LA-UR-23-29392

Approved for public release; distribution is unlimited.
Title: Data Remapping Between One-Dimensional Meshes
Author(s): Ray, Navamita

Mason, Carter Bayo

Shevitz, Daniel Wolf

Intended for: Documenting work done during internship.

Issued: 2023-08-15

NATIONAL LABORATORY

% Los Alamos



1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.



Data Remapping Between One-Dimensional Meshes

Carter Mason, Daniel Shevitz, Navamita Ray

May-Aug 2023

Abstract

In this report, we describe two approaches to the problem of remapping data from a source mesh (on
which data is available) onto a target mesh. We consider two separate methods to solve the problem: Point-
wise and Conservative remap, and determine why one is more advantageous when considering different
physics applications and elements. We utilize C++ functionalities to derive our findings along with the
C++ ”Chronos” library for timing measurements of our studies.

1 Introduction

In this report, we present two algorithms for performing mesh to mesh data remapping. The problem of mesh
to mesh data remapping arises in many applications. In particular, in Arbitrary Lagrangian Eulerian (ALE)
methods based hydrodynamic applications, a mesh moves along flow as a Lagrangian motion, till the mesh
becomes skewed, at which point, a new mesh with better element shape is constructed and the data from
the Lagrangian mesh is remapped to the new target mesh to continue with the simulation. Multi-physics
applications also need similar data transfer where different physics interact with each other through shared
domain boundaries.

The problem of remapping involves two meshes, where a discrete set of field values (data) is available on one
of the mesh (source mesh). This discrete field is usually obtained from the numerical simulation and represents
physical properties of the system of study such as density, temperature, velocity, etc. As a result, this discrete
field is only defined at specific coordinates in the source mesh. Since the source and target mesh can be different,
we need to find an approximation of the same on the target mesh using the data available on the source mesh.

In section 2, we describe the concepts of meshes and field data that are required by the remapping algorithms.
Next, in section 3, we present a point-wise data remapping algorithm. We provide numerical results as well as
profiling results for parts of the algorithm. In section 4, we present a conservative data remapping algorithm,
and provide numerical results.

2 Meshes and Fields
2.1 Meshes

A mesh is a discretized approximation of a shape in any-dimension. For our purposes, we will work with one-
dimensional domain, specifically, a bounded interval [0, 1]. This interval is partitioned into smaller intervals to
obtain an one-dimensional mesh. Figure 1 shows the two main components that the mesh consists of :

e Nodes: Point coordinates that define the sub-intervals of the line

e Cells: An edge connecting two consecutive points, or a sub-interval of the line.

2.2 Remapping Data Between Two Meshes

As briefly described before, the problem of remapping involves transfer of data between two meshes. The mesh
on which data is available is called a source mesh, and the mesh onto which the data has to be transferred is
called the target mesh. There are two general locations where a physical field of interest to the simulation can
be defined, at nodes or at cell-centers. In this report we consider two algorithms

e Point-wise remap: Node-to-node data transfer

e Conservative remap: Cell-center to cell-center data transfer while preserving area under the curve.
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Figure 1: Mesh Illustration with labeled cells and nodes

3 Point-wise Remapping

We first consider the case, where the field is defined at the nodes of the source mesh, and we need to remap
the field onto the nodes of the target mesh. In order to do this, we first obtain an approximation over the
source mesh by using piece-wise linear interpolation, and then use this approximation to obtain field values at
the target nodes.

3.1 Piece-wise Linear Approximation over Source Mesh

Given a source mesh with field values at its nodes, we can approximate the underlying function (from which the
field values are obtained) by constructing a linear approximation over each source cell. Essentially, we create a
series of linear segments connecting the nodes, giving us a piece-wise linear approximation of the field over the
source mesh.

Figure 2 illustrates this process, where the discrete set of data on the source nodes is the input, and after
interpolation, we obtain a piece-wise approximation to the field satisfying the condition that the approximation
passes through each input data point.

The two pieces of information over each source cell that needs to be obtained are:

e Slope: The gradient of the line connecting two source nodes
e Y-intercept: The intercept of the line connecting two source nodes

We can use the node values to generate the slopes and intercepts of the linear approximation over each
source cell. Given two points {x1,y1} and {x2,y2}, we can find the slope of the line y = maz + b joining them
using the formula: .
rise Yo — Y1
o _kh (1)
run To — X1

We can then use the slope and one of the y values from the source points of the cell to find the y-intercept
using:

b=y —mx; = ys — masy (2)

To obtain an approximation at the target node, we now need to find which source cell the target node resides

in, and once we find that source cell, we can use its corresponding linear approximation to obtain a field value
at the target node. This is where search comes in.

