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Abstract—Motivated by maturing programming models and 

portability for heterogeneous computing, we describe the 

challenges posed by hardware architectures and programming 

models when migrating an optimized implementation of 

nonuniform reduction from CUDA to HIP and SYCL. We explain 

the migration experience, evaluate the performance of the 

reduction on GPU-based computing platforms, and provide 

feedback on improving portability for the development of the 

SYCL programming model. 
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I. INTRODUCTION 

Nonuniform reductions filter out data based on its content on 
a per-element basis. Such reduction realizes data filtering 
through a method of stream compaction [1]. Data filtering is 
useful in collision detection [2], tree traversal [3], ray tracing [4], 
etc. The reductions can be considered as a form of load 
balancing because a filtered input range makes it easier to 
provide an equal workload for all workers in a processor [5].  

Previous studies focus on the designs and optimizations of 
the parallel reduction on NVIDIA graphics-processing units 
(GPUs) using the CUDA programming language [1,5,6]. With 
the advancement of AMD GPUs and their adoption in facilities 
and datacenters for scientific computing [7,8], migrating the 
nonuniform reduction from CUDA to programming models 
targeting these computing platforms will promote an 
understanding of the challenges and opportunities of portability. 
GPU computing platforms are different in the details of vendors’ 
hardware architectures and the software stacks, so vendor-
specific programming libraries and languages have been 
addressing the differences. However, the commonalities among 
these programming models exist that several portable 
programming approaches allow for writing code that supports 
multiple target platforms [9]. 

In this study, we describe the experience of migrating an 
optimized implementation of the nonuniform reduction from 
CUDA to other programming models. More specifically, we 
explain our approach to addressing the challenges posed by the 
differences in portable programming models and hardware 
architectures. Then, we evaluate the performance of the 
reductions on NVIDIA and AMD GPUs. Finally, we explain the 
performance gap and suggest performance improvement for the 
reduction. 

We have described the motivation of our work. The rest of 
the paper is organized as follows. Section II introduces the 
programming models in our study, the nonuniform reduction 
and its implementation. Section III describes the challenges 
posed by the differences in software/hardware and our migration 
paths to address them. Section IV presents the experimental 
results. Section V discusses related work, and Section VI 
concludes the paper. 

II. BACKGROUND 

A. A brief introduciton to programming models 

CUDA is a parallel computing platform and application 
programming interface (API) that allows software to use 
NVIDIA GPUs for general-purpose processing [10]. Because 
CUDA is a mature and widely used programming model, we 
will focus on an introduction to the programming models that 
progress to maturity in this section. 

Heterogeneous-Computing Interface for Portability (HIP) is 
a C++ runtime application programming interface (API) and 
kernel language developed mainly for programs executing on 
AMD GPUs. It offers a C-style API and C++ kernel language. 
While CUDA and HIP are very similar in the naming of APIs, 
HIP is a strong subset of CUDA in terms of functionality. On 
the other hand, AMD and NVIDIA GPUs are not the same in 
microarchitecture [ 11 ], so HIP supports architecture- and 
language-specific features for AMD accelerators. A HIP 
program is compiled with the HIP compiler in ROCm, an open 
software platform composed of tools, libraries, models, 
compilers, and runtimes [12]. 

SYCL is a promising programming model that builds on the 
underlying concepts, portability, and efficiency of Open 
Computing Language while adding much of the ease of use and 
flexibility of single-source C++ [13]. The higher abstractions in 
SYCL, such as device selectors, buffers, atomic reference, 
significantly improve productivity and efficiency of writing a 
parallel program for heterogenous computing devices. The Intel 
DPC++ is a compiler implementation of the SYCL 
specification based on the open-source LLVM technology [14]. 
The compiler allows code reuse across different Intel hardware 
platforms. While the compiler is optimized with vendor-
specific features, it offers support of running a SYCL program 
on AMD and NVIDIA GPUs [15]. 

