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Particle in a one-dimensional box

Teaching Presentation



Particle in a one-dimensional box

𝑉 = ∞𝑉 = ∞

𝑉 = 0

x= 0 x= 𝐿
𝑥

𝑉 𝑥 = 0 𝑓𝑜𝑟 0 < 𝑥 < 𝐿
             = ∞ 𝑓𝑜𝑟 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 𝐿

❑ Consider an object of mass m is moving along the x direction and confined 

to a region between x = 0 and x = L. The potential energy is zero inside the 

“box” and infinite outside (see figure).

      What is the probability of finding the object inside the box?

Question:



Total energy E = KE + V(x)

Probability is equally distributed

x

P(x)

E
KE

x

V(x) Ball in a box:      

Particle in a one-dimensional box

Solution:

Let us start with the case when the mass of the object is large (~ kg)

Classical Picture

𝑉 = 0 𝑉 = ∞𝑉 = ∞

𝑥 = 0 𝑥 = 𝐿



If we consider the object as an electron (~10-31 

kg), does the previous result hold?

Particle in a one-dimensional box

Particle behaves as a quantum particle, and we 

need to solve the problem quantum mechanically



Particle in a one-dimensional box

𝑉 = ∞𝑉 = ∞

𝑉 = 0

x= 0 x= 𝐿 𝑥

𝑉 𝑥 = 0 𝑓𝑜𝑟 0 < 𝑥 < 𝐿
             = ∞ 𝑓𝑜𝑟 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 𝐿

Solution:

Region-I
Region-II

Region-III

Regions I and III are identical, so we really only need to deal with two 
distinct regions, (i) outside, and (ii) inside the box

KE PE TE




ExV
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Time Independent Schrödinger Equation

Time-independent 
because the total 
energy is given



Particle in a one-dimensional box

𝑉 = ∞𝑉 = ∞

𝑉 = 0

x= 0 x= 𝐿
𝑥

Solution:

Region-I
Region-II

Region-III
When V = 0 or ∞, what is 𝜓(x)?

The solution is given by 

𝜓𝐼𝐼 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥   and  𝜓𝐼 𝑥 = 𝜓𝐼𝐼𝐼(𝑥) = 0 

𝑑2𝜓

𝑑𝑥2
+

2𝑚

ℏ2
(𝐸 − 𝑉)𝜓 = 0

𝑑2𝜓

𝑑𝑥2
+ 𝑘2𝜓 = 0 Where 𝑘2 =

2𝑚(𝐸−𝑉)

ℏ2

Second order homogeneous linear deferential equation

A and B are coefficients to be determined by the boundary conditions

Otherwise, the 

energy would 

have to be 

infinite, to 

cancel U.



Particle in a one-dimensional box

𝑉 = ∞𝑉 = ∞

𝑉 = 0

x= 0 x= 𝐿
𝑥

Solution:

Region-I
Region-II

Region-IIIRecall: The wave function (x) must be 

continuous at all boundaries.

𝜓𝐼 0 = 𝜓𝐼𝐼 0 = 0(i) At x = 0: 

𝐴 sin 0 + 𝐵 cos 0 = 0

[Since sin 0 = 0  and cos 0 = 1]Therefore, we must have 𝐵 = 0

(ii) At x = L: 𝜓𝐼𝐼 𝐿 = 𝜓𝐼𝐼𝐼 𝐿 = 0; 𝐴 sin 𝐿 = 0

❑ We must have either 𝐴 = 0 or sin 𝑘𝐿 = 0.  The first solution (𝐴 = 0) is called 

the “trivial solution” and is not acceptable because this would make 𝜓II equal to 

zero everywhere, which is not true.

❑ Then the acceptable solution is (sin 𝑘𝐿 = 0)  which can be true only when 𝑘𝐿 =
𝑛𝜋 where 𝑛 = 1, 2, 3, … . 

     Note that 𝑛 = 0 is also a trivial solution.



