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ABSTRACT
Deep neural network (DNN) potentials are an emerging tool for

simulation of dynamical atomistic systems, with the promise of

quantummechanical accuracy at speedups of 10000×. As with other
DNN methods, hyperparameters used during training can make a

substantial difference in model accuracy, and optimal settings vary

with dataset. To enable rapid tuning of hyperparameters for DNN

potential training, we developed a scalable multiobjective optimiza-

tion evolutionary algorithm for supercomputers and tested it on

the Summit system at the Oak Ridge Leadership Computing Facility

(OLCF). The multiobjective approach is required due to the cou-

pling of two learned values defining the potential: the energy and

force. Using a large-scale implementation of the NSGA-II algorithm

adapted for training DNN potentials, we discovered several optimal

multiobjective combinations, including best choices of activation

functions, learning rate scaling scheme, and pairing of the two

radial cutoffs used in the three dimensional descriptor function.
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1 INTRODUCTION
Simulation is an essential component of research in in the physical

and chemical sciences. Key processes driving chemical phenom-

ena like chemical bond breaking and formation are best simulated

with methods which consider electronic structure, which is inher-

ently quantummechanical. First principles (FP) simulation methods

(those that explicitly simulate electrons using quantum mechan-

ics) are equipped to simulate such processes most accurately [23].

These simulationmethods, however, are computationally expensive,

while chemical processes often involve complex energy surfaces

and computational treatment of time and length scales larger than

these accurate simulation methodologies can directly produce. For

our research on molten aluminum halides, which are of interest to

efforts in separations and nuclear energy, computational studies can

provide substantial insights. Molten aluminum halides have unique

and complex properties, and unfortunately, empirical models which

are substantially cheaper [26] cannot capture the chemical accuracy

required for an understanding of chemical reactivity.

Extending simulations such as FP molecular dynamics (FPMD)

to timescales that permit more direct comparisons with laboratory-

measured values would require orders of magnitude speedups; lim-

itations from Amdahl’s law and hardware prohibit such speedups

for even the cheapest FP methods, such as density functional the-

ory (DFT) [26, 25]. Recently, breakthroughs in the use of machine

learned interatomic potentials—the potential energy fields describ-

ing the interactions of atoms and their (negative) vector gradients,

which are the forces—have promised to provide a transformative

solution to this difficulty: trained on data from FP simulations, these

surrogate models can provide the accuracy of FP calculations, with

dramatic reductions in computational cost, sometimes exceeding

10000× [31, 17, 1, 5], representing a “dream come true" for molecular

and atomistic simulation [28]. ML methods include Gaussian ap-

proximation potential (GAP)-based potentials [18] and deep neural

network (DNN) potentials (DNNPs) [31, 1].

Hyperparameters involved in training DNNs can have a dramatic

effect on the final model accuracy, and are often tuned manually,

which can be a tedious task [21, 3]. Automated hyperparameter

tuning algorithms are therefore desired, but finding the optimal

set of hyperparameters for DNNs is extremely difficult due to the

size of the parameter search space and associated lengthy training

times; the commonly used grid-based searched has been shown

to be prone to missing optimal values unless a very fine grid is

used [2], which would be prohibitive considering the numbers of
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hyperparameters used in DNN training. Evolutionary algorithms

(EAs) can be well-suited strategies for optimization problems over

large search spaces [19], and have been used to optimize both DNN

training and model hyperparameters [3, 19, 29]. EAs are inherently

parallelizable in that fitness evaluations can happen concurrently,

and which makes EAs scalable and suitable for HPC platforms;

using an EA on an HPC platform allows for a larger population to

improve optimization. For example, an EA used to tune the hyper-

parameters for a convolutional neural network used for settlement

detection in satellite imagery found better models than a grid-based

hyperparameter search on Oak Ridge National Laboratory’s Sum-

mit supercomputer, and incorporated 551 parallel evaluation tasks

per run [6].