Portability is an important aspect of SYCL. When a SYCL 
program executes on a variety of platforms, it is desirable that 
the program can achieve reasonable performance on these 
platforms. However, a language and compiler can only 
guarantee that they can make it a little easier for developers to 
achieve portability for an application [13]. Hence, it is 
worthwhile to investigate and improve portability using SYCL. 

B. Nonuniform reduction and its implementation 

Listing 1 shows the sequential execution of nonuniform 
reduction over “N” elements. When the value of an element does 

j = 0 

for ( i = 0; i < N; i++ )  

  if input[i] is valid 

    output[j] = input[i] 

  j++ 

 
Listing 1.  Sequential nonuniform reduction 



not meet some condition (i.e., invalid), the element will be 
filtered out. Hence, only valid elements will be stored 
consecutively in the output. The challenge of the parallel 
reduction lies in the dependency of output location of each 
element on the validity of every element before it [5]. 

In [16], the author presented a highly optimized CUDA 
implementation of the reduction targeting an NVIDIA GPU. 
The method consists of three phases as shown in Listing 2. The 
first phase counts the number of valid elements per thread block. 
Then, the first thread in each thread block stores the result in the 
device memory. In the second phase, a prefix-sum operation 
[17] on the number of valid elements of each thread block is 
performed to produce a vector of offsets for all thread blocks. 
The prefix sum is implemented using the Thrust library for 
productivity [18]. The last phase reduces the input values with 
compaction and outputs the compacted values with the block 
offsets computed in the second phase. The implementation of 
the compaction is optimized with the CUDA intra-warp voting 
function [ 19 ], population count operation [19], and bit 
manipulation to achieve efficiency and performance on an 
NVIDIA GPU. 

III. MIGRATION CHALLENGES FROM CUDA TO HIP AND SYCL 

Previous studies described the migration of benchmarks and 
applications from CUDA to HIP and/or SYCL [20,21,22,23,24]. 
For the reduction, we will focus on the challenges of migrating 
the CUDA implementation and how they are addressed. Before 
diving into the implementation details, we should clarify the 
terminology commonly used in the kernel languages. Thread, 
thread block, and warp in CUDA correspond to thread, thread 
block, wavefront in HIP, respectively; they correspond to work-
item, work-group, and sub-group in SYCL, respectively. In the 
SYCL specification, work-items have access to group functions 
that implement common communication routines and parallel 
patterns such as reduction and scan [25]. A sub-group refers to 
subsets of work-items in a work-group. The size of a sub-group 
can be specified at compile-time as a kernel attribute, but it must 
be compatible with the sizes supported by a target device. Like 
CUDA warp-level optimizations, the execution of work-items at 

the granularity of sub-group (i.e., close to hardware) may 
achieve higher level of performance across GPU platforms.  

The CUDA kernel for the first phase of the reduction calls a 
barrier intrinsic function “__syncthreads_count(p)” that counts 
the number of non-zero predicates (p) of all threads in a thread 
block and synchronizes the operations to return the result to all 
threads [19]. Migrating the intrinsic to HIP is straightforward as 
it is natively supported by the language. In SYCL, the intrinsic 
is mapped to the “reduce_over_group()” function provided by 
the group algorithms library [25]. Since there are no code 
changes from CUDA to HIP for the first phase, we list the SYCL 
kernel in Listing 3. 

The input elements and output results are stored on GPU 
device memory before the kernel starts executing. In the kernel, 
the predicate is true when the value of an input element is 
positive (L11). In a real application, a predicate’s value may be 
computed by comparing each element’s value with a threshold. 
The SYCL group function (L12) is specialized to sum up the 
number of valid elements in a work-group. Finally, the first 
work-items (L13) of all work-groups store the results of the 
group reduce function in “d_BlockCounts” at the locations 
corresponding to the work-group indices (L14). Besides reads 
from and writes to device memory by work-items in each work-
group, most of the kernel execution time is spent on counting the 
number of valid elements of all work-items in each work-group 
and synchronizing the operations. 

