduction throughput (G/s)
35

3
2.5

1.5
1
0.5 I
0
20 21 22 23 24 25 26 27 28 29

problem size represented with the exponent
m64 m]28 m256 m512 m1024

NS}

Fig. la. Performance of the CUDA reduction with respect to the problem
and thread block sizes on P1

CUDA reduction throughput (G/s)
60

0 I
20 21 22 23 24 25 26 27 28 29

problem size represented with the exponent
mo4 w128 256 512 m1024

N W A W
S © o O

Fig. 2a. Performance of the CUDA reduction with respect to the problem
and thread block sizes on P2

TABLE 1. DEVICE SPECIFICATIONS (D2D: DEVICE-TO-DEVICE)

GPU Specification Xavier V100 MI100
Global memory (GB) 16 32 32
GPU clock rate (MHz) 1377 1530 1502
Memory clock rate (MHz) 1377 877 1200
Number of cores 512 5120 7680
L2 Cache (MB) 0.5 6 8
Peak memory bandwidth (GB / s) 137 898 1228
D2D memory bandwidth (GB / s) 62 732 770

MI100 GPU. The major specifications of the GPUs are listed in
Table 1. The device-to-device (D2D) memory bandwidths are
measured with the bandwidth tests in CUDA and HIP. The
CUDA programs are compiled with the JetPack v5.0.1 and HPC
SDK v22.7 on P1 and P2, respectively. The HIP program is
compiled with the ROCm v4.5.2. The SYCL compiler with
NVIDIA and AMD GPU support is built from the latest release,
version 2022-6. The number of input elements (problem size)
for reduction ranges from 2% to 2%° and the size of each element
is four bytes. It should be noted that the number of elements is
not necessarily a power of two for the reduction. The size of a
thread block is a power of two ranging from 64 to 1024. The
performance metrics are throughput and efficiency. We define
the throughput as Giga elements reduced per second (G/s) and
the efficiency as effective utilization as measured by a
comparison with device-to-device memory bandwidth:
number of input elements

Throughput =
9P average reduction time

maximum throughput in bytes
D2D memory bandwidth

Efficiency =

SYCL reduction throughput (G/s)
2.5

2

1.5

I
0.5 I | oOM

0
20 21 22 23 24 25 26 27 28 29

problem size represented with the exponent
mOo4 m128 m256 m512 m1024

Fig. 1b. Performance of the SYCL reduction with respect to the problem
and thread block sizes on P1. (OOM: out-of-memory)

SYCL reduction throughput (G/s)
45
40
35
30

25
20
5
S MHOE AL
s i
20 21 22 23 24 25 26 27 28 29

problem size represented with the exponent
m64 W28 m256 m512 m1024

W

Fig. 2b. Performance of the CUDA reduction with respect to the problem
and thread block sizes on P2

0 HIP reduction throughput (G/s)

60

50

40

30

o I|\|‘I‘ ‘
13|II

problem size 1'epresented with the exponent
mo4 128 256 512 m1024

Fig. 3a. Performance of the HIP reduction with respect to the problem
and thread block sizes on P3

We repeat the three phases of the reduction 1000 times to obtain
average reduction time. The GPU results are verified on each
host.

B. Results

Our experiments show that the reduction throughput reaches
50% or more of the maximum when the problem size is 2%.
Memory bandwidth is underutilized when the problem size is
small for parallel processing. The performance of the reduction
is sensitive and tunable with the thread block size across the
problem sizes.

Fig. 1a and Fig. 1b show the reduction performance on P1
using CUDA and SYCL, respectively. The highest CUDA and
SYCL reduction throughputs are approximately 3.33 G/s and 2.2
G/s, respectively. The SYCL runtime reports an out-of-memory
error when allocating memory for the largest problem size. Fig.
2a and Fig. 2b show the reduction throughput on P2 using
CUDA and SYCL, respectively. The highest CUDA and SYCL
reduction throughputs are approximately 58.8 G/s and 42.2 G/s,
respectively. Fig. 3a and Fig. 3b show the reduction
performance on P3 using HIP and SYCL, respectively. The
highest HIP and SYCL reduction throughputs are approximately
62.3 G/s and 31.1 GIs, respectively. Hence, the maximum
throughputs of the SYCL reduction with CUDA and HIP
support are 1.5X, 1.39X and 2.0X lower than those of the CUDA
and HIP reductions on the three platforms, respectively. The
maximum CUDA reduction throughput is reached when the
thread block size is 1024 on P1 and P2. However, we observe
approximately 13% to 20% performance drop when increasing
the work-group size from 256 to 1024 using SYCL. On the
AMD GPU, the maximum HIP and SYCL throughputs are
reached when the block sizes are 512 and 256, respectively.
Doubling the optimal size incurs a maximum of 4%
performance drop.

