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Remapping of Data Between One-Dimensional Meshes

Jahi Hudgins, Daniel Shevitz, Navamita Ray
May-August 2023

Abstract

In this report we present two approaches to data remapping between one-dimensional meshes imple-
mented with the c++ programming language. Our goal was to test the performance of two search algo-
rithms, linear and binary, and verify the accuracy of our implementations of the two methods. We first
introduce the concept of data remap and meshing components, as well as their various uses. We then delve
into the differences between point-wise and conservative remap, the algorithms used in the implementations,
and lastly confirm the implementations work as intended when given various inputs. We expect that, after
profiling, the binary search algorithm will be more efficient than the linear algorithm for sorted sets of data,
the point-wise remap implementation to accurately approximate the data transfer between two meshes, and
the conservative remap implementation to conserve the area underneath the curve of two distinct meshes.

1 Introduction

Remapping is the process of transferring known field data between two distinct meshes. It is an important
concept because it allows us to see how data will be affected when being placed into a new environment. The
process of data remapping is used in many ways ranging from simple image resizing to complex simulations of
fluid mechanics. The main issues concerning remap are accuracy and performance. In this work, we studied
two approaches to performing data remapping between one-dimensional meshes. The two methods, known as
Point-wise Remapping and Conservative Remapping, and their respective algorithms will be described in detail
in the following sections.

In Section 2, we describe the concepts of meshes and field data that are required by the remapping algorithms.
Next, in Section 3, we present the point-wise data remapping algorithm. We provide numerical results as well as
profiling results for parts of the algorithm. In Section 4, we present the conservative data remapping algorithm,
and provide numerical results. We finally present our conclusions in Section 5.

2 Meshes and Fields

A mesh is a set of interconnecting, non-overlapping cells approximating the geometry of a domain. Meshes are
constructed using two key elements, cells and nodes, but can also contain field values. While meshes can range
from one to multi-dimensional domains, in this work we will use one-dimensional meshes with equidistant nodes
over the interval [0, 1]. Here are the key components of our mesh and field defined on it:

e Nodes: Coordinate points existing on the x-axis
e Cells: An edge formed by connecting two or more adjacent nodes
e Field: A value defined at either individual nodes or at cell midpoints illustrated by elevation on the y-axis

Figure 1 illustrates a one-dimensional mesh with five cells. Figures 2a and 2b illustrate the two locations
where a field might be defined on the source mesh.

3 Point-wise Remapper

The first method tested is the simplest form of remap: point-wise remapping. In point-wise remapping, the
field values are defined at each individual node and piece-wise linear interpolation is used to approximate the
target field from the line functions of the source cells, resulting in a node-to-node remapping of data.
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Figure 2: Field Definition Locations

3.1 Piece-wise Linear Approximation over Source Mesh

Piece-wise linear approximation is the process of determining the function describing the source mesh by ap-
proximating the line equation connecting the two nodes over each cell. The result of the process on a random
plot is illustrated in Figure 3.
The slope-intercept equation of a line is:
y=mx+b (1)

Given two points (xo, yo) and (x1, y1), we compute the slope m between them using the formula:

1 — X9

We then must find b, the y-intercept of the line between the two points, with the following equation:
b= (—m=*z0) + o (3)

This step is necessary because these line functions are what we’ll use to interpolate the target field values.

3.2 Search

The search step determines which source cell a target node lies in. This is crucial to the success of the remapping
algorithm: The correct values must be returned in order for the right line functions to be passed into the
interpolation function. While standard search algorithms simply check whether a value exists in an array, here
the search is between two meshes. The searches have two different success cases:

i If element afi] was equal to the key
ii If the key was in between element a[i] and element a[i + 1]

This change was needed in the event that a target node existed between, but not on, two source nodes. In our
code we tested two different search algorithms: linear and binary.
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Figure 3: Piece-wise Linear Approximation

3.2.1 Linear Search

A sequential search algorithm that starts with the first element in a set [0] and compares each element a[i] to
the key, stopping either when the key is found or when the search reaches the end of the set. Figure 4 illustrates
the search process for a specific target node.

Although this algorithm has the advantage of being able to search an unsorted set, the nature of the linear
search results in a time complexity of O(N) in every case aside from when the key matches the first element in
the set. The time complexity is not a huge deal with smaller sets, this algorithm loses more and more efficiency
in proportion to the size of the set. This method is demonstrated in Algorithm 1.