Particle in a one-dimensional box

Energy Eigenvalue: 𝑘 =
𝑛𝜋

𝐿
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝐿2

Energy is quantized 𝐸1 =
ℎ2

8𝑚𝐿2
Zero Point Energy 

Wave function for the particle 

inside the box in the state 𝒏:
𝜓𝑛 =  𝐴 sin

𝑛𝜋𝑥

𝐿

𝑛 = quantum number of the state

A can be determined from 

the normalization condition

𝜓𝑛 =
2

𝐿
sin

𝑛𝜋𝑥

𝐿

න
0

𝐿

𝜓𝑛𝜓𝑛
∗ 𝑑𝑥 = 1 𝐴 = 2/𝐿



Particle in a one-dimensional box

𝜓𝑛 =
2

𝐿
sin

𝑛𝜋𝑥

𝐿
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝐿2
𝜓𝑛 𝑥 𝜓𝑛

∗ (𝑥)

ProbabilityEnergy Wave Function



Take Home Message

❑ The energy of a particle is quantized. This means it can only take on discreet 

energy values

❑ The lowest possible energy for a particle is NOT zero. This means the 

particle always has some kinetic energy.

❑ In classical physics, the probability of finding the particle is independent of the 

energy and the same at all points in the box.

❑ As E increases, number of nodes increases too (Number of node = n − 1)

❑ The probability changes with increasing energy of the particle and depends on 

the position in the box you are attempting to define the energy for

Particle in a one-dimensional Box



Real World Example

Particle in a one-dimensional Box

Quantum Dots Problem

❑ Quantum dots are nanoscale 

semiconductor, typically spheres 

of a few nanometers in diameter 

(10-50 nm)

❑ An electron in a quantum dot 

experiences quantum confinement 

in three dimensions (3D)

❑ Can be thought of as a Particle 

in a 3D box problem 

García de Arquer et al., Science 373, 640 (2021)



Teaching Proposal

Introduction to Topological Condensed Matter Physics

Part-I: Concept of topology in condensed matter systems, polarization, Zak phase, Berry phase, 

phenomenology of topological phases in 1D (e.g., SSH model, edge state realization), topological 

phases in 2D, Chern insulator, quantum anomalous Hall effect, bulk-boundary correspondence, 

quantum spin Hall insulators.

Part-II: 3D topological insulators, Weyl semimetals and beyond, quantum anomalies, transport 

phenomena of topological semimetals using Boltzmann transport formalism and Kubo response 

theory, topological superconductivity, and its application to quantum computing. 

Density Functional Theory and Beyond 

Introduce basic concepts of density functional theory (DFT), success of DFT with examples, basics 

of correlated systems, disagreement between DFT results and experiments in correlated systems, 

introduction of many-body physics, and concept of dynamical mean field theory to solve many body 

problems. 

Based on my research expertise, I would like to design and teach the following new 

courses



Route to Detect Chiral Anomaly in Weyl 

Semimetal

Research Presentation



Concept of  Topology

❑ Topology: An abstract concept in mathematics

❑ Used to distinguish different objects

Gauss-Bonnet Theorem  KGauss ds = 2(1− g)
S

KGauss= Gauss Curvature

g = Genus

g = 1g = 0 g = 2

Concept of Topology ? Condensed Matter Systems



Topological Condensed Matter Physics

Overview

K-H. Jin et al, Nanoscale 15, 12787 (2023); N. Kumar et al, Chem. Rev. 121, 2780 (2021)



Why Topological Systems?

Fundamental Interests

Technological Applications

N. Kumar et al Chem. Rev. 121, 2780 (2021)

❑ Most robust phases of nature (protected from local perturbations e.g., defects, 

impurities, material imperfections)

❑ Observables depend only on combinations of fundamental constants, like e, h, or c 

(Example: Hall conductivity of 2D insulators [e2/h])

❑ Provide table-top experiment to detect the quantum anomalies linked with HEP

❑ Platform to realize experimentally the fundamental Majorana quasiparticle

Photonics Applications

Picture: GoogleY. Wang et al Acc. Mater. Res. 2, 1061 (2022)