The DeePMD-kit program for DNNP training and deployment

[31], uses two connected neural networks to learn the energies and

forces of an interatomic potential from FP simulation data, usually

using DFT as the level of theory. With interfaces in Python and

C++, the program makes use of TensorFlow for its neural network

framework, as well as custom kernels to optimize calculation of

its atomic-level descriptor functions [31, 17]. There are a number

of training parameters that can be set to control model training

in DeePMD-kit.
1
When using the Deep Potential Smooth Edition

(DeepPot-SE) in DeePMD-kit, the model learns a smooth and con-

tinuously differentiable potential energy surface, mapping between

a local environment within a radial cut-off of each atom to a per-

atom energy, such that the sum of atomic energies for a particular

three dimensional configuration of atoms corresponds to the total

energy for that configuration from the reference DFT data. The

gradients of the predicted energies are used to compute the atomic

forces through backpropagation and both the reference energies

and forces are included in the evaluation of the loss which is mini-

mized during training of the model [17, 32]. For accurate molecular

dynamics simulations, it is necessary to have accurate energies

and forces, and the correct mathematical relationship between the

two. For this reason, it is not enough to minimize either the energy or
force loss alone as the fitness objective for a hyperparameter optimiza-
tion, and thus a multiobjective optimization approach is required.
While it has been mentioned that DeePMD-kit model training is

not extremely sensitive to parameters, neither a detailed sensitivity

analysis nor a hyperparameter optimization has been reported, and

workers using this program consistently make use of the suggested

defaults.

Here we describe the use of the Summit supercomputer at the

Oak Ridge Leadership Facility (OLCF) to sample and rapidly op-

timize the DeePMD-kit model training hyperparameter space for

a given dataset, making use of the inherent parallelism in EAs to

scale across 100 Summit compute nodes to simultaneously minimize

both model energy and force loss with a large-scale deployment of

the NSGA-II algorithm for multiobjective optimization, while ex-

ploring the space of seven different training hyperparameters, and

converge to several interesting candidate solutions on and around

Pareto frontiers, while also providing for optimization of time to

solution.

1
https://docs.deepmodeling.com/projects/deepmd/en/master/train/train-input.html

2 METHODOLOGY
Our research objective was to optimize the hyperparameters for a

deep-learning-based interatomic energy and force field potential,

with our focus being on training potentials for molten aluminum

halides. Parameters that are used in DeePMD-kit training and can

affect model performance include the learning rate decay, start and

stop learning rates, type of activation functions used for the fitting

and embedding networks, and the radial cutoffs for inclusion of

neighbors in the descriptors, among others described in detail below.

Included implicitly in the optimization is also training runtime, with

every model training limited to two hours; individuals that do not

finish the required number of training steps are counted as “unfit"

by the EA.

2.1 System and Software
2.1.1 The Summit supercomputer. The OLCF at the Oak Ridge Na-

tional Laboratory (ORNL) is an open science computing facility

that supports HPC research. The OLCF houses the Summit super-

computer, an IBM AC922 system consisting of 4608 large nodes

each with six NVIDIA Volta V100 GPUs and two POWER9 CPU

sockets providing 42 usable cores per node [22].

2.1.2 DeePMD training on Summit. The DeePMD program [30]

version v2.1.4 was built on OLCF Summit on top of the Open Cog-

nitive Environment (open-ce)
2
version of TensorFlow for ppcle64,

using open-ce version 1.5.2-py39-0. Using Summit’s 6-GPU nodes,

distributed, data parallel training was deployed with Horovod [27],

MPI for Python (mpi4py) [9], and MPI [13] libraries (IBM Spectrum

MPI Version 10
3
). The embedding network and fitting network size

were {25, 50, 100} and {240, 240, 240}, respectively. The tunable pref-

actors in the loss function were chosen as 0.02, 1000, 1, 1 for p
𝑠𝑡𝑎𝑟𝑡
𝑒 ,

p
𝑠𝑡𝑎𝑟𝑡
𝑓

, p
𝑙𝑖𝑚𝑖𝑡
𝑒 , and p

𝑙𝑖𝑚𝑖𝑡
𝑓

, respectively. These two sets of parameters

were fixed and were not included in the EA optimization. Train-

ing on Summit’s GPUs provides about 65× speedup per node vs. a

CPU-only, threaded version, training a potential on approximately

250,000 frames from DFT FPMD in under 2 hours, compared to

about 7 days.