Algorithm 1 Linear Search

Require: nCell > 0
for i «+ 0 to nCell do
if target > sourceli] and target < source[i + 1] then
return < 1
else
14—1+1
end if
end for
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Figure 4: Point-wise Linear Search

3.2.2 Binary Search

A search algorithm that is used on sorted sets that works by repeatedly splitting the search interval in half
and comparing the middle of the list a[m] with the key for each iteration until either the key is found or
until the entire set has been searched. Figure 5 illustrates the process for a specific target node. While this
search algorithm has the drawback of only working on sorted sets, because the search interval is constantly
being halved, the binary search is very efficient with an average time complexity of O(log N). This method is
demonstrated in Algorithm 2.
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Algorithm 2 Binary Search

Require: nCell >0

lo+—0
hi < nCell
while lo < hi do
mid < lo+ ((hi —lo)/2)
if target > source[mid] and target < source[mid 4+ 1] then
return < mid
else if source[mid] < target then
lo <+ mid+1
else if source[mid] > target then
hi < mid — 1
else
return < —1
end if
end while
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Figure 6: Linear Function Verification

3.3 Interpolation on Target Mesh

Linear interpolation is the process of looking at a known source mesh and its field, then looking at a target
mesh, figuring out where each target cell lies on the source mesh, then calculating the target field using the
slope and y-intercepts of the respective source mesh cell.

Ytrg = (msrc * xtrg) + bsrc (4)

3.4 Verification

To verify our point-wise remap implementation, we tested the meshes with the parameters shown in Table 1
against both a linear and a quadratic equation.

Source Mesh | Target Mesh
Number of cells 10 7
Number of nodes 11 8

Table 1: Point-wise Verification Mesh Sizes

The verification process involved manually calculating the solution at each step, such as what cells the search
functions should return and what the line equations of each cell should be, then placing asserts in the algorithm
to confirm that the experimental results matched what was expected.

3.4.1 Linear Function

The linear function of the line over the domain of our reference is:
y=3x+2 (5)

and the mesh generated by this function can be seen in Figure 6a. Figure 6b illustrates the success of the linear
verification: the line connecting the target points lies in line with the source points.

3.4.2 Quadratic Function

We next used a quadratic function over the domain to interpolate from the source mesh to the target mesh.
The equation of the quadratic function used to obtain field values at the source nodes are:

1
y=—4lz— )" +1 (6)
and the mesh generated is shown in Figure 7a. Again, the success of the quadratic verification can be seen in
7b as the source points lie on the line connecting the target points.
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Figure 7: Quadratic Function Verification

3.5 Performance of Searches

Finally, we profiled the linear and binary searches. We fixed the target mesh size (200 cells) and performed the
search with source meshes starting with 100 cells up-to 100,000 cells. We used the steady clock function from
the c++ ”chrono” library and placed the timing blocks around the search functions to time our searches. For
each source mesh, we then got the average time for each of the searches and plotted the results as shown in
Figure 8.
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Figure 8: 102 to 10° Profiling

4 Conservative Remapper

The second method tested was conservative remap. This method differs from point-wise remap in quite few
ways: Rather than simply defining the field values at individual nodes, the field values in conservative remap
are only defined at the cell midpoints and are used to calculate the area of the cell. Because point-wise remap
defines the field values at individual nodes and approximates the target field values using linear interpolation,
some detail may be lost in the event that the target mesh has:

e the target mesh’s sub-interval is larger than that of the source mesh
e the sub-intervals of the source and target meshes differ too much

Conservative remap, however aims to distribute the area of the source mesh to the target cells so that the total
area is conserved between the meshes. In order to do this, there are three steps involved:

e Search: Find which source cells overlap the target cell

e Intersection: Obtain how much each source cell overlaps with the target cell
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e Interpolation: Accumulate the area from the overlapping source cells and then find the target field value
at the cell-center.

4.1 Search

Searching in the conservative remap algorithm is slightly different from that of the point-wise remap. Because
the entire target cell is being looked at, rather than a single node at a time, each search must find the head
and tail nodes of the target cell. This means that for each iteration of the search function, the mesh is actually
being looked through twice.

4.1.1 Linear Search

The linear search algorithm for conservative remap starts just like the point-wise linear search: first searching
for the source cell that the target cell’s head node lies in. The next iteration of the search starts in the source cell
where target head node was found, then searches again until the target tail node is found. Figure 9 illustrates
the process for a specific target node. This method is demonstrated in Algorithm 3.

4.1.2 Binary Search

A search algorithm that finds the desired value in a sorted list by comparing the target value with the middle
of the list, then dividing the search interval in half for each iteration until either the target is found or until the
entire list has been searched. While this search algorithm requires the list to be sorted, this type of search has
an average time complexity of O(log N). This method is demonstrated in Algorithm 4.