Spintronics Applications
Quantum Computers



Research Directions

Topological Semimetals and 

Quantum Anomalies

Topological Superconductivity

Nonlinear Transport and 

Quantum Geometry

New WF Law and 
Mott Relation

S. Nandy et. al., Phys. Rev. Lett. 125, 266601 (2020)
S. Nandy et al, Phys. Rev. B 100, 195117 (2019) [ES]
CZ, S. Nandy et. al., Phys. Rev. Res. 2, 032066 (R) (2020) 
S. Nandy et. al., Phys. Rev. B 104, 205124 (2021) 
CZ*, S. Nandy*et al, Phys. Rev. B 99, 075116 (2022) [ES]

Nonlinear Hall Effect

S. Nandy et. al., Phys. Rev. Lett. 119, 176804 (2017)
S. Nandy et. al., Phys. Rev. B 100, 115139 (2019)
S. Nandy et. al., Phys. Rev. B 99, 075116 (2019)
S. Nandy et. al., Phys. Rev. B 106, L041108 (2022)

Search for Majorana 
Quasiparticle

SM, S. Nandy et. al., Phys. Rev. B 105, L201301 (2022)



Weyl Semimetals and Quantum Anomalies

S. Nandy et. al., Phys. Rev. Lett. 119, 176804 (2017)
S. Nandy et. al., Phys. Rev. B 100, 115139 (2019)
S. Nandy et. al., Phys. Rev. B 99, 075116 (2019)
S. Ghosh, A. Sahoo and S. Nandy, arXiv: 2209.11217 (Accepted in SciPost Physics)



❖ Weyl Fermion: Introduced in High Energy 

Physics in 1929.

❖ Massless spin-1/2 particles 

Massless solution to the Dirac equation

Hermann Weyl

Weyl, H. Elektron und Gravitation. I. Z. Physik 56, 330–352 (1929)

Weyl Fermions and High Energy Physics

Left  chirality Weyl Fermions

Peskin & Schroeder, An Introduction to Quantum Field Theory 

(γμpµ-mc)ψ(p)=0

Right  chirality Weyl Fermions

P

S

P

S



❑ Appear as a low-energy quasiparticles near the touching point of a pair of  
linearly dispersing nondegenerate bands

Can Weyl Fermion appear in condensed matter systems?

❑ Low-energy Hamiltonian near a Weyl node

❑Monopole Charge (Topological Invariant)

𝐻𝜒(𝒌) = 𝜒 ෍

𝑖=1

3

𝑣𝑖 𝑘𝑖 𝜎𝑖

𝜒 =
1

2𝜋
න

Σ

𝑑𝑺 ⋅ 𝛀 = ±1 

First Discovery in 2015 
Material: TaAs

Other Materials
TaP, NbP, NbAs, Mn3Sn, Co3Sn2S2, WTe2

S-.Y. Xu… M.Z. Hasan et al Science 349, 9297 (2015); B-.Q. Lv… H. Ding et al PRX 5, 031013 (2015)

N. P. Armitage et. al., Rev. Mod. Phys. 90, 015001 (2018)

𝛀 =Berry Curvature



Chiral Anomaly or Adler-Bell-Jackiw Anomaly

Quantum Anomalies in WSM

J. S. Bell and R. A. Jackiw, Nuovo Cimento A 60, 47 (1969);   V. Aji, Phys. Rev. B 85, 241101 (2012);   S. Adler, Phys. Rev. 177, 2426 (1969) 

Quantum Anomalies

Left- and right-handed chiral fermions expected 

to have equal populations 

Quantum Anomaly refers to the violation of a “classical” symmetry, i.e., symmetry of 

the Lagrangian, once the second quantization is performed

Weyl Semimetal in a Magnetic Field

𝜕𝜇𝐽𝜇
𝜒 =

𝑒2

ℏ2
𝑬 ⋅ 𝑩

Technological Application

𝜒 = −1 𝜒 = +1

𝑬 = 0
   B ≠ 0

𝜒 = −1 𝜒 = +1

𝐄 ≠ 0
    B ≠ 0
 𝐄 ⋅ 𝐁 ≠ 𝟎

❖ Dissipationless 

information processing

❖ Chiral Photonics

Adv. Funct. Mater.2021, 31, 2104192



How to unambiguously identify the signature of the 
chiral anomaly in condensed matter experiments?

Key Science Question?