2.1.3 Training dataset generation. Training data was generated

using the Compute and Data Environment for Science (CADES)

facility at ORNL, specifically the Scalable HPC Condos. Datasets

consisted of FPMD simulations using the CP2K program [20]. The

system consisted of a mixture of molten aluminum and potassium

chloride at percentages of 66.7 and 33.3 %, respectively, with 160

atoms and a square box size of side length of 17.84 Å. A single FPMD

simulation consisting of over 250,000 frames, simulated at 498 K,

was converted to input data formats compatible with DeePMD

(energy, force, box values in Numpy arrays) using in-house scripts.

These arrays were split into separate datasets after shuffling, and a

set of 25% of the frames was withheld for use as the validation set.

2.1.4 The LEAP library and implementation of NSGA-II for DeePMD.
The Library for Evolutionary Algorithms in Python (LEAP) was

used to implement the software used for our experiments [8], and

used LEAP’s implementation of NSGA-II [11] for multiobjective

optimization support. However, we used an improved version of

2
https://github.com/open-ce

3
https://www.ibm.com/docs/en/SSZTET_EOS/eos/guide_101.pdf

https://docs.deepmodeling.com/projects/deepmd/en/master/train/train-input.html
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ranked-based sorting that yielded a significant speed-up for NSGA-

II [4]. We also took advantage of LEAP’s support for distributed

fitness evaluations that relied on theDask parallel library for Python

[10] to scale our experiments to run on Summit.

2.2 Experimental Setup
The following describes training hyperparameters that were opti-

mized, the ranges of values used for each, and the implementation

of the multiobjective optimization algorithm.

2.2.1 Representation. Each individual in a population was a seven-

element real-valued vector that corresponded to the following train-

ing parameter variables:

start_lr Start learning rate.

stop_lr Stop learning rate.

rcut The hard atomic descriptor radial cutoff distance,

in Angstroms.

rcut_smth The extent of the smoothing function for the radial

cutoff, in Angstroms.

scale_by_worker The scaling function used when scaling the

learning rate by worker during distributed data parallel train-

ing, with possible values of {“linear”, “sqrt”, “none”}.

desc_activ_func Descriptor activation function that maps to

one of {“relu”, “relu6”, “softplus”, “sigmoid”, “tanh”}.

fitting_activ_func Fitting network activation function that

also maps to one of {“relu”, “relu6”, “softplus”, “sigmoid”,

“tanh”}.

While DeePMD has numerous other hyperparameters that are

eligible for tuning, here we start with the above set as they were

indicated as worthy of exploration based on initial sensitivity test-

ing and simulation considerations, and to elucidate the effects of

some key settings that were not well understood. In particular, the

choices of activation functions are not discussed in detail in publi-

cations or documentation, and are therefore interesting to explore.

Furthermore, the two different radial cutoff parameters—the radial

cutoff distance and the smoothing function radius, work together

to create a smooth potential, but it is not trivial to understand how

to best adjust them for accuracy. While larger cutoff distances will

produce more accurate potentials, this will also increase the time to

solution for both training and inference. The value for the smooth-

ing function is not as clearly related to accuracy of interactions.

The learning rate decays exponentially, based on the input start

and stop learning rates, and the loss function. The loss function is

a weighted sum of mean-squared errors of energy and forces, and

is weighted by different prefactors which are themselves functions

of the decaying learning rates, with the force prefactor dominating

the the loss function at the start of training, and decreasing as the

training proceeds, and the reverse for the energy loss prefactor.

