Multiobjective Hyperparameter Optimization for Deep Learning
Interatomic Potential Training Using NSGA-II

Mark Coletti

colettima@ornl.gov
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Luke Gibson
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

ABSTRACT

Deep neural network (DNN) potentials are an emerging tool for
simulation of dynamical atomistic systems, with the promise of
quantum mechanical accuracy at speedups of 10000X. As with other
DNN methods, hyperparameters used during training can make a
substantial difference in model accuracy, and optimal settings vary
with dataset. To enable rapid tuning of hyperparameters for DNN
potential training, we developed a scalable multiobjective optimiza-
tion evolutionary algorithm for supercomputers and tested it on
the Summit system at the Oak Ridge Leadership Computing Facility
(OLCF). The multiobjective approach is required due to the cou-
pling of two learned values defining the potential: the energy and
force. Using a large-scale implementation of the NSGA-II algorithm
adapted for training DNN potentials, we discovered several optimal
multiobjective combinations, including best choices of activation
functions, learning rate scaling scheme, and pairing of the two
radial cutoffs used in the three dimensional descriptor function.

KEYWORDS

evolutionary computation, hyperparameter optimization, high per-
formance computing, machine learning, neural networks, multiob-
jective optimization, neural network potentials, molecular simula-
tion

ACM Reference Format:

Mark Coletti, Ada Sedova, Rajni Chahal, Luke Gibson, Santanu Roy, and Vy-
acheslav S. Bryantsev. 2023. Multiobjective Hyperparameter Optimization
for Deep Learning Interatomic Potential Training Using NSGA-IL In Pro-
ceedings of The Third International Workshop on Paralle and Distributed Al-
gorithms for Decision Sciences (PDADS). ACM, New York, NY, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
000R22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Ada Sedova
sedovaaa@ornl.gov
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Santanu Roy
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Rajni Chahal
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Vyacheslav S. Bryantsev
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

1 INTRODUCTION

Simulation is an essential component of research in in the physical
and chemical sciences. Key processes driving chemical phenom-
ena like chemical bond breaking and formation are best simulated
with methods which consider electronic structure, which is inher-
ently quantum mechanical. First principles (FP) simulation methods
(those that explicitly simulate electrons using quantum mechan-
ics) are equipped to simulate such processes most accurately [23].
These simulation methods, however, are computationally expensive,
while chemical processes often involve complex energy surfaces
and computational treatment of time and length scales larger than
these accurate simulation methodologies can directly produce. For
our research on molten aluminum halides, which are of interest to
efforts in separations and nuclear energy, computational studies can
provide substantial insights. Molten aluminum halides have unique
and complex properties, and unfortunately, empirical models which
are substantially cheaper [26] cannot capture the chemical accuracy
required for an understanding of chemical reactivity.

Extending simulations such as FP molecular dynamics (FPMD)
to timescales that permit more direct comparisons with laboratory-
measured values would require orders of magnitude speedups; lim-
itations from Amdahl!’s law and hardware prohibit such speedups
for even the cheapest FP methods, such as density functional the-
ory (DFT) [26, 25]. Recently, breakthroughs in the use of machine
learned interatomic potentials—the potential energy fields describ-
ing the interactions of atoms and their (negative) vector gradients,
which are the forces—have promised to provide a transformative
solution to this difficulty: trained on data from FP simulations, these
surrogate models can provide the accuracy of FP calculations, with
dramatic reductions in computational cost, sometimes exceeding
10000x [31,17, 1, 5], representing a “dream come true" for molecular
and atomistic simulation [28]. ML methods include Gaussian ap-
proximation potential (GAP)-based potentials [18] and deep neural
network (DNN) potentials (DNNPs) [31, 1].

Hyperparameters involved in training DNNs can have a dramatic
effect on the final model accuracy, and are often tuned manually,
which can be a tedious task [21, 3]. Automated hyperparameter
tuning algorithms are therefore desired, but finding the optimal
set of hyperparameters for DNNs is extremely difficult due to the
size of the parameter search space and associated lengthy training
times; the commonly used grid-based searched has been shown
to be prone to missing optimal values unless a very fine grid is
used [2], which would be prohibitive considering the numbers of

https://orcid.org/0000-0003-1020-531X
https://orcid.org/0000-0002-8233-3057
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

hyperparameters used in DNN training. Evolutionary algorithms
(EAs) can be well-suited strategies for optimization problems over
large search spaces [19], and have been used to optimize both DNN
training and model hyperparameters [3, 19, 29]. EAs are inherently
parallelizable in that fitness evaluations can happen concurrently,
and which makes EAs scalable and suitable for HPC platforms;
using an EA on an HPC platform allows for a larger population to
improve optimization. For example, an EA used to tune the hyper-
parameters for a convolutional neural network used for settlement
detection in satellite imagery found better models than a grid-based
hyperparameter search on Oak Ridge National Laboratory’s Sum-
mit supercomputer, and incorporated 551 parallel evaluation tasks
per run [6].