In the second phase of the reduction, an exclusive scan over 
the valid predicates counted in the first phase produces a vector 

1 template <typename T, typename Predicate> 

2 void computeBlockCounts( 

3   const T*__restrict d_input, 

4   int length, 

5   int* __restrict d_BlockCounts, 

6   Predicate predicate, 

7   nd_item<1> &item) 

8 { 

9   int idx = item.get_global_id(0); 

10  if(idx < length){ 

11    int pred = predicate(d_input[idx]); 

12    int c = sycl::reduce_over_group( 

                item.get_group(), pred, 

                sycl::ext::oneapi::plus<>()); 

13    if (item.get_local_id(0) == 0) { 

14      d_BlockCounts[item.get_group(0)] = c; 

15    } 

16  } 

17 } 

 

Listing 3.  The SYCL kernel for the phase 1 of the reduction. The CUDA 
intrinsic “__syncthreads_count()” is mapped to the SYCL group 

reduction function. The indices of work-items and work-groups are 

queried with the methods of the SYCL class “nd_item”. 

1 auto policy =  

   oneapi::dpl::execution::make_device_policy(q); 

2 oneapi::dpl::exclusive_scan( 

     policy,  

     d_BlocksCount,  

     d_BlocksCount + numBlocks, 

     d_BlocksOffset, 

     (T)0); 

 

Listing 4:  The library-based approach for exclusive scan in the SYCL 

kernel  

// Phase 1 counts valid elements per thread block 

parallel for each block in blocks[0..GS-1] 

  count = 0 

  for each input element e in the block 

    if e is valid 

 count++ 

  blocks[bid] = count 

 

// Phase 2 computes offsets of these blocks 

offsets[0..GS-1] = xscan over blocks[0..GS-1] 

 

// Phase 3 reduces the input nonuniformly 

parallel for each offset in offsets[0..GS-1] 

  j = offsets[oid] 

  for each input element e processed by a processor 

  if e is valid 

    output[j] = e 

    j++ 

 

Listing 2.  Parallel nonuniform reduction implemented with three phases 
described in [5]. “GS” is the total number of thread blocks allocated for 

the workload and “BS” the total number of threads in a thread block. 

Each thread holds the value of an input element. The “range[..]” notation 

indicates the number of input elements in the range. “xscan” indicates 

exclusive scan. “bid” stands for block index and “oid” offset index. 

 



of block offsets (d_BlocksOffset). Both the CUDA and HIP 
programs call the “thrust::exclusive_scan()” function in the 
Thrust library for the scan operation. In the SYCL program, the 
Thrust scan is migrated with the Intel oneAPI DPC++ Library 
(oneDPL) [26]. 

Listing 4 shows the oneDPL exclusive scan function. Both 
the Thrust and oneDPL functions require the beginning and end 
of an input sequence, the beginning of an output sequence, and 
an appropriate initial value. However, the oneDPL scan requires 
an execution policy for specifying that the parallel algorithm’s 
execution may be parallelized on a target device. Additionally, 
the scan function depends on the Intel performance library for 
thread building block (oneTBB) [27]. Though we no longer need 
to implement scan operation from scratch, the comparison 
shows that migrating the scan function from CUDA to SYCL 
depends on the support of multiple libraries and SYCL-specific 
scan function. Apparently, the performance of the scan depends 
on the performance of the library implementation. 

The last phase of the reduction computes the predicate offset 
for each thread in a thread block by dividing a thread block into 
warps. Migrating the CUDA kernel for this phase to HIP is less 
straightforward than the process in the first two phases due to 
the architectural differences. 