This forces the training to initially principally minimize the force

error and then gradually include energy error as an objective as

training proceeds.

For distributed data parallel training, large batch sizes can cause

optimization problems, which can be ameliorated by scaling learn-

ing rate [15]. The default setting in DeePMD-kit for distributed

training is a linear learning rate scaling, by the number of GPUs

used, regardless of whether this number is small. Linear scaling

may not be needed for small batch sizes, and therefore, it may be

better to use a reduced scaling factor setting when only 6 GPUs

are used for training, which seems to be sufficient for the neural

network and dataset sizes used in this paper.

Table 1: Initialization parameters for the experiments: ranges
in which randomly created individual gene values were gen-
erated, as well as the initial standard deviations used for the
Gaussian mutation operator.

hyperparameter initialization
range

mutation
standard
deviations

start_lr (3.51e-8, 0.01) 0.001

stop_lr (3.51e-8, 0.0001) 0.0001

rcut (6.0, 12.0) 0.0625

rcut_smth (2.0, 6.0) 0.0625

scale_by_worker (0.0, 3.0) 0.0625

desc_activ_func (0.0, 5.0) 0.0625

fitting_activ_func (0.0, 5.0) 0.0625

Tbl. 1 shows the ranges in which random values were gener-

ated when creating individuals for the initial population as well

as the starting standard deviations used for Gaussian mutation.

Because the overall objective was to minimize the energy and force

potential losses during training, fitnesses for each individual were

represented by a two element Numpy array.

2.2.2 Decoding individuals prior to evaluation. Normally, real-valued

vector representations as shown here are entirely phenotypic in that

they can be directly used during fitness evaluation. However, during

fitness evaluation, the variables scale_by_worker, desc_activ_func,

and fitting_activ_func needed to first be mapped to valid strings.

This requires implementing a LEAP decoder that maps those genes

(variables) to numerical values by taking the floor of the random

float then taking themodulus of the resulting value against the num-

ber of possible string values to look up the appropriate string. For

example, for a gene value of 5.78 for scale_by_worker that needs to

map to one of {“linear",“sqrt",“none"}, floor(5.78)%3 would yield

2, so the program would assign the string “none" for that gene. This

allows for Gaussian mutation of real-valued genes to satisfy the

constraints of mapping to string-valued parameters.

2.2.3 NSGA-II implementation. Although LEAP has a nsga2()
function that handles the implementation details of NSGA-II, we

used the lower-level functions that implement LEAP’s nsga2() to

write our own version of NSGA-II that would more conveniently

allow for some tailoring of mutation. In particular, with each new

generation, the vector of standard deviations, as shown in column

three of Tbl. 1, was multiplied by .85. While originally, this process

of annealing was within the context of the 1/5 success rule [16], we
chose not to implement the 1/5 success rule to adjust the annealing
rate, as sensitivity tests prior to our formal experiments indicated

that this was not necessary. Listing 1 shows the LEAP reproduction

operator pipeline we used that would create the offspring for each

generation. Line 2 is the current prospective parent population that

acts as the source with a corresponding sink in line 9 that “pulls”

individuals as needed through the intervening operators, which are
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1 offspring = \
2 pipe(parents ,
3 ops.random_selection ,
4 ops.clone ,
5 mutate_gaussian(
6 std=context['std'],
7 expected_num_mutations='isotropic

',
8 hard_bounds=DeepMDRepresentation.

bounds),
9 eval_pool(client=client ,
10 size=len(parents)),
11 rank_ordinal_sort(parents=parents),
12 crowding_distance_calc ,
13 ops.truncation_selection(size=len(

parents),
14 key=lambda x

: (-x.rank ,
15

x.distance)))