The DeePMD-kit program for DNNP training and deployment
[31], uses two connected neural networks to learn the energies and
forces of an interatomic potential from FP simulation data, usually
using DFT as the level of theory. With interfaces in Python and
C++, the program makes use of TensorFlow for its neural network
framework, as well as custom kernels to optimize calculation of
its atomic-level descriptor functions [31, 17]. There are a number
of training parameters that can be set to control model training
in DeePMD-kit.! When using the Deep Potential Smooth Edition
(DeepPot-SE) in DeePMD-kit, the model learns a smooth and con-
tinuously differentiable potential energy surface, mapping between
a local environment within a radial cut-off of each atom to a per-
atom energy, such that the sum of atomic energies for a particular
three dimensional configuration of atoms corresponds to the total
energy for that configuration from the reference DFT data. The
gradients of the predicted energies are used to compute the atomic
forces through backpropagation and both the reference energies
and forces are included in the evaluation of the loss which is mini-
mized during training of the model [17, 32]. For accurate molecular
dynamics simulations, it is necessary to have accurate energies
and forces, and the correct mathematical relationship between the
two. For this reason, it is not enough to minimize either the energy or
force loss alone as the fitness objective for a hyperparameter optimiza-
tion, and thus a multiobjective optimization approach is required.
While it has been mentioned that DeePMD-kit model training is
not extremely sensitive to parameters, neither a detailed sensitivity
analysis nor a hyperparameter optimization has been reported, and
workers using this program consistently make use of the suggested
defaults.

Here we describe the use of the Summit supercomputer at the
Oak Ridge Leadership Facility (OLCF) to sample and rapidly op-
timize the DeePMD-kit model training hyperparameter space for
a given dataset, making use of the inherent parallelism in EAs to
scale across 100 Summit compute nodes to simultaneously minimize
both model energy and force loss with a large-scale deployment of
the NSGA-II algorithm for multiobjective optimization, while ex-
ploring the space of seven different training hyperparameters, and
converge to several interesting candidate solutions on and around
Pareto frontiers, while also providing for optimization of time to
solution.

!https://docs.deepmodeling.com/projects/deepmd/en/master/train/train-input.html

Coletti et al.

2 METHODOLOGY

Our research objective was to optimize the hyperparameters for a
deep-learning-based interatomic energy and force field potential,
with our focus being on training potentials for molten aluminum
halides. Parameters that are used in DeePMD-kit training and can
affect model performance include the learning rate decay, start and
stop learning rates, type of activation functions used for the fitting
and embedding networks, and the radial cutoffs for inclusion of
neighbors in the descriptors, among others described in detail below.
Included implicitly in the optimization is also training runtime, with
every model training limited to two hours; individuals that do not
finish the required number of training steps are counted as “unfit"
by the EA.

2.1 System and Software

2.1.1 The Summit supercomputer. The OLCF at the Oak Ridge Na-
tional Laboratory (ORNL) is an open science computing facility
that supports HPC research. The OLCF houses the Summit super-
computer, an IBM AC922 system consisting of 4608 large nodes
each with six NVIDIA Volta V100 GPUs and two POWER9 CPU
sockets providing 42 usable cores per node [22].

2.1.2 DeePMD training on Summit. The DeePMD program [30]
version v2.1.4 was built on OLCF Summit on top of the Open Cog-
nitive Environment (open-ce)? version of TensorFlow for ppcle64,
using open-ce version 1.5.2-py39-0. Using Summit’s 6-GPU nodes,
distributed, data parallel training was deployed with Horovod [27],
MPI for Python (mpidpy) [9], and MPI [13] libraries (IBM Spectrum
MPI Version 10°). The embedding network and fitting network size
were {25, 50, 100} and {240, 240, 240}, respectively. The tunable pref-

actors in the loss function were chosen as 0.02, 1000, 1, 1 for pff‘”t,

start _limit limit

pr @t pe ™", and i
were fixed and were not included in the EA optimization. Train-
ing on Summit’s GPUs provides about 65X speedup per node vs. a
CPU-only, threaded version, training a potential on approximately
250,000 frames from DFT FPMD in under 2 hours, compared to
about 7 days.

, respectively. These two sets of parameters

2.1.3 Training dataset generation. Training data was generated
using the Compute and Data Environment for Science (CADES)
facility at ORNL, specifically the Scalable HPC Condos. Datasets
consisted of FPMD simulations using the CP2K program [20]. The
system consisted of a mixture of molten aluminum and potassium
chloride at percentages of 66.7 and 33.3 %, respectively, with 160
atoms and a square box size of side length of 17.84 A. A single FPMD
simulation consisting of over 250,000 frames, simulated at 498 K,
was converted to input data formats compatible with DeePMD
(energy, force, box values in Numpy arrays) using in-house scripts.
These arrays were split into separate datasets after shuffling, and a
set of 25% of the frames was withheld for use as the validation set.

2.1.4 The LEAP library and implementation of NSGA-II for DeePMD.
The Library for Evolutionary Algorithms in Python (LEAP) was
used to implement the software used for our experiments [8], and
used LEAP’s implementation of NSGA-II [11] for multiobjective
optimization support. However, we used an improved version of

Zhttps://github.com/open-ce
Shttps://www.ibm.com/docs/en/SSZTET_EOS/eos/guide_101.pdf

https://docs.deepmodeling.com/projects/deepmd/en/master/train/train-input.html
https://github.com/open-ce
https://www.ibm.com/docs/en/SSZTET_EOS/eos/guide_101.pdf

NSGA-II Multiobjective Optimization for Deep Learning Potential Training

ranked-based sorting that yielded a significant speed-up for NSGA-
II [4]. We also took advantage of LEAP’s support for distributed
fitness evaluations that relied on the Dask parallel library for Python
[10] to scale our experiments to run on Summit.