Listing 5 shows the kernel in HIP. We will explain the 
differences between the CUDA and HIP kernels when going 

through the operations in the kernel. The warp and thread indices 
within a warp are computed on L13 and L14, respectively. When 
producing a thread mask for active threads in a warp (L15), we 
find the result of shifting right the default 32-bit thread mask (all 
ones) with a shift amount of 32 is zero in CUDA, yet the result 
is unchanged in HIP for the 64-bit mask (L15). The intra-warp 
voting function “__ballot()”produces a bitmask whose ith bit is 
set when the value of the predicate held by the ith thread’s true 
(L16). For the NVIDIA GPU architecture, there are 32 parallel 
threads in a warp. In contrast, the number of parallel threads is 
64 in a wavefront (warp) for the AMD MI-series GPUs 
architecture [28]. Hence, the “__ballot()” returns a 64-bit result 
from the predicate evaluation of 64 threads. Then, it is combined 
with the population count for an efficient implementation of 
Boolean reduction. The appropriate function for population 
count is called to count the number of non-zero predicates in a 
64-bit number (L17). The last thread in each warp stores the total 
number of valid predicates in a warp in a shared memory (L18, 
L19). L20 synchronizes memory writes of all warps in a thread 
block. The number of warps (numWarps) is the size of a thread 
block divided by the warp size (L21). It is assumed that the 
number of warps in a thread block is no more than the warp size. 
Then, threads of size “numWarps” in the first warp perform an 
exclusive prefix sum to produce output offset for each warp in a 
thread block. A naïve way to compute the sum will loop over the 
values in the shared memory with the trip count equal to 
“numWarps”. Computing the accumulative warp offsets is 
optimized with a binary-manipulation loop (L22 – L30) where 
the trip count equals the number of bits that can represent the 
maximum offset value for a warp. When the warp size is 64, the 
trip count increases from 5 to 6 (L24). When the value of a 
predicate held by a thread is true (L31), the value is stored in the 
destination address computed with thread offset in a warp, warp 
offset in a block, and block offset in a grid (L32). 

The portability feature of SYCL does not necessarily mean 
that a single SYCL kernel for the last phase can execute 
correctly across different GPUs. The kernel needs to consider 

  #define warpSize (64) 

  #define FULL_MASK 0xffffffffffffffffUL 

1 template <typename T, typename Predicate> 

2 __global__ void compactK( 

3    const T*__restrict__ d_input, 

4    int length, 

5          T*__restrict__ d_output, 

6    const int*__restrict__ d_BlocksOffset, 

7    Predicate predicate) 

8 { 

9   extern __shared__ int warpTotals[]; 

10  int idx = threadIdx.x + blockIdx.x * blockDim.x; 

11  if(idx < length){ 

12    int pred = predicate(d_input[idx]); 

13    int w_i = threadIdx.x / warpSize; 

14    int w_l = idx % warpSize; 

15    size_t t_m = (w_l == 0) ? 0 :  

                   (FULL_MASK >> (warpSize-w_l)); 

16    size_t b = __ballot(pred) & t_m; 

17    unsigned int t_u = __popcll(b); 

18    if(w_l == warpSize-1)  

19      warpTotals[w_i]=t_u+pred; 

20    __syncthreads(); 

21    int numWarps = blockDim.x / warpSize; 

22    if(w_i==0 && w_l<numWarps){ 

23      int w_i_u=0; 

24      for(int j=0;j<=6;j++){ 

25        int b_j =__ballot( warpTotals[w_l] & 

                    pow2i(j) ); 

26        w_i_u += (__popc(b_j & (t_m & 

                    0xFFFFFFFF))) << j; 

27      } 

28      warpTotals[w_l]=w_i_u; 

29    } 

30    __syncthreads(); 

31    if(pred){ 

32      d_output[t_u + warpTotals[w_i]+ 

             d_BlocksOffset[blockIdx.x]]=  

      d_input[idx]; 

33    } } } 

 

Listing 5.  The HIP kernel for the phase 3 of the reduction. The 

wavefront size is 64 for the kernel. 

1 auto sg = item.get_sub_group(); 

2 size_t b = sycl::reduce_over_group(sg, 

           pred ? (1UL << sg.get_local_linear_id())  

           : 0, sycl::ext::oneapi::plus<>()); 

 

Listing 6:  Map the CUDA “__ballot()” to the SYCL group reduction 

function over a sub-group. The required sub-group size can be set at 

compile time. It is 64 for the kernel targeting an AMD GPU. 