Listing 1: The LEAP reproduction operator pipeline used
to create offspring for each generation using
LEAP’s NSGA-II pipeline operators, rank_ordinal_sort and
crowding_distance_calc.
Python generator functions. That is, we need as many evaluated

offspring as parents, so eval_pool() pulls in as many offspring as

parents, and once it has accumulated that many, it fans them out via

the Dask-based parallel deployment scheme (discussed in detail in

§2.2.5) to workers for parallel fitness evaluation. For each offspring,

a parent is randomly selected, cloned, and thenGaussianmutation is

applied to all the genes given the current set of standard deviations

for each gene found in the global variable context[‘std’]. This
vector of standard deviations is multiplied by .85 after the offspring

are returned from this pipeline to anneal the mutation per genera-

tion (context is a LEAP global Python dictionary used to maintain

a run-time state accessible by pipeline operators). Lines 11–15 are

the NSGA-II operators for doing the rank sorting and crowding

distance calculation, followed by performing truncation selection

based on rank and crowding distance. The offspring returned by

the truncation selection will be the prospective parents for the next

generation. pipe() is provided by the third party Python toolkit,

toolz.
4

2.2.4 Steps taken for fitness evaluation. Evaluating individuals in
parallel on the Summit supercomputer entailed a multistep work-

flow. The steps for evaluating a single individual was as follows:

(1) An individual’s genome of the seven element real-valued

array was decoded, including mapping floating point values

to strings as described in §2.2.2.

(2) A space in which training would happen was created:

(a) Each individual was automatically assigned a UUID when

created.

(b) A sub-directory was created named after that UUID, and

DeePMD training was executed there.

(3) An input.json file that contained the DeePMD hyperpa-

rameters and run-time configuration was created:

4
https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe

(a) A file containing JSON-formatted input template was read

in.

(b) Using the Python Standard Library string.Templatemech-

anism, variable substitutionwas performedwith that JSON-

formatted template using the decoded gene values from

the individual.

(c) The updated input.json file was written to the UUID-

named run directory.

(4) The fitness values were assigned based on training results:

(a) A subprocess() call was used to invoke dp, the DeePMD

training executable.

(b) Successful DeePMD training would produce a model and

training statistics in an output file, lcurve.out.
(c) The last values of the rmse_e_val and rmse_f_val columns

were read from lcurve.out, which correspond to the en-

ergy and force validation loss results, and returned in a

numpy two-element array as the fitness.

There are occasions when an error will occur during evaluation.

For example, the subprocess() call could exceed the two hour

limit, thus raising a TimeoutError exception. It is also possible that
the unique combination of hyperparameter values will cause train-

ing to fail. Moreover, a hardware fault or other type of node failure

could also foil training. In all these cases, both values of the two-

element fitness are assigned MAXINT. In this way, the optimization

is also implicitly including runtime performance, as individuals that

require too much time to train or cause other runtime problems

will be eliminated. As an aside, the LEAP DistributedIndividual
class, which we originally used, catches exceptions that are raised

during evaluation and assigns an IEEE 754 NaN as the fitnesses.

However, NSGA-II sorts all individuals by their fitnesses, and sort-

ing values that include NaNs yields undefined behavior. Therefore

we implemented a subclass of DistributedIndividual that over-

rode the default exception handling behavior and assignedMAXINT

as fitnesses instead. Since both fitness objectives were minimization

problems, this ensured that NSGA-II rank sorting worked correctly.

2.2.5 Dask-related setup and configuration. We relied on LEAP’s

use of the Dask parallel library for Python to implement parallel

evaluations for our Summit supercomputer runs. Dask has three

types of components: a scheduler, workers, and a client. The client

submits tasks to the scheduler, which assigns tasks to workers

and ensures that their results are communicated back to the client.