3.2 Search

We need to obtain the source cell which the target node is in, so that we can use its gradient. We do this by
checking which two source node values the target node value lies between. There are two methods we used for
this: linear search and binary search.
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Figure 2: Piece-wise approximation before and after interpolation

3.2.1 Linear Search

Linear search is the process of sequentially checking a list of values for a specified point. We start at the first
two nodes and check if the target value is on or between them. If it is, we have found our needed source cell, if
it not, we check the second and the third node, and we repeat the process until we find our designated source
node. If we do not find a desired cell after the last source node, then our target value is out of scope. Figure 3
illustrates the linear search process. Algorithm 1 provides the psuedo-code for the linear search algorithm.
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Figure 3: Linear Search

Algorithm 1 Linear Search Algorithm

Xt = x-target value
Xs = x-source value (held in an array)
n = number of source cells
initialize 7 to 0
for ¢ ton do

if (Xt > Xsli]) and (Xt < Xs[i+1]) then

return i;

end if
end for
return -1; > target was not found in any source cell

3.2.2 Binary Search

Binary search is the ”divide and conquer approach” where we go to the mid cell and check if our target node lies
within. If it does, we have found our needed source cell, if our target node is lower than both, we disregard the
upper half and repeat the process, and if our target node is higher, we disregard the lower half until and repeat.
This is a much faster approach, especially when there is more data to be searched. For a search containing
6 nodes, binary search was able to find the target in only two searches (Figure 4), while linear search took 5
searches(Figure 3). Algorithm 2 provides the pseudo-code for the binary search algorithm.
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Figure 4: Binary Search ex.

3.3 Interpolation on Target Mesh

Once we have found the source cell that the target cell lies in, we know the slope and intercept of the linear
approximation over the source cell to use for interpolation. Given a target point x;, we can find an approximate
y¢ by using :

ye =mxy + b (3)

where m and b are the source cell slope and intercept that the target node lies in. This gives us our
interpolated field value at the given target node. Once all of the target node fields have been interpolated, this
completes the process of remap.

3.4 Numerical Results
3.4.1 Verification Using Linear Function

For our problem of interpolating the unknown field values of a target mesh, we were given a source mesh with
known field values and a target mesh with unknown field values. We first perform a verification test with an
analytic function over the source mesh.

The meshes are generated by dividing the interval [0, 1] into equal length intervals. We choose a source
mesh with 10 cells and a target mesh with 7 cells. Table 1 shows the nodes for the source and target meshes.
We use the following linear function to obtain the discrete set of field values on the source mesh:

y=3xr+2 (4)

Figures 5a and 5b show the source field points before and after linear reconstruction. We now have the slopes
and intercepts of each line approximation over cells of the source mesh. Using this function approximation, we
can interpolate the field value at the target points. Figure 6 shows the target field data after the points are
interpolated using the source mesh. We can see the the target points lie on the line that we chose over the
source mesh. This completes our verification.

3.4.2 Interpolation with Quadratic Data

Now that we have verified that our code implementation works, we performed interpolation using a quadratic
equation:
y=—4(x—1/2)*+1 (5)

The source mesh has 10 cells and the target mesh has 9 cells. Table 2 displays the nodes for the target and
source mesh. We can see how our interpolated target points (Figure 8) fall on the line approximations over the
source cells (Figure 7).



Algorithm 2 Binary Search Algorithm

Xt = x-target value
Xs = x-source value (held in an array)
n = number of source cells
initialize 7 to 0
initialize first to 0
initialize last to n
for i to n do
initialize mid to first + ((last — first)/2)
if (Xt > Xs[mid]) and (Xt < Xs[mid+1]) then
return mid;

end if
if (Xt > Xs[mid+1]) then
first = mid+1
mid = (last-first)/2
end if
if (Xt < Xs[mid]) then
last = mid;
mid = (last-first)/2;
end if
end for
return -1; > target was not found in any source cell
H Source Nodes Target Nodes H
0.00 0.00
0.10 0.14
0.20 0.29
0.30 0.43
0.40 0.57
0.50 0.71
0.60 0.86
0.70 1.0
0.80
0.90
1.00
Table 1: Source and Target Mesh for Verification test
6 6
5 4.7 i 5
e 4;4 °
4 35 o 4
29 3;2 .
3 26 o 3
) 2;3 °
2 e 2
1 1
0 0
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 12
(a) Source Field (b) Piece-wise Linear Interpolation

Figure 5: Input source field and the piece-wise linear approximation to the field over the source.
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Figure 6: Target data after interpolation

H Source Nodes Target Nodes H

0.00 0.05
0.10 0.15
0.20 0.25
0.30 0.35
0.40 0.45
0.50 0.55
0.60 0.65
0.70 0.75
0.80 0.85
0.90 0.95
1.00

Table 2: Source and Target Mesh for Quadratic Test

3.4.3 Profiling Results

Profiling is the timing of different components of the program. We profiled both the linear and binary searches
using the c++ ”"Chronos” library, to determine which search method yields faster results. We used the
”chrono::high resolution clock::now()” function to register the start and end times for our searches. We used
the function to put start and ending timing blocks around the loops for the searches, and then obtained the
average times. We fixed the size of the target mesh (100) and vary the source mesh size from one cell to a
million cell mesh.

tavg = (tend - tstart)/nt (6)

This formula finds the average time by subtracting the start time from the end time and dividing that
number by the number of target cells. Figure 10 shows the performance of the linear and binary search from
one to one million source cells. Figure 9 shows a close up of the performance up-to 10,000 cells. The plots
suggest that the binary search was exponentially faster over time with increasing number of cells and the time
complexity for linear was O(n), while binary was O(log n).