Existing Works

Negative Longitudinal Magnetoresistance

Son and Spivak, Phys. Rev. B 88, 104412 (2013)
J. Xiong et. Al., Science 350, 413–416 (2015)
X. Huang et. Al., . Phys. Rev. X 5, 031023 (2015)
N. P. Armitage et. Al., Rev. Mod. Phys. 90, 015001 (2018)

❑ Current jetting effect

❑ Weak localization

❑ Negative off-diagonal effective mass

Difficult to separate topological contribution from non-topological 
origin

Experimental Concerns

N.P. Ong and S. Liang, Nat. Rev. Phys. 3, 394 (2021)
Y. Li et al., Front. Phys. 12, 127205 (2017)
F. Arnold et. Al., Nat. Commun. 7, 11615 (2016)
R. D. dos Reis et. al., New J. Phys. 18, 085006 (2016)



Planar Hall Effect

Illustration of planar Hall effect geometry

Appearance of an in-plane transverse voltage when the co-planar electric and 

magnetic fields are not perfectly aligned

Chiral Anomaly in WSM

𝜎𝑦𝑥
𝑝ℎ

= 𝑒2 න 𝑑𝒌 𝐷𝜏 −
𝜕𝑓𝑒𝑞

𝜕𝜀
𝑣𝑦 +

𝑒𝐵 sin 𝜃

ℏ
(𝒗𝒌 ⋅ 𝛀𝒌) 𝑣𝑥 +

𝑒𝐵 cos 𝜃

ℏ
(𝒗𝒌 ⋅ 𝜴𝒌)

❑ Does not satisfy the anti-symmetry property of regular Hall conductivity

𝜎𝑦𝑥
𝑝ℎ

 ≠ −𝜎𝑥𝑦
𝑝ℎ

Method: Quasiclassical Boltzmann Transport Theory

S. Nandy et. al., Phys. Rev. Lett. 119, 176804 (2017)



Chiral Anomaly in WSM

Recent Experimental Confirmation

❖ GdPtBi, Cd3As2, WTe2, PdTe2, MoTe2, ZrTe5, Pr2Ir2O7 and so on…

G. Yin et al., PRL 122, 106602 (2019)
J. Zhong et. Al., Chin. Phys. B 32, 047203 (2023)

S. Nandy et. al., Phys. Rev. Lett. 119, 176804 (2017)

𝝈𝒚𝒙
𝒑𝒉

= 𝚫𝝈 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽

Origin: Chiral Anomaly

𝚫𝝈 ∝ 𝑩𝟐

𝛾= Tilt Parameter

N. Kumar et. al., Phys. Rev. B 98, 041103(R) (2018)
P. Li et. al., Phys. Rev. B 98, 121108(R) (2018)
N. Wadehra et. al., Nat. Comm. 11, 874 (2020)

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑃𝐻𝐶



Future Directions 

❑ Interplay between topology and electronic correlation and their consequences on 

transport and its application to real materials

Interplay Between Topology and Correlation

❑ Proposing anomaly-induced new transport quantities linear-in-B that can shed 

light on distinguishing topological and non-topological contributions. 

❑ Exploring PHE by including both the ferromagnetic and anomaly-induced 

contributions to gain deeper insight into ongoing experiments in recently 

discovered magnetic WSM 

Detecting Quantum Anomalies

❑ Revealing the role of disorder to higher-order responses in both 2D and 3D 

systems by considering different types of disorder (scalar disorder and beyond) 

and other scattering mechanisms (e.g., electron-phonon coupling) . 

Quantum Geometry Induced Nonlinear Transport 





Why We Study this Problem?

Energy ∝ n 2 , not equally spaced
As E increases, number of nodes increases too (Number of node 
= n − 1.)
The probability |ψ(x)| 2 is more localized in the center at n = 1 
and then spread out as n
The zero point energy is h 2 8mn2

Energy ∝ 1 a 2 , so when size of the box increases, the energy 
drops rapidly
Return to classical state at n → ∞



Also note that as the energy of the particle becomes greater, the quantum 
mechanical model breaks down as the energy levels get closer together and 
overlap, forming a continuum. This continuum means the particle is free and 
can have any energy value. At such high energies, the classical mechanical 
model is applied as the particle behaves more like a continuous wave.
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