When a Summit batch job begins running, it is first assigned a

batch node to begin executing the batch submission script. Within

the batch script will be one or more jsrun statements that assign

computing node resources also allocated to the running job to user

specified executables that then begin running. We configured our

batch script to run our experiments by launching the Dask sched-

uler and Dask workers on the batch node with each Dask worker

assigned an entire Summit node to perform the DeePMD training

and the fitness evaluation described in §2.2.4. A Dask client was

to assign the fitness evaluation tasks, and also ran on the assigned

batch node. For prior work on Summit using LEAP, we used a single

jsrun call to launch all Dask workers directly on compute nodes

[24, 7, 12]. In this case, because DeePMD uses MPI_init within

Horovod-based distributed training in TensorFlow to coordinate

training that occurs on each of the GPUs, the system is left in a state

https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe
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Figure 1: Level plots showing energy vs. force losses after each generation for all models over five independent EA runs, up to
six generations. Some outliers are cropped from generation 0 for visual clarity. Units for energy loss are in eV/atom and force
loss in eV/Å.

such that a subsequent fitness evaluation using MPI_init was not

possible without a new jsrun command, therefore the workflow

was reconfigured to start workers on the batch node instead of on a

compute node, and with separate jsrun calls for the each DeePMD

training launched with the subprocess call described in §2.2.4.

Other adjustments to facilitate use of Dask on Summit for this ap-

plication included the specification of \tmp for use by Dask workers
creating temporary directories to save state instead of the default

home directory which is mounted as read-only during a Summit

run. Also, Dask uses Bokeh
5
to maintain a dashboard showing the

run state of the scheduler and workers; this dashboard is not prac-

tical given the sheer number of workers and the run environment

on the supercomputer, we therefore disabled this dashboard during

our runs. Dask also has “nannies" that are associated with a Dask

worker; if the nanny observes that its worker has prematurely ter-

minated, the nanny will restart the worker. Worker failures may

be due to hardware failures, in which case a restart will not cor-

rect anything. We found it best to disable nannies, let workers fail,

and have the scheduler reassign tasks to other workers in those

scenarios.

5
https://bokeh.org/

Other runtime parameters include the parent and offspring pop-

ulation sizes, set to the number of Summit nodes allocated to the

job (100 for all experiments), and the maximum wall clock time allo-

cated for the jobs, which was 12 hours. DeePMD users often report

training for hundreds of thousands to one million steps. We found

during sensitivity runs that 40,000 steps was sufficient to obtain

minimized losses sufficiently converged to provide both acceptable

chemical accuracy and a time to solution amenable to converging

the EAs within our computational cost limitations. We therefore

used this number of training steps for all runs.

3 RESULTS AND DISCUSSION
3.1 Convergence of the EA
Fig. 1 shows level plots displaying losses for energy (in eV/atom)

vs. force (in eV/Å) combined over the five independent EA runs

for the first 6 generations. Generation 0 was the initial random

population and already shows a cluster of values close to the origin.

Most individuals that were scattered away from the origin in the

initial random population are eliminated within the first EA step

that produced generation 1. From that generation forward there

are smaller changes in the loss distributions, with distributions

https://bokeh.org/
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between the last three runs being similar, indicating convergence

of the algorithm. Several outliers with force losses greater than

0.6 or energy loss greater than 0.03 found in generation 0 were

culled for visual clarity in Fig. 1. A total of 3500 DeePMD model

training runs were performed over seven generations. For practical

use, five separate EA deployments should not be required; however

this number is orders of magnitude smaller than a brute-force grid

search with 10 grid points per parameter.

Figure 2: Pareto frontier, shown as connected orange dots,
from the aggregated last generations of all six Summit runs,
shows one distinct clusters of non-dominating individuals.
Units for energy loss are in eV/atom and force loss in eV/Å.

3.1.1 The Final Pareto Frontier of Solutions. Fig. 2 shows the Pareto
frontier calculated from the aggregate of the last generation of all

five runs. The frontier comprises 8 points clustered close to the

origin. Tbl. 2 displays the forces and energies for these solutions. It

should be noted that the exact frontier may be too strict for selection

of the set of optimal solutions, as small floating point differences in

energies or forces will not be physically relevant in the simulations.