2.2 Experimental Setup

The following describes training hyperparameters that were opti-
mized, the ranges of values used for each, and the implementation
of the multiobjective optimization algorithm.

2.2.1 Representation. Each individual in a population was a seven-
element real-valued vector that corresponded to the following train-

ing parameter variables:

start_Ir Start learning rate.

stop_Ir Stop learning rate.

rcut The hard atomic descriptor radial cutoff distance,
in Angstroms.

rcut_smth The extent of the smoothing function for the radial
cutoff, in Angstroms.

scale_by_worker The scaling function used when scaling the
learning rate by worker during distributed data parallel train-
ing, with possible values of {“linear”, “sqrt”, “none”}.

desc_activ_func Descriptor activation function that maps to
one of {“relu”, “relu6”, “softplus”, “sigmoid”, “tanh”}.

fitting_activ_func Fitting network activation function that
also maps to one of {“relu”, “relu6”, “softplus”, “sigmoid”,
“tanh”}.

While DeePMD has numerous other hyperparameters that are
eligible for tuning, here we start with the above set as they were
indicated as worthy of exploration based on initial sensitivity test-
ing and simulation considerations, and to elucidate the effects of
some key settings that were not well understood. In particular, the
choices of activation functions are not discussed in detail in publi-
cations or documentation, and are therefore interesting to explore.
Furthermore, the two different radial cutoff parameters—the radial
cutoff distance and the smoothing function radius, work together
to create a smooth potential, but it is not trivial to understand how
to best adjust them for accuracy. While larger cutoff distances will
produce more accurate potentials, this will also increase the time to
solution for both training and inference. The value for the smooth-
ing function is not as clearly related to accuracy of interactions.

The learning rate decays exponentially, based on the input start
and stop learning rates, and the loss function. The loss function is
a weighted sum of mean-squared errors of energy and forces, and
is weighted by different prefactors which are themselves functions
of the decaying learning rates, with the force prefactor dominating
the the loss function at the start of training, and decreasing as the
training proceeds, and the reverse for the energy loss prefactor.
This forces the training to initially principally minimize the force
error and then gradually include energy error as an objective as
training proceeds.

For distributed data parallel training, large batch sizes can cause
optimization problems, which can be ameliorated by scaling learn-
ing rate [15]. The default setting in DeePMD-kit for distributed
training is a linear learning rate scaling, by the number of GPUs
used, regardless of whether this number is small. Linear scaling
may not be needed for small batch sizes, and therefore, it may be

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

better to use a reduced scaling factor setting when only 6 GPUs
are used for training, which seems to be sufficient for the neural
network and dataset sizes used in this paper.

Table 1: Initialization parameters for the experiments: ranges
in which randomly created individual gene values were gen-
erated, as well as the initial standard deviations used for the
Gaussian mutation operator.

e ae . mutation

initialization
hyperparameter standard

range .

deviations

start_Ir (3.51e-8, 0.01) 0.001
stop_lr (3.51e-8, 0.0001) 0.0001
reut (6.0, 12.0) 0.0625
rcut_smth (2.0, 6.0) 0.0625
scale_by_worker (0.0, 3.0) 0.0625
desc_activ_func (0.0, 5.0) 0.0625
fitting_activ_func (0.0, 5.0) 0.0625

Tbl. 1 shows the ranges in which random values were gener-
ated when creating individuals for the initial population as well
as the starting standard deviations used for Gaussian mutation.
Because the overall objective was to minimize the energy and force
potential losses during training, fitnesses for each individual were
represented by a two element Numpy array.

2.2.2 Decoding individuals prior to evaluation. Normally, real-valued
vector representations as shown here are entirely phenotypic in that
they can be directly used during fitness evaluation. However, during
fitness evaluation, the variables scale_by_worker, desc_activ_func,
and fitting_activ_func needed to first be mapped to valid strings.
This requires implementing a LEAP decoder that maps those genes
(variables) to numerical values by taking the floor of the random
float then taking the modulus of the resulting value against the num-
ber of possible string values to look up the appropriate string. For
example, for a gene value of 5.78 for scale_by_worker that needs to
map to one of {“linear",‘sqrt",’none"}, floor (5.78)%3 would yield
2, so the program would assign the string “none" for that gene. This
allows for Gaussian mutation of real-valued genes to satisfy the
constraints of mapping to string-valued parameters.

2.2.3 NSGA-II implementation. Although LEAP has a nsga2()
function that handles the implementation details of NSGA-II, we
used the lower-level functions that implement LEAP’s nsga2() to
write our own version of NSGA-II that would more conveniently
allow for some tailoring of mutation. In particular, with each new
generation, the vector of standard deviations, as shown in column
three of Tbl. 1, was multiplied by .85. While originally, this process
of annealing was within the context of the 1/5 success rule [16], we
chose not to implement the 1/5 success rule to adjust the annealing
rate, as sensitivity tests prior to our formal experiments indicated
that this was not necessary. Listing 1 shows the LEAP reproduction
operator pipeline we used that would create the offspring for each
generation. Line 2 is the current prospective parent population that
acts as the source with a corresponding sink in line 9 that “pulls”
individuals as needed through the intervening operators, which are

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

offspring = \
pipe(parents,
ops.random_selection,
ops.clone,
5 mutate_gaussian(
6 std=context['std'],
expected_num_mutations='isotropic

'
’

hard_bounds=DeepMDRepresentation.
bounds),
9 eval_pool(client=client,
10 size=len(parents)),
11 rank_ordinal_sort(parents=parents),
12 crowding_distance_calc,
13 ops.truncation_selection(size=1len(
parents),
14 key=lambda x
(-x.rank,

x.distance)))

Listing 1: The LEAP reproduction operator pipeline used
to create offspring for each generation using
LEAP’s NSGA-II pipeline operators, rank_ordinal_sort and
crowding_distance_calc.