1 int t = 0; 

2 if (w_i == 0 && w_l < numWarps){ 

3   t = warpTotals[w_l]; 

4 } 

5 if (w_i == 0) { 

6    for(int j=0;j<=6;j++){ 

7      unsigned int b_j = reduce_over_group(sg, 

         (t & pow2i(j)) ? 

        (0x1 << sg.get_local_linear_id()) : 0,  

         ext::oneapi::plus<>()); 

8      w_i_u += sycl::popcount(b_j & t_m32) << j; 

9    } 

10 } 

 

Listing 7:  Bit manipulation in the SYCL kernel. The required sub-

group size can be set at compile time. It is 64 for the kernel targeting an 

AMD GPU. All work-items in a sub-group execute the group reduction 
function; otherwise, the result of the reduction is incorrect. 



the architectural differences between the AMD and NVIDIA 
GPUs. The “__ballot()” function is converted to the SYCL 
group function as shown in Listing 6. Instead of reducing over 
the constituent work-group as in Listing 3, the function performs 
a reduction over a sub-group in which all work-item participate 
in computing the values of predicates. The sub-group size is 
either 32 or 64, which is specified with the kernel attribute 
“reqd_sub_group_size()” when launching the SYCL kernel on 
the host.  

We find that the result using the SYCL group reduction 
function does not match that of the CUDA or HIP intra-warp 
voting function when computing the accumulative warp offsets 
with a binary-manipulation loop. The SYCL group function 
expects that the number of work-items executing the function 
equals the sub-group size. However, the actual number of active 
work-items (i.e., numWarps) may be less than the sub-group 
size. The issue can be addressed by allowing all work-items in a 
sub-group to execute the function shown in Listing 7. We 
suggest that the SYCL specification clarify the behavior of the 
group reduction operation when the number of active work-
items is less than the sub-group size. 

IV. EXPERIMENTS 

A. Setup 

We evaluate the performance of the reduction on three GPU-
based platforms. The first platform (P1) is NVIDIA Jetson AGX 
Xavier that consists of an ARM v8.2 CPU and an integrated 
Volta GPU. The second platform (P2) contains an Intel Xeon 
E5-2698 v4 CPU and an NVIDIA V100 DGXS GPU. The third 
platform (P3) contains an AMD EPYC 7272 CPU and an AMD 

MI100 GPU. The major specifications of the GPUs are listed in 
Table I. The device-to-device (D2D) memory bandwidths are 
measured with the bandwidth tests in CUDA and HIP. The 
CUDA programs are compiled with the JetPack v5.0.1 and HPC 
SDK v22.7 on P1 and P2, respectively. The HIP program is 
compiled with the ROCm v4.5.2. The SYCL compiler with 
NVIDIA and AMD GPU support is built from the latest release, 
version 2022-6. The number of input elements (problem size) 
for reduction ranges from 220 to 229 and the size of each element 
is four bytes. It should be noted that the number of elements is 
not necessarily a power of two for the reduction. The size of a 
thread block is a power of two ranging from 64 to 1024. The 
performance metrics are throughput and efficiency. We define 
the throughput as Giga elements reduced per second (G/s) and 
the efficiency as effective utilization as measured by a 
comparison with device-to-device memory bandwidth: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 
  

  

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖𝑛 𝑏𝑦𝑡𝑒𝑠

𝐷2𝐷 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 
 

 

Fig. 1b. Performance of the SYCL reduction with respect to the problem 

and thread block sizes on P1. (OOM: out-of-memory) 
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Fig. 2a. Performance of the CUDA reduction with respect to the problem 

and thread block sizes on P2 
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TABLE I. DEVICE SPECIFICATIONS (D2D: DEVICE-TO-DEVICE) 

GPU Specification Xavier V100 MI100 

Global memory (GB) 16 32 32 

GPU clock rate (MHz) 1377 1530 1502 

Memory clock rate (MHz) 1377 877 1200 

Number of cores 512 5120 7680 

L2 Cache (MB) 0.5 6 8 

Peak memory bandwidth (GB / s) 137 898 1228 

D2D memory bandwidth (GB / s) 62 732 770 
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Fig. 2b. Performance of the CUDA reduction with respect to the problem 
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We repeat the three phases of the reduction 1000 times to obtain 
average reduction time. The GPU results are verified on each 
host. 