Therefore, the region around this frontier can be considered for

selection for optimized solutions, which can be further filtered.

Using this frontier region, we are able to further choose desired

parameter set solutions that may correspond to our specific needs,

with the knowledge that the parameter space has been sufficiently

explored and a set of non-dominating optimal solutions has been

presented.We discuss chemistry-specific requirements for solutions

below.

Table 2: Force and energy values for all solutions found ex-
actly on the Pareto frontier

solution force error (eV/Å) energy error (eV/atom)
1 0.0357 0.0016

2 0.0363 0.0012

3 0.0364 0.0010

4 0.0367 0.0009

5 0.0368 0.0008

6 0.0373 0.0007

7 0.0374 0.0005

8 0.0409 0.0004

3.2 Considerations of Chemical Accuracy
For training a molecular potential such that errors are within the

precision of the reference DFT, the trained network using should

yield energy and force errors of below about 0.004 eV/atom and

0.04 eV/Å, respectively. For performing molecular dynamics, force

accuracy is extremely important, because each time step in the

dynamics time series uses force values to propagate the integrator,

which integrates the equations of motions numerically. Force er-

rors compound as the time series progresses, driving a simulation

farther and farther away from correct values the longer it runs

[14]. Inspection of the Pareto frontier shows that the multiobjective

optimization offers one solution that would not be exactly suitable

for use as a potential model with the above stated requirements for

force error, by about 0.001. While this is potentially an insignificant

difference, it may be beneficial to chose certain solutions from the

Pareto frontier that best satisfy the chemical requirements.

It is also notable that, while there is a well-defined cluster of force

losses below 0.06 eV/Å, there is no clear barrier distinguishing those

above the desired 0.04 eV/Å from those below that value, and like-

wise along the y-axis for energy losses below 0.008 eV/atom. What

this indicates is that there is no direct relationship between the

boundaries around the minima of the hyperparameter search space

and the desired accuracy according to chemical considerations, and

therefore it could be relatively easy to produce a chemically inaccu-

rate model. Therefore, if our scheme for multiobjective optimization

is used for automating hyperparameter tuning without a further se-

lection of solutions from the Pareto frontier using chemical criteria,

it is possible that inaccurate models may result. It should be noted,

however, that the root mean squared errors of forces from empirical

models compared to reference condensed-phase DFT calculations

can exceed 1.4 eV/Å [33].

In addition, the local region around this exact set of frontier

points is also ripe for selecting optimal hyperparameter combina-

tions, with the consideration of the chemical system and potentially

other factors, such as time to solution, by selecting for chemically ac-

curate results. Fig. 3 displays the hyperparameters for each solution

found in our final solution dataset, the combined last generations

from all runs, in a parallel coordinates plot. The blue colored lines

indicate the chemically accurate solutions, using limits on energy

and force errors of 0.004 eV/atom and 0.04 eV/Å, respectively. From

this plot, it can be seen that when considering chemically accurate

solutions, the radial cutoff setting tends to be in the higher ranges,

with no accurate solution having an rcut below 8.5 Å. It is interest-

ing to note that for these chemically complicated, charged molten

salt systems, which may contain longer-range atomic interactions,

larger values for these radial parameters seem to be selected.