4.2 Intersection Approximation over Source Mesh

Once we know which source cells overlap with a target cell, we next need to determine how much each source
cell overlaps with the target cell. To do this, we first check for one of the three cases depicted in Figure 12. If
the target cell is contained in just one source cell, the amount of intersection is the target cell width as seen in
Figure 12a. If the head and tail nodes of the target cell are located in two adjacent source cells, illustrated in
Figure 12b, the two intersection amounts are:

e the positive difference between the target head node and the shared source node
e the positive difference between the target tail node and the shared source node

If the head and tail nodes of the target cell are located in two non-adjacent source cells, shown in 12c, the
first and last intersections are calculated the same way as Case 2, and the intersections for any source cells
between the head and tail will be the width of the source cell. The method dealing with these cases are shown
in Algorithm 5.



Algorithm 3 Linear Search

Require: nCell >0
for i < 0 to nCell do
if source[i] < targetStart and source[i + 1] > targetStart then
head < i
else
141+ 1
end if
end for

1 < head
for i to nCell do
if sourceli] < targetEnd and source[i + 1] > targetEnd then
tail <1
else
ti+1
end if
end for

i < head

while i < tail do
returnli] < i

end while

Algorithm 4 Binary Search

Require: nCell > 0
lo~0
hi < nCell
while lo < hi do
mid < lo+ ((hi —10)/2)
if source[mid] < targetStart and source[mid + 1] > targetStart then
head <+ mid
else if source[mid] < target then
lo < mid+1
else if source[mid] > target then
hi <— mid — 1
else
return < —1
end if
end while

lo + head
hi < nCell
while lo < hi do
mid < lo+ ((hi —lo)/2)
if source|mid] < targetEnd and source[mid + 1] > targetEnd then
tail < mid
else if source[mid] < target then
lo <+ mid+1
else if source[mid] > target then
hi < mid — 1
else
return < —1
end if
end while

i < head

while i < tail do
returnli] < 1

end while
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Figure 10: Conservative Binary Search Head [key = 0.375]

Algorithm 5 Intersection

if found.size =1 then

return < head — tail
else
for i to found.size do
if i =0 then
returnli] <— src[found[i + 1]] — head
else if i = found.size — 1 then
return(i] < tail — src|found]i]]
else
returnli] < src[found[i + 1]] — src[found]i]]
end if
end for
end if
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4.3 Interpolation on Target Mesh

Once we have obtained the amount of intersection of each source cell overlapping a target cell, the next step
is to obtain the area proportional to the intersection from each such source cell and then accumulate it over
the target cell. The target cell’s area Ay, can be calculated using Equation 7, where i, is the amount of
intersection with the source cell and ys,.. is the height of the source cell.

N,
Atrg = Z Lsre * Ysre (7)
n=1

After the target areas have been found, the target field values 3,4 can be calculated using Equation 8, where
Wyrg is the width of the target cell.
Ytrg = atrg/wtrg (8)

4.4 Verification

We verified the implementation of our conservative remap against meshes with the parameters shown in Table
2 against a linear and a quadratic equation.

Source Mesh | Target Mesh
Number of cells 10 7
Number of nodes 11 8

Table 2: Conservative Verification Mesh Sizes

As the conservation of area between meshes is the goal of conservative remap, we manually calculated the
total area of the meshes, the search and intersection vectors, and the field values, then used asserts to confirm
the experimental results matched the expected output.

4.4.1 Linear Function

The mesh in Figure 13a was generated from the approximation of Equation 9 and the interpolated target mesh
is presented in Figure 13b. Table 3 shows the conservation of area between the two meshes

y=3r+2 (9)
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Area
Source Mesh | 3.50000
Target Mesh | 3.50000

Table 3: Approximated Area Under the Linear Function
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Figure 13: Linear Function Verification

4.4.2 Quadratic Function

We then used Equation 10 to approximate the mesh seen in Figure 14a and the result of the interpolation is
shown in Figure 14b.

y=—4(z — %)2+1 (10)

As displayed in Table 4, the area between the meshes has been conserved using our conservative remap
implementation.

4.5 Performance of Searches

We also profiled the linear and binary searches for the conservative remapper. As before, we observe that the
binary search is significantly faster than the linear search as we increase the source mesh size.

5 Conclusion

Our goal with this project was to learn about the concept of data remap and successfully implement two
remapping methods between one-dimensional meshes. In our implementations, we also aimed to confirm the
higher efficiency of the binary searching algorithm against the linear search algorithm. In our experiments, we
were able to certify the correct operation of our implementations: the point-wise remapper approximated the
source field from given functions and accurately interpolated target mesh field values from the source mesh;
the conservative remapper approximated the area under the curve of a given function onto a source mesh and
successfully interpolated a target mesh that conserved the area from the source. Our studies of the searching
algorithms also proved a binary search is faster than a linear search for sorted sets of data.

Area
Source Mesh | 0.67000
Target Mesh | 0.67000

Table 4: Approximated Area Under the Quadratic Function
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