Python generator functions. That is, we need as many evaluated
offspring as parents, so eval_pool () pulls in as many offspring as
parents, and once it has accumulated that many, it fans them out via
the Dask-based parallel deployment scheme (discussed in detail in
§2.2.5) to workers for parallel fitness evaluation. For each offspring,
aparent is randomly selected, cloned, and then Gaussian mutation is
applied to all the genes given the current set of standard deviations
for each gene found in the global variable context[‘std’]. This
vector of standard deviations is multiplied by .85 after the offspring
are returned from this pipeline to anneal the mutation per genera-
tion (context is a LEAP global Python dictionary used to maintain
a run-time state accessible by pipeline operators). Lines 11-15 are
the NSGA-II operators for doing the rank sorting and crowding
distance calculation, followed by performing truncation selection
based on rank and crowding distance. The offspring returned by
the truncation selection will be the prospective parents for the next
generation. pipe() is provided by the third party Python toolkit,
toolz.

2.2.4 Steps taken for fitness evaluation. Evaluating individuals in
parallel on the Summit supercomputer entailed a multistep work-
flow. The steps for evaluating a single individual was as follows:

(1) An individual’s genome of the seven element real-valued
array was decoded, including mapping floating point values
to strings as described in §2.2.2.
(2) A space in which training would happen was created:
(a) Each individual was automatically assigned a UUID when
created.
(b) A sub-directory was created named after that UUID, and
DeePMD training was executed there.
(3) An input. json file that contained the DeePMD hyperpa-
rameters and run-time configuration was created:

4https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe

Coletti et al.

(a) A file containing JSON-formatted input template was read
in.

(b) Using the Python Standard Library string.Template mech-
anism, variable substitution was performed with that JSON-
formatted template using the decoded gene values from
the individual.

(c) The updated input. json file was written to the UUID-
named run directory.

(4) The fitness values were assigned based on training results:

(a) A subprocess() call was used to invoke dp, the DeePMD
training executable.

(b) Successful DeePMD training would produce a model and
training statistics in an output file, lcurve.out.

(c) The last values of the rmse_e_val and rmse_{_val columns
were read from lcurve.out, which correspond to the en-
ergy and force validation loss results, and returned in a
numpy two-element array as the fitness.

There are occasions when an error will occur during evaluation.
For example, the subprocess() call could exceed the two hour
limit, thus raising a TimeoutError exception. It is also possible that
the unique combination of hyperparameter values will cause train-
ing to fail. Moreover, a hardware fault or other type of node failure
could also foil training. In all these cases, both values of the two-
element fitness are assigned MAXINT. In this way, the optimization
is also implicitly including runtime performance, as individuals that
require too much time to train or cause other runtime problems
will be eliminated. As an aside, the LEAP DistributedIndividual
class, which we originally used, catches exceptions that are raised
during evaluation and assigns an IEEE 754 NaN as the fitnesses.
However, NSGA-II sorts all individuals by their fitnesses, and sort-
ing values that include NaNs yields undefined behavior. Therefore
we implemented a subclass of DistributedIndividual that over-
rode the default exception handling behavior and assigned MAXINT
as fitnesses instead. Since both fitness objectives were minimization
problems, this ensured that NSGA-II rank sorting worked correctly.

2.2.5 Dask-related setup and configuration. We relied on LEAP’s
use of the Dask parallel library for Python to implement parallel
evaluations for our Summit supercomputer runs. Dask has three
types of components: a scheduler, workers, and a client. The client
submits tasks to the scheduler, which assigns tasks to workers
and ensures that their results are communicated back to the client.
When a Summit batch job begins running, it is first assigned a
batch node to begin executing the batch submission script. Within
the batch script will be one or more jsrun statements that assign
computing node resources also allocated to the running job to user
specified executables that then begin running. We configured our
batch script to run our experiments by launching the Dask sched-
uler and Dask workers on the batch node with each Dask worker
assigned an entire Summit node to perform the DeePMD training
and the fitness evaluation described in §2.2.4. A Dask client was
to assign the fitness evaluation tasks, and also ran on the assigned
batch node. For prior work on Summit using LEAP, we used a single
jsrun call to launch all Dask workers directly on compute nodes
[24, 7, 12]. In this case, because DeePMD uses MPI_init within
Horovod-based distributed training in TensorFlow to coordinate
training that occurs on each of the GPUs, the system is left in a state

https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe

NSGA-II Multiobjective Optimization for Deep Learning Potential Training

i generation 0 A

generation 1

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

L

generation 2

0.030 0.030
job

2939387
2945762
2945763
2945764
2945765

0.025 0.025

0.020 0.020

0.015

energy Ioss
o
o
2
&
energy 10ss

0.010 0.010

0.005 0.005

i b

0.000 0.000

0.030

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2

force loss

generation 3

0.3

force loss

generation 4

0.030 0.030
job

2939387
2945762
2945763
2945764
2945765

0.025 0.025

0.020 0.020

0.015

energy I0ss
o
)
2
&
energy 10ss

0.010 0.010

0.005

3 00051 &

- , 0.000
.0 0.1 0.2 03 0.4 05 0.6 0.0 0.1 02
force loss

0.000
0.