TABLE II. THE REDUCTION EFFICIENCY ON THE THREE PLATFORMS

Efficiency (%) CUDA HIP SYCL
Pl 2148 N/A 14.19
P2 32.13 N/A 23.06
P3 N/A 32.36 16.15

TABLE III. EXECUTION TIME OF THE THREE PHASES OF THE REDUCTION

Time (us) P1 P2 P3
HIP 4338 58.2 4385
SYCL 6390 264 9865

SYCL reduction throughput (G/s)
35
30
25
20

15
;s [IFIEL
o mmnl [
20 21 22 23 24 25 26 27 28 29

problem size represented with the exponent
m64 m]28 m256 m512 m1024

W

Fig. 3b. Performance of the SYCL reduction with respect to the problem
and thread block sizes on P3

Table II shows the reduction efficiency on the three
platforms. We focus on the performance portability of the SYCL
programming model on NVIDIA and AMD GPUs. For a
memory-bound kernel, the efficiency of the CUDA and HIP
reductions are almost identical on P2 and P3. P1 is a platform
for embedding computing while P2 and P3 are high-
performance computing (HPC) platforms. The HPC platforms
are more efficient in terms of throughput than the embedded
computing platform for the reduction. There is a large space of
improving the efficiency of the SYCL reductions on these
platforms.

An integrated GPU is not designed to outperform a discrete
GPU due to the power, area, and thermal constrains. Comparing
the reduction performance on the discrete GPUs shows that the
maximum HIP throughput on P3 is about 1.06X higher than the
maximum CUDA throughput on P2. However, the SYCL
throughput on P3 is about 1.36X lower than that on P2. Hence,
we profile the three phases of the reductions on the AMD GPU
when the problem size is 2% and the block size is 256.

Table III shows the HIP and SYCL execution time in
microseconds (us) of the three phases. In the first phase (P1), the
implementation of the barrier intrinsic “__syncthreads_count()”
in the HIP kernel is more efficient than the implementation of
“reduce over group()” in SYCL for counting the number of
non-zero predicates in a wavefront. In the second phase, the
implementation of the exclusive scan in the HIP Thrust is more
efficient than that in the oneDPL. In the third phase, the HIP
compiler can convert the bit manipulation executed by a single
wavefront to operations over a vector register. The SYCL
compiler is not able to reduce the bit operations using a vector
register. Comparing the assembly codes of the HIP and SYCL
kernels also shows that the HIP compiler can generate more
efficient instructions in terms of the total instruction length in
bytes and the number of allocated scalar and vector general-
purpose registers.

V. RELATED WORK

Our experimental results show that migrating the non-
uniform reduction from CUDA to SYCL is more challenging
than the process from CUDA to HIP. Hence, we prefer a
discussion of previous studies on functional and performance
portability [20-24] to the designs and optimizations of the
CUDA nonuniform reduction [5,6,16,19]. In [20], the authors
evaluate the performance of benchmarks and mini-apps having
both SYCL and CUDA implementations on a NVIDIA V100
GPU. They find many of the performance differences are due to