B. Results 

Our experiments show that the reduction throughput reaches 
50% or more of the maximum when the problem size is 223. 
Memory bandwidth is underutilized when the problem size is 
small for parallel processing. The performance of the reduction 
is sensitive and tunable with the thread block size across the 
problem sizes. 

Fig. 1a and Fig. 1b show the reduction performance on P1 
using CUDA and SYCL, respectively. The highest CUDA and 
SYCL reduction throughputs are approximately 3.33 G/s and 2.2 
G/s, respectively. The SYCL runtime reports an out-of-memory 
error when allocating memory for the largest problem size. Fig. 
2a and Fig. 2b show the reduction throughput on P2 using 
CUDA and SYCL, respectively. The highest CUDA and SYCL 
reduction throughputs are approximately 58.8 G/s and 42.2 G/s, 
respectively. Fig. 3a and Fig. 3b show the reduction 
performance on P3 using HIP and SYCL, respectively. The 
highest HIP and SYCL reduction throughputs are approximately 
62.3 G/s and 31.1 G/s, respectively. Hence, the maximum 
throughputs of the SYCL reduction with CUDA and HIP 
support are 1.5X, 1.39X and 2.0X lower than those of the CUDA 
and HIP reductions on the three platforms, respectively. The 
maximum CUDA reduction throughput is reached when the 
thread block size is 1024 on P1 and P2. However, we observe 
approximately 13% to 20% performance drop when increasing 
the work-group size from 256 to 1024 using SYCL. On the 
AMD GPU, the maximum HIP and SYCL throughputs are 
reached when the block sizes are 512 and 256, respectively. 
Doubling the optimal size incurs a maximum of 4% 
performance drop. 

Table II shows the reduction efficiency on the three 
platforms. We focus on the performance portability of the SYCL 
programming model on NVIDIA and AMD GPUs. For a 
memory-bound kernel, the efficiency of the CUDA and HIP 
reductions are almost identical on P2 and P3. P1 is a platform 
for embedding computing while P2 and P3 are high-
performance computing (HPC) platforms. The HPC platforms 
are more efficient in terms of throughput than the embedded 
computing platform for the reduction. There is a large space of 
improving the efficiency of the SYCL reductions on these 
platforms. 

An integrated GPU is not designed to outperform a discrete 
GPU due to the power, area, and thermal constrains. Comparing 
the reduction performance on the discrete GPUs shows that the 
maximum HIP throughput on P3 is about 1.06X higher than the 
maximum CUDA throughput on P2. However, the SYCL 
throughput on P3 is about 1.36X lower than that on P2. Hence, 
we profile the three phases of the reductions on the AMD GPU 
when the problem size is 229 and the block size is 256. 

Table III shows the HIP and SYCL execution time in 
microseconds (us) of the three phases. In the first phase (P1), the 
implementation of the barrier intrinsic “__syncthreads_count()” 
in the HIP kernel is more efficient than the implementation of 
“reduce_over_group()” in SYCL for counting the number of 
non-zero predicates in a wavefront. In the second phase, the 
implementation of the exclusive scan in the HIP Thrust is more 
efficient than that in the oneDPL. In the third phase, the HIP 
compiler can convert the bit manipulation executed by a single 
wavefront to operations over a vector register. The SYCL 
compiler is not able to reduce the bit operations using a vector 
register. Comparing the assembly codes of the HIP and SYCL 
kernels also shows that the HIP compiler can generate more 
efficient instructions in terms of the total instruction length in 
bytes and the number of allocated scalar and vector general-
purpose registers.  