0.3

force loss

job job
o 2939387 o 2939387
o 2945762 o 2945762
o 2945763 0.025 o 2945763
o 2945764 o 2945764
o 2945765 o 2945765
0.020
"
8
30015
g
g
5
0.010
0.005
0.000 +—
0.4 05 06 0.0 01 02 03 04 05 0.6
force loss
l generation 5
0.030
job job
o 2039387 o 2939387
o 2045762 o 2945762
o 2945763 0.025 o 2945763
o 2945764 o 2945764
® 2945765 ® 2945765
0.020
@
8
30015
@
g
5
0.010
.
0.005{ ¢
lL
0.000 - .
04 05 06 0.0 01 02 03 04 05 06

force loss

Figure 1: Level plots showing energy vs. force losses after each generation for all models over five independent EA runs, up to
six generations. Some outliers are cropped from generation 0 for visual clarity. Units for energy loss are in eV/atom and force

loss in eV/A.

such that a subsequent fitness evaluation using MPI_init was not
possible without a new jsrun command, therefore the workflow
was reconfigured to start workers on the batch node instead of on a
compute node, and with separate jsrun calls for the each DeePMD
training launched with the subprocess call described in §2.2.4.

Other adjustments to facilitate use of Dask on Summit for this ap-
plication included the specification of \ tmp for use by Dask workers
creating temporary directories to save state instead of the default
home directory which is mounted as read-only during a Summit
run. Also, Dask uses Bokeh® to maintain a dashboard showing the
run state of the scheduler and workers; this dashboard is not prac-
tical given the sheer number of workers and the run environment
on the supercomputer, we therefore disabled this dashboard during
our runs. Dask also has “nannies" that are associated with a Dask
worker; if the nanny observes that its worker has prematurely ter-
minated, the nanny will restart the worker. Worker failures may
be due to hardware failures, in which case a restart will not cor-
rect anything. We found it best to disable nannies, let workers fail,
and have the scheduler reassign tasks to other workers in those
scenarios.

Shttps://bokeh.org/

Other runtime parameters include the parent and offspring pop-
ulation sizes, set to the number of Summit nodes allocated to the
job (100 for all experiments), and the maximum wall clock time allo-
cated for the jobs, which was 12 hours. DeePMD users often report
training for hundreds of thousands to one million steps. We found
during sensitivity runs that 40,000 steps was sufficient to obtain
minimized losses sufficiently converged to provide both acceptable
chemical accuracy and a time to solution amenable to converging
the EAs within our computational cost limitations. We therefore
used this number of training steps for all runs.

3 RESULTS AND DISCUSSION

3.1 Convergence of the EA

Fig. 1 shows level plots displaying losses for energy (in eV/atom)
vs. force (in eV/A) combined over the five independent EA runs
for the first 6 generations. Generation 0 was the initial random
population and already shows a cluster of values close to the origin.
Most individuals that were scattered away from the origin in the
initial random population are eliminated within the first EA step
that produced generation 1. From that generation forward there
are smaller changes in the loss distributions, with distributions

https://bokeh.org/

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

between the last three runs being similar, indicating convergence
of the algorithm. Several outliers with force losses greater than
0.6 or energy loss greater than 0.03 found in generation 0 were
culled for visual clarity in Fig. 1. A total of 3500 DeePMD model
training runs were performed over seven generations. For practical
use, five separate EA deployments should not be required; however
this number is orders of magnitude smaller than a brute-force grid
search with 10 grid points per parameter.

0.0175

energy loss
0.0100

0.0025

A @S ST

0.04 ' ~ 0.08
force loss

Figure 2: Pareto frontier, shown as connected orange dots,
from the aggregated last generations of all six Summit runs,
shows one distinct clusters of non-dominating individuals.
Units for energy loss are in eV/atom and force loss in eV/A.

3.1.1 The Final Pareto Frontier of Solutions. Fig. 2 shows the Pareto
frontier calculated from the aggregate of the last generation of all
five runs. The frontier comprises 8 points clustered close to the
origin. Tbl. 2 displays the forces and energies for these solutions. It
should be noted that the exact frontier may be too strict for selection
of the set of optimal solutions, as small floating point differences in
energies or forces will not be physically relevant in the simulations.
Therefore, the region around this frontier can be considered for
selection for optimized solutions, which can be further filtered.
Using this frontier region, we are able to further choose desired
parameter set solutions that may correspond to our specific needs,
with the knowledge that the parameter space has been sufficiently
explored and a set of non-dominating optimal solutions has been
presented. We discuss chemistry-specific requirements for solutions
below.

Table 2: Force and energy values for all solutions found ex-
actly on the Pareto frontier

solution force error (eV/A) energy error (€V/atom)

1 0.0357 0.0016
2 0.0363 0.0012
3 0.0364 0.0010
4 0.0367 0.0009
5 0.0368 0.0008
6 0.0373 0.0007
7 0.0374 0.0005
8 0.0409 0.0004

Coletti et al.