the ordering and choices of memory accesses. Our evaluation
shows that the performance differences are caused by the
implementations of the SYCL runtime and library for the
reduction functions. In [21], the authors evaluate the
performance of a GPU accelerated sequence alignment
algorithm across vendors’ GPUs using CUDA, HIP and SYCL.
They find that migrating the highly optimized CUDA kernels to
SYCL requires significant code changes. The SYCL
implementation is 2X slower than the CUDA implementation on
the target devices. Putting aside the differences in the language
design of programming models, we will continue working with
the SYCL community for optimizing the SYCL compiler to
improve performance portability. In [22], the authors describe
their experiences of migrating NAMD, a large molecular
dynamics software application, from CUDA to SYCL. While
porting most CUDA kernels in the application is
straightforward, they take the library-based approach for
migrating the reduction, scan, sort, and other operations in the
CUDA application. Our experiment shows that the oneDPL
library is about 4.5X lower than the Thrust library in terms of
the scan performance. In [23], the authors evaluate the
performance of a machine-learning application with SYCL and
CUDA on multiple NVIDIA GPUs. They point out that
performance portability has not yet been fully achieved by any
SYCL implementations. CUDA’s mature development
environment and its variety of libraries can speed up the
development process on NVIDIA platforms. As HIP and SYCL
are maturing and being deployed in facilities, developers are
encouraged to find gaps between CUDA and other programming
models for improving performance portability. In [24], the
author describes the experience of migrating a graph application
from CUDA to SYCL. The CUDA and SYCL application are
comparable in kernel execution time on the NVIDIA GPUs, but
certain CUDA device property, math function, and warp
primitive were not fully supported by SYCL built-in functions.
Our experiment shows that the SYCL group reduction functions,
to which the warp-level primitives are mapped, have become a
performance bottleneck for the reduction. As a summary of
related work, portability depends on the characteristics of an
application, the optimizations applied to the application, the
maturity of the toolchains and libraries, and the expressiveness
of the programming models.

VI. CONCLUSION

We successfully migrate the kernels in a nonuniform
reduction from CUDA to HIP and SYCL by addressing the
challenges posed by differences in programing models and GPU
architectures. This requires a good understanding of the impact
of the architectural differences upon the programming models.
Portability is one of the key features in SYCL, but we still need
to address the architectural differences in the SYCL kernels. For
the reduction kernels, the migration from CUDA to SYCL is
more challenging than the relatively straightforward process
from CUDA to HIP. With the development of the SYCL
ecosystem, we expect that the SYCL-specific group algorithm
library and data-parallel library will be improved to narrow the
performance gap between the SYCL and CUDA/HIP
implementations. In the future work, we are interested in
evaluating the reduction on an Intel data-center GPU.

T

ACKNOWLEDGMENT

We appreciate the reviewers’ comments and suggestions. This
research used resources of the Experimental Computing Lab at
Oak Ridge National Laboratory. This research was supported by
the US Department of Energy Advanced Scientific Computing
Research program under Contract No. DE-AC05-000R22725.

REFERENCES

[1] Pharr, M. and Fernando, R., 2005. GPU Gems 2: Programming techniques for
high-performance graphics and general-purpose computation (GPU Gems).
Addison-Wesley Professional.

[2] GreB, A., Guthe, M. and Klein, R., 2006, September. GPU-based collision
detection for deformable parameterized surfaces. In Computer Graphics
Forum (Vol. 25, No. 3, pp. 497-506). Oxford, UK and Boston, USA: Blackwell
Publishing, Inc.

[3] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D. and Manocha, D., 2009,
April. Fast BVH construction on GPUs. In Computer Graphics Forum (Vol.
28, No. 2, pp. 375-384). Oxford, UK: Blackwell Publishing Ltd.

[4] Wald, L., Gribble, C.P., Boulos, S. and Kensler, A., 2007. SIMD ray stream
tracing-simd ray traversal with generalized ray packets and on-the-fly re-
ordering. Informe Técnico, SCI Institute, 2.

[5] Billeter, M., Olsson, O. and Assarsson, U., 2009, August. Efficient stream
compaction on wide SIMD many-core architectures. In Proceedings of the
conference on high performance graphics 2009 (pp. 159-166).

[6] Rego, V., Sang, J. and Yu, C., 2016, November. A fast hybrid approach for
stream compaction on GPUs. In 2016 Fourth International Symposium on
Computing and Networking (CANDAR) (pp. 476-482). IEEE.

[7] Schulte, M.J., Ignatowski, M., Loh, G.H., Beckmann, B.M., Brantley, W.C.,
Gurumurthi, S., Jayasena, N., Paul, I., Reinhardt, S.K. and Rodgers, G., 2015.
Achieving exascale capabilities through heterogeneous computing. IEEE
Micro, 35(4), pp.26-36.