The value for the smoothing distance varies across the range of

possibilities, but with an increased density below 4.5 Å. These two

parameters have a direct connection to the physics of the system,

representing an acceptable distance away from each atom at which

to ignore interactions from other atoms. It is not generally known

a priori what important contributions to forces and energies are

actually found at what distances around each atom in each sys-

tem, and the relationship of the smoothing function decay to the

energy and force errors is also not clear. Therefore, an automated,

exhaustive, and intelligent scheme like the one presented here can



NSGA-II Multiobjective Optimization for Deep Learning Potential Training PDADS, August 7-10, 2023, Salt Lake City, Utah, USA

Figure 3: Parallel coordinates plot showing the parameters found for each of the final solutions in the last generation, with
those providing acceptable chemical accuracy colored in blue, and others colored in grey. Runtime (in minutes) for the training,
energy and force loss (fitness), and whether or not the solution is on the exact Pareto frontier are also indicated.

be especially useful for setting these parameters optimally. The

relationship of the smoothing parameter with the model accuracy

is complex; not all solutions using a lower value for the smooth-

ing distance correspond to a high radial cutoff, and the activation

functions and learning corresponding to these solutions also vary.

It should be noted that we included the program default settings in

the initialization ranges for all hyperparameters tested except the

smoothing distance; for this one setting we used a lower bound of

2 Å, based on previous work with molten salt systems, as opposed

to the default value of 0.5.

Table 3: Parameter values for three selected chemically-
accurate solutions found in the last NSGA-II generations
across the five runs, showing the solution with lowest force
loss, lowest energy loss, and lowest runtime.

hyperparameter solution 1 solution 2 solution 3

start_lr 0.0047 0.0058 0.01

stop_lr 0.0001 0.0001 2e-05

rcut 11.32 10.10 11.32

rcut_smth 2.42 2.11 2.43

scale_by_worker none none none

desc_activ_func tanh softplus tanh

fitting_activ_func tanh tanh tanh

runtime (min.) 68.7 74.1 68.1

energy loss (eV) 0.0016 0.0005 0.0019

force loss (eV/Å) 0.0357 0.0374 0.0370

Runtimes for all training runs in the combined last generation

solution set are under 80 minutes, and no runs for any generations

crossed beyond this value. Therefore, no runtime optimization was

necessary or performed for this dataset. However, in the previous

generations, very short runtimes were found, corresponding to

failed training tasks, for a total of 25 such instances, spread across

all five jobs. No such failures were found in the last generation for

any jobs, indicating that an optimization away from potentially

fatal configuration errors may have occurred.

For chemically accurate solutions, start learning rate has a heav-

ier distribution between 0.004 and 0.002; the default setting is 0.001.

While stop learning rate default is 1e-08, all chemically accurate

solutions are found above 1e-05 and cluster around 0.001. The learn-

ing rate scaling function results were also informative, and helped

to validate our hypothesis that learning rate scaling with distributed

data parallel training may not be required when the total number

of GPUs is only 6 and the total batch size (training_batch_size × 6)

does not reach into the hundreds as in large scale parallel training

schemes.We can see that scaling by the square root of the number of

workers and no scaling at all can provide excellent training results,

and in fact, more chemically accurate solutions are obtained this

way. Another result to note is that both relu activation functions

for the fitting network have dropped out completely from the final

solution, and the sigmoid activation function for the descriptor net-

work is not included in any chemically accurate solutions. Softplus

and sigmoid for the fitting activation function provided excellent

results, and softplus also performs well as the activation function

for the descriptor network. The default setting for both the fitting

and descriptor network activation functions is the tanh function.
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Tbl. 3 displays the hyperparameters for chemically accurate models

with the lowest energy loss, force loss, and runtime found in the

last generation across the five runs. The first two models are found

in the Pareto frontier, while the lowest runtime corresponds to a

model that is not in the frontier.

4 CONCLUSIONS AND FUTUREWORK
Here we showed the value of automated, parallel hyperparameter

tuning using multiobjective evolutionary algorithms for training of

DNN interatomic physical potentials for simulations in chemistry.

For these model potentials, the relationship between energy and

force must be incorporated in the EA fitness. We have shown that

deployment of the NSGA-II algorithm works well to address this

challenge. While we only optimized hyperparameters here, model

fidelity may also be further improved by incorporating neural ar-

chitecture searching on the two DeePMD neural networks, and the

method can be extended to other new DNNP programs, which are

rapidly emerging.
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