3.2 Considerations of Chemical Accuracy

For training a molecular potential such that errors are within the
precision of the reference DFT, the trained network using should
yield energy and force errors of below about 0.004 eV/atom and
0.04 eV/A, respectively. For performing molecular dynamics, force
accuracy is extremely important, because each time step in the
dynamics time series uses force values to propagate the integrator,
which integrates the equations of motions numerically. Force er-
rors compound as the time series progresses, driving a simulation
farther and farther away from correct values the longer it runs
[14]. Inspection of the Pareto frontier shows that the multiobjective
optimization offers one solution that would not be exactly suitable
for use as a potential model with the above stated requirements for
force error, by about 0.001. While this is potentially an insignificant
difference, it may be beneficial to chose certain solutions from the
Pareto frontier that best satisfy the chemical requirements.

It is also notable that, while there is a well-defined cluster of force
losses below 0.06 eV/A, there is no clear barrier distinguishing those
above the desired 0.04 eV/A from those below that value, and like-
wise along the y-axis for energy losses below 0.008 eV/atom. What
this indicates is that there is no direct relationship between the
boundaries around the minima of the hyperparameter search space
and the desired accuracy according to chemical considerations, and
therefore it could be relatively easy to produce a chemically inaccu-
rate model. Therefore, if our scheme for multiobjective optimization
is used for automating hyperparameter tuning without a further se-
lection of solutions from the Pareto frontier using chemical criteria,
it is possible that inaccurate models may result. It should be noted,
however, that the root mean squared errors of forces from empirical
models compared to reference condensed-phase DFT calculations
can exceed 1.4 eV/A [33].

In addition, the local region around this exact set of frontier
points is also ripe for selecting optimal hyperparameter combina-
tions, with the consideration of the chemical system and potentially
other factors, such as time to solution, by selecting for chemically ac-
curate results. Fig. 3 displays the hyperparameters for each solution
found in our final solution dataset, the combined last generations
from all runs, in a parallel coordinates plot. The blue colored lines
indicate the chemically accurate solutions, using limits on energy
and force errors of 0.004 eV/atom and 0.04 eV/A, respectively. From
this plot, it can be seen that when considering chemically accurate
solutions, the radial cutoff setting tends to be in the higher ranges,
with no accurate solution having an rcut below 8.5 A. It is interest-
ing to note that for these chemically complicated, charged molten
salt systems, which may contain longer-range atomic interactions,
larger values for these radial parameters seem to be selected.

The value for the smoothing distance varies across the range of
possibilities, but with an increased density below 4.5 A. These two
parameters have a direct connection to the physics of the system,
representing an acceptable distance away from each atom at which
to ignore interactions from other atoms. It is not generally known
a priori what important contributions to forces and energies are
actually found at what distances around each atom in each sys-
tem, and the relationship of the smoothing function decay to the
energy and force errors is also not clear. Therefore, an automated,
exhaustive, and intelligent scheme like the one presented here can

NSGA-II Multiobjective Optimization for Deep Learning Potential Training

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

0.01 -lo-0001 6 - 12 Sqrt Sfeeetanhs= tanh | gge [0.085 True accuratp 80
0.009 -} ' & -0.018 [0.08 78
0.008 - // \ -0.016 [0.075 70
0.007 - / / \ 0014 -0.07 74
0.006 /\fﬁ ; L 0.012 [-0.065 - 72
0.005 58 4 /r\ipne 001 [0.06 - 70
0.004 - de- | | 0.008 | 0055 - 68
5igmoid — L 66
0.003 - 0.006 [~0.05
0.002 || 0.004 [0.045 64
0.001 "e;; 02 0.04 - 62
0 linear- el sigmoid- 0 - 0.035" False - inaccurit&°
%Wx)‘ 6\0@(o Pd\“\ <0°&0\; /\Nox*e(& }‘)(\G W i\\“@%% (\\“355 Q'b‘éxo 00\)@0\3 m(\"“(\e

NS~ G- O~
&? R N

(\G(Q\" o
e

Figure 3: Parallel coordinates plot showing the parameters found for each of the final solutions in the last generation, with
those providing acceptable chemical accuracy colored in blue, and others colored in grey. Runtime (in minutes) for the training,
energy and force loss (fitness), and whether or not the solution is on the exact Pareto frontier are also indicated.

be especially useful for setting these parameters optimally. The
relationship of the smoothing parameter with the model accuracy
is complex; not all solutions using a lower value for the smooth-
ing distance correspond to a high radial cutoff, and the activation
functions and learning corresponding to these solutions also vary.
It should be noted that we included the program default settings in
the initialization ranges for all hyperparameters tested except the
smoothing distance; for this one setting we used a lower bound of
2 A, based on previous work with molten salt systems, as opposed
to the default value of 0.5.

Table 3: Parameter values for three selected chemically-
accurate solutions found in the last NSGA-II generations
across the five runs, showing the solution with lowest force
loss, lowest energy loss, and lowest runtime.

hyperparameter solution1 solution2 solution 3

start_Ir 0.0047 0.0058 0.01
stop_lr 0.0001 0.0001 2e-05
rcut 11.32 10.10 11.32
rcut_smth 2.42 2.11 2.43
scale_by_worker = none none none
desc_activ_func tanh softplus tanh
fitting_activ_func tanh tanh tanh
runtime (min.) 68.7 74.1 68.1
energy loss (eV) 0.0016 0.0005 0.0019
force loss (€V/A) 0.0357 0.0374 0.0370

Runtimes for all training runs in the combined last generation
solution set are under 80 minutes, and no runs for any generations
crossed beyond this value. Therefore, no runtime optimization was
necessary or performed for this dataset. However, in the previous
generations, very short runtimes were found, corresponding to
failed training tasks, for a total of 25 such instances, spread across
all five jobs. No such failures were found in the last generation for
any jobs, indicating that an optimization away from potentially
fatal configuration errors may have occurred.