V. RELATED WORK 

Our experimental results show that migrating the non-
uniform reduction from CUDA to SYCL is more challenging 
than the process from CUDA to HIP. Hence, we prefer a 
discussion of previous studies on functional and performance 
portability [20-24] to the designs and optimizations of the 
CUDA nonuniform reduction [5,6,16,19]. In [20], the authors 
evaluate the performance of benchmarks and mini-apps having 
both SYCL and CUDA implementations on a NVIDIA V100 
GPU. They find many of the performance differences are due to 
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Fig. 3b. Performance of the SYCL reduction with respect to the problem 
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TABLE III. EXECUTION TIME OF THE THREE PHASES OF THE REDUCTION 

Time (us) P1 P2 P3 

HIP 4338 58.2 4385 

SYCL 6390 264 9865 

 

TABLE II. THE REDUCTION EFFICIENCY ON THE THREE PLATFORMS 

Efficiency (%) CUDA HIP SYCL 

P1 21.48 N/A 14.19 

P2 32.13 N/A 23.06 

P3 N/A 32.36 16.15 

 



the ordering and choices of memory accesses. Our evaluation 
shows that the performance differences are caused by the 
implementations of the SYCL runtime and library for the 
reduction functions. In [21], the authors evaluate the 
performance of a GPU accelerated sequence alignment 
algorithm across vendors’ GPUs using CUDA, HIP and SYCL. 
They find that migrating the highly optimized CUDA kernels to 
SYCL requires significant code changes. The SYCL 
implementation is 2X slower than the CUDA implementation on 
the target devices. Putting aside the differences in the language 
design of programming models, we will continue working with 
the SYCL community for optimizing the SYCL compiler to 
improve performance portability. In [22], the authors describe 
their experiences of migrating NAMD, a large molecular 
dynamics software application, from CUDA to SYCL. While 
porting most CUDA kernels in the application is 
straightforward, they take the library-based approach for 
migrating the reduction, scan, sort, and other operations in the 
CUDA application. Our experiment shows that the oneDPL 
library is about 4.5X lower than the Thrust library in terms of 
the scan performance. In [23], the authors evaluate the 
performance of a machine-learning application with SYCL and 
CUDA on multiple NVIDIA GPUs. They point out that 
performance portability has not yet been fully achieved by any 
SYCL implementations. CUDA’s mature development 
environment and its variety of libraries can speed up the 
development process on NVIDIA platforms. As HIP and SYCL 
are maturing and being deployed in facilities, developers are 
encouraged to find gaps between CUDA and other programming 
models for improving performance portability. In [24], the 
author describes the experience of migrating a graph application 
from CUDA to SYCL. The CUDA and SYCL application are 
comparable in kernel execution time on the NVIDIA GPUs, but 
certain CUDA device property, math function, and warp 
primitive were not fully supported by SYCL built-in functions. 
Our experiment shows that the SYCL group reduction functions, 
to which the warp-level primitives are mapped, have become a 
performance bottleneck for the reduction. As a summary of 
related work, portability depends on the characteristics of an 
application, the optimizations applied to the application, the 
maturity of the toolchains and libraries, and the expressiveness 
of the programming models. 

VI. CONCLUSION 

We successfully migrate the kernels in a nonuniform 
reduction from CUDA to HIP and SYCL by addressing the 
challenges posed by differences in programing models and GPU 
architectures. This requires a good understanding of the impact 
of the architectural differences upon the programming models. 
Portability is one of the key features in SYCL, but we still need 
to address the architectural differences in the SYCL kernels. For 
the reduction kernels, the migration from CUDA to SYCL is 
more challenging than the relatively straightforward process 
from CUDA to HIP. With the development of the SYCL 
ecosystem, we expect that the SYCL-specific group algorithm 
library and data-parallel library will be improved to narrow the 
performance gap between the SYCL and CUDA/HIP 
implementations. In the future work, we are interested in 
evaluating the reduction on an Intel data-center GPU. 
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