[8] Germaschewski, K., Allen, B., Dannert, T., Hrywniak, M., Donaghy, J., Merlo,
G., Ethier, S., D'Azevedo, E., Jenko, F. and Bhattacharjee, A., 2021. Toward
exascale whole-device modeling of fusion devices: Porting the GENE
gyrokinetic microturbulence code to GPU. Physics of Plasmas, 28(6),
p.062501.

[9] Portability Across DOE Office of Science HPC Facilities. [online]
https://performanceportability.org/

[10] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton,
S., Phillips, E., Zhang, Y. and Volkov, V., 2008. Parallel computing
experiences with CUDA. IEEE MICRO, 28(4), pp.13-27.

[11] Gutierrez, A., Beckmann, B.M., Dutu, A., Gross, J., LeBeane, M.,
Kalamatianos, J., Kayiran, O., Poremba, M., Potter, B., Puthoor, S. and
Sinclair, M.D., 2018, February. Lost in abstraction: Pitfalls of analyzing GPUs
at the intermediate language level. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA) (pp. 608-619). IEEE.

[12] ROCm Open Ecosystem, 2021. AMD.
https://www.amd.com/en/graphics/servers-solutions-rocm

[13] Lattner, C. and Adve, V., 2004, March. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on
Code Generation and Optimization, 2004. CGO 2004. (pp. 75-86). IEEE.

[14] Intel oneAPI DPC++ Auvailable:
https://github.com/intel/llvm

[15] Spataro, D., 2015. Stream compaction on GPU. [online] Available:
http://www.davidespataro.it/cuda-stream-compaction-efficient-
implementation/

[16] Hillis, W.D. and Steele Jr, G.L., 1986. Data parallel algorithms.
Communications of the ACM, 29(12), pp.1170-1183.

[17] Bell, N. and Hoberock, J., 2012. Thrust: A productivity-oriented library for
CUDA. In GPU computing gems Jade edition (pp. 359-371). Morgan
Kaufmann.

compiler. [online]

[18] Harris, M. and Garland, M., 2012. Optimizing parallel prefix operations for
the Fermi architecture. In GPU Computing Gems Jade Edition (pp. 29-38).
Morgan Kaufmann.

[19]

[20]

[21

—

[22

—

(23]

[24]

[25

=

[26

[}

[27]

Homerding, B. and Tramm, J., 2020, April. Evaluating the Performance of the
hipSYCL Toolchain for HPC Kernels on NVIDIA V100 GPUs. In Proceedings
of the International Workshop on OpenCL (pp. 1-7).

Haseeb, M., Ding, N., Deslippe, J. and Awan, M., 2021, November. Evaluating
Performance and Portability of a core bioinformatics kernel on multiple vendor
GPUs. In 2021 International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (pp. 68-78). IEEE.

David J Hardy, Jaemin Choi, Wei Jiang, and Emad Tajkhorshid. 2022.
Experiences Porting NAMD to the Data Parallel C++ Programming Model. In
International Workshop on OpenCL (IWOCL’22). Association for Computing
Machinery, New York, NY, USA, Article 15, 1-5.

Marcel Breyer, Alexander Van Craen, and Dirk Pfliiger. 2022. A Comparison
of SYCL, OpenCL, CUDA, and OpenMP for Massively Parallel Support
Vector Machine Classification on Multi-Vendor Hardware. In International
Workshop on OpenCL (IWOCL’22). Association for Computing Machinery,
New York, NY, USA, Article 2, 1-12.

Jin, Zheming. 2022. Experience of Migrating Parallel Graph Coloring from
CUDA to SYCL. United States. https://www.osti.gov/servlets/purl/1864412.
The SYCL 2020 Specification (revision 5). [online]
https://www khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-
2020.html.

Intel oneAPI DPC++ Library. [online] Available: https://github.com/oneapi-
src/oneDPL

Intel oneAPI Threading Building Blocks. [online] Available:
https://github.com/oneapi-src/oneTBB

AMD Instinct MII00 Instruction Set Architecture. [online]

https://developer.amd.com/wp-content/resources/CDNA1_Shade-
r_ISA_14December2020.pdf