For chemically accurate solutions, start learning rate has a heav-
ier distribution between 0.004 and 0.002; the default setting is 0.001.
While stop learning rate default is 1e-08, all chemically accurate
solutions are found above 1e-05 and cluster around 0.001. The learn-
ing rate scaling function results were also informative, and helped
to validate our hypothesis that learning rate scaling with distributed
data parallel training may not be required when the total number
of GPUs is only 6 and the total batch size (training_batch_size X 6)
does not reach into the hundreds as in large scale parallel training
schemes. We can see that scaling by the square root of the number of
workers and no scaling at all can provide excellent training results,
and in fact, more chemically accurate solutions are obtained this
way. Another result to note is that both relu activation functions
for the fitting network have dropped out completely from the final
solution, and the sigmoid activation function for the descriptor net-
work is not included in any chemically accurate solutions. Softplus
and sigmoid for the fitting activation function provided excellent
results, and softplus also performs well as the activation function
for the descriptor network. The default setting for both the fitting
and descriptor network activation functions is the tanh function.

PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

Tbl. 3 displays the hyperparameters for chemically accurate models
with the lowest energy loss, force loss, and runtime found in the
last generation across the five runs. The first two models are found
in the Pareto frontier, while the lowest runtime corresponds to a
model that is not in the frontier.

4 CONCLUSIONS AND FUTURE WORK

Here we showed the value of automated, parallel hyperparameter
tuning using multiobjective evolutionary algorithms for training of
DNN interatomic physical potentials for simulations in chemistry.
For these model potentials, the relationship between energy and
force must be incorporated in the EA fitness. We have shown that
deployment of the NSGA-II algorithm works well to address this
challenge. While we only optimized hyperparameters here, model
fidelity may also be further improved by incorporating neural ar-
chitecture searching on the two DeePMD neural networks, and the
method can be extended to other new DNNP programs, which are
rapidly emerging.

ACKNOWLEDGMENTS

Thanks to Steven Young and Guojing Cong of the Oak Ridge Na-
tional Laboratory, Travis Johnston of Striveworks, and Josh Romero
from NVIDIA for their insightful feedback and assistance. This work
was supported by the Office of Materials and Chemical Technolo-
gies within the Office of Nuclear Energy, U.S. Department of Energy,
and used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725

REFERENCES

[1] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa,
Mordechai Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky.
2022. E(3)-equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nature Communications, 13, 1, 2453.

[2] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research, 13, 2.

[3] Erik Bochinski, Tobias Senst, and Thomas Sikora. 2017. Hyper-parameter opti-
mization for convolutional neural network committees based on evolutionary
algorithms. In 2017 IEEE International Conference on Image Processing (ICIP),
3924-3928. por: 10.1109/ICIP.2017.8297018.

[4] Bogdan Burlacu. 2022. Rank-based non-dominated sorting. arXiv preprint
arXiv:2203.13654.

[5] Rajni Chahal, Santanu Roy, Martin Brehm, Shubhojit Banerjee, Vyacheslav
Bryantsev, and Stephen T Lam. 2022. Transferable deep learning potential
reveals intermediate-range ordering effects in LiF-NaF-ZrF4 molten salt. JACS
Au.

[6] Mark Coletti, Dalton Lunga, Jeffrey K. Bassett, and Amy Rose. 2019. Evolving
larger convolutional layer kernel sizes for a settlement detection deep-learner
on summit. In Workshop for Deeplearning for Supercomputers. The Interna-
tional Conference for High Performance Computing, Networking, Storage, and
Analysis.

[7] Mark A. Coletti, Shang Gao, Spencer Paulissen, Nicholas Quentin Haas, and
Robert Patton. 2021. Diagnosing autonomous vehicle driving criteria with
an adversarial evolutionary algorithm. In Proceedings of the 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21). Association for
Computing Machinery, Lille, France, 301-302. por: 10.1145/3449726.3459573.

[8] Mark A. Coletti, Eric O. Scott, and Jeffrey K. Bassett. 2020. Library for evo-
lutionary algorithms in python (leap). In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion (GECCO ’20). Association
for Computing Machinery, Canctin, Mexico, 1571-1579. 1SBN: 9781450371278.
DoI: 10.1145/3377929.3398147.

[9] Lisandro Dalcin and Yao-Lung L. Fang. 2021. Mpidpy: status update after 12
years of development. Computing in Science & Engineering, 23, 4, 47-54. DOI:
10.1109/MCSE.2021.3083216.

[10] Dask Development Team. 2016. Dask: Library for dynamic task scheduling.
https://dask.org.

(1]

[12]

(13]

[14]

(15]

[16]

(17]

[20]

[21]

[25]

[26]

[27]

(28]

[29]

[30]

(32]

(33]

Coletti et al.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002.
A fast and elitist multiobjective genetic algorithm: nsga-ii. IEEE transactions on
evolutionary computation, 6, 2, 182-197.

Alexander Fafard, Jan Van Aardt, Mark Coletti, and David L Page. 2020. Global
partitioning elevation normalization applied to building footprint prediction.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13, 3493-3502.

Message Passing Interface Forum. 2015. MPL: a message passing interface stan-
dard: version 3.1; Message Passing Interface Forum, June 4, 2015. University of
Tennessee.

D. Frenkel and B. Smit. 2001. Understanding Molecular Simulation: From Algo-

rithms to Applications. Computational science. Elsevier Science. ISBN: 9780080519982.

https://books.google.com/books?id=5qTzIdSIROIC.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.
1997. Handbook of evolutionary computation. CRC Press. Chap. Evolution strate-
gies, B1.3:2.

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, E
Weinan, and Linfeng Zhang. 2020. Pushing the limit of molecular dynamics
with ab initio accuracy to 100 million atoms with machine learning. In SC20:
International conference for high performance computing, networking, storage
and analysis. IEEE, 1-14.

Ryosuke Jinnouchi, Ferenc Karsai, and Georg Kresse. 2019. On-the-fly machine
learning force field generation: application to melting points. Physical Review
B, 100, 1, 014105.

Franklin Johnson, Alvaro Valderrama, Carlos Valle, Broderick Crawford, Ri-
cardo Soto, and Ricardo Nanculef. 2020. Automating configuration of convolu-
tional neural network hyperparameters using genetic algorithm. IEEE Access,
8, 156139-156152. por: 10.1109/ACCESS.2020.3019245.

Thomas D. Kiihne et al. 2020. Cp2k: an electronic structure and molecular dy-
namics software package - quickstep: efficient and accurate electronic structure
calculations. The Journal of Chemical Physics, 152, 19, 194103. por: 10.1063/5.00
07045.

Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. 2022. An empirical study of the
impact of hyperparameter tuning and model optimization on the performance
properties of deep neural networks. ACM Trans. Softw. Eng. Methodol., 31, 3,
Article 53, 40 pages. DOI: 10.1145/3506695.

ORNL Leadership Computing Facility. 2019. Summit: america’s newest and
smartest supercomputer. (2019). https://www.olcf.ornl.gov/for-users/system-
user-guides/summit/summit-user- guide/#system-overview.

Santanu Roy et al. 2021. A holistic approach for elucidating local structure,
dynamics, and speciation in molten salts with high structural disorder. Journal
of the American Chemical Society, 143, 37, 15298-15308.

Eric O. Scott, Mark Coletti, Catherine D. Schuman, Bill Kay, Shruti R. Kulkarni,
Maryam Parsa, and Kenneth A De Jong. 2021. Avoiding excess computation in
asynchronous evolutionary algorithms. In Proceedings of the 20th UK Workshop
on Computational Intelligence. Aberystwyth University, (to be printed).

Ada Sedova, Russ Davidson, Mathieu Taillefumier, and Wael Elwasif. 2022.
HPC molecular simulation tries out a new GPU: experiences on early AMD
test systems for the Frontier supercomputer. In Proceedings of 2022 Cray User
Group Meeting, Monterey, CA, USA, May 2022.

Ada Sedova, John D. Eblen, Reuben Budiardja, Arnold Tharrington, and Jeremy
C. Smith. 2018. High-performance molecular dynamics simulation for biological
and materials sciences: challenges of performance portability. In 2018 [EEE/ACM
International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 1-13. por: 10.1109/P3HPC.2018.00004.

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799.

Oliver T Unke, Stefan Chmiela, Huziel E Sauceda, Michael Gastegger, Igor
Poltavsky, Kristof T Schiitt, Alexandre Tkatchenko, and Klaus-Robert Miiller.
2021. Machine learning force fields. Chemical Reviews, 121, 16, 10142-10186.
Amala Mary Vincent and P Jidesh. 2023. An improved hyperparameter optimiza-
tion framework for automl systems using evolutionary algorithms. Scientific
Reports, 13, 1, 4737.

Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. 2018. Deepmd-kit: a
deep learning package for many-body potential energy representation and
molecular dynamics. Computer Physics Communications, 228, 178—184. https:
//github.com/deepmodeling/deepmd-kit.

Han Wang, Linfeng Zhang, Jiequn Han, and E Weinan. 2018. DeePMD-kit: a
deep learning package for many-body potential energy representation and
molecular dynamics. Computer Physics Communications, 228, 178-184.
Tongqi Wen, Linfeng Zhang, Han Wang, E Weinan, and David J Srolovitz. 2022.
Deep potentials for materials science. Materials Futures.

Ying Yuan, Zhonghua Ma, and Feng Wang. 2021. Development and validation
of a dft-based force field for a hydrated homoalanine polypeptide. The Journal
of Physical Chemistry B, 125, 6, 1568-1581.

https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1145/3449726.3459573
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1109/MCSE.2021.3083216
https://dask.org
https://books.google.com/books?id=5qTzldS9ROIC
https://doi.org/10.1109/ACCESS.2020.3019245
https://doi.org/10.1063/5.0007045
https://doi.org/10.1063/5.0007045
https://doi.org/10.1145/3506695
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#system-overview
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#system-overview
https://doi.org/10.1109/P3HPC.2018.00004
https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit

	Abstract
	1 Introduction
	2 Methodology
	2.1 System and Software
	2.2 Experimental Setup

	3 Results and Discussion
	3.1 Convergence of the EA
	3.2 Considerations of Chemical Accuracy

	4 Conclusions and Future Work
	Acknowledgments