4 Conservative Remapping

When it comes to the remap of a target mesh onto a source mesh, point-wise interpolation is a fine method to
use. However, the problem is our mass, or area under the curve of our field data line, is not conserved with
point-wise interpolation. Conservative remap uses the area under the curve of a source field (See Figure 11) to
interpolate field data on-to a target mesh such that the total area is conserved after remap. The source field
is defined at the source cell center instead of the node, and we can find the area under the line curve of these
points. We approximate the area under the curve by using rectangles (integrals), giving a specific area to each
individual source cell:

area = width * height (7)

We find the field value of the nodes by taking the area of the cell and dividing it by the width of the cell,
giving us the value at the midpoint of the cell. We will discuss the process of conservatively remapping a target
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mesh onto a source mesh using a 3 step process: Search, Intersect, and Interpolate.

4.1 Search

The first step for conservative remap is to find the source cells that overlap with the target cells containing
the points that we want to interpolate. We will do this using search. Our linear and binary searches will work
similarly to the ones we used for linear interpolation, however we will need to find two points this time: the
source cell that the target start node lies in and the source cell that the target end node lies in. Once we find
which cells these points lie in, we can get the source cells in between as well.

Suppose we have a source and a target mesh and we want to find which source mesh cells the second target
cell is in, as shown in Figure 12. We first would use the starting node of the target cell (.2) and find which
source cell it is in with a search. We then would take the ending node of the target cell (.4) and do the same.
As shown in Figure 13a, the target start node lies in source cell 1 and the target end node lies in source cell
3. Once we find the start and end source cells, we can find the cells in between (See Algorithms 3 and 4 for
the complete linear and binary searches). We then return all of our source and cells found for use in our next
section (Figure 13b).

4.2 Intersect

Once we find our overlapped source cells, we need to find how much of each source cell is intersecting with the
target cells, so that we can properly approximate the area. Here is the process used for this (using our prior
example):

e For the first found source cell, we take the source cell end node and subtract the target cell start node
from it (Figure 14a).



Algorithm 3 Linear Search Function

Linear search function takes in a target start node (Ts), target end node (Te), an array of source nodes (Sn[n]),
and the number of source nodes (n) and it returns a vector containing the source cells found.

F¢ = First source cell
Lc = Last source cell
vectorsize = 0
n = number of source nodes
initialize 7 to 0
for i ton do
if (T's > Snli]) and (T's < Sn[i+1]) then
initialize Fc to i
end if
if (Te > Snli]) and (Te < Sn[i+1]) then
initialize Lc to 7
end if
end for

Once the first and last cells are found, get the size of the vector to be returned. Use a for loop and initialize
i to equal the first cell index, and continue the loop until i equals the last cell index.

initialize i to F'c
for i to Lc do

vectorsize ++
end for

Fill vector with the indexes of the source cells found and return.
Vector SourceCellsFound

initialize 7 to 0

for i to vectorsize do

SourceCellsFound[i] = Fc+1
end for

return SourceCellsFound, > returns vector of source cells that overlap target nodes




Algorithm 4 Binary Search Function

Binary Search function takes in the same parameters as linear search. (Target start node (Ts), target end node
(Te), an array of source nodes (Sn[n]), and the number of source nodes (n)

Fc = First source cell

Lc = Last source cell

vectorsize = 0

first =10

last = number of source cells

for i ton do

mid = first + ((last — first)/2) > formula to get middle of array
if Ts > Sn[mid]) and (T's < Sn[mid+1]) then

Fc = mid

break
end if

if (T's > Sn[mid+1]) then

first = mid+1
mid = (last-first)/2
end if

if (T's < Sn[mid]) then

last = mid;
mid = (last-first)/2;
end if
end for

Repeat the above algorithm to find the source cell for the target end node as well (replace ”Ts” with ”Te”).
Once we find the first and last source cell needed, Repeat steps shown in Algorithm 3 to fill and return the
vector.
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Figure 9: Performance comparison of linear and binary searches up-to 10,000 source cells
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Figure 10: Performance comparison of linear and binary searches up-to one million source cells.

e For the middle source cells (if any), since they will use up all of the volume of the cells, we subtract the
source cell start node from the source cell end node for each of those cells. This gives us the full width of
each middle cell (Figurel4b).

e Finally for the last found source cell, subtract the target cell end node from the source cell start node
(Figure 14c).

e For the case where the two target points are within the same source cell, the amount intersected will be
the target end node - the target start node. (Figure 14d).

We now have found our intersected values with each of the source cells and can move on to the final step:
Interpolation.

4.3 Interpolate

We have now found our overlapped source cells with the target cells, and our intersected values of the overlapped
source cells. For interpolation at the midpoint of a target cell, we can get the field value using target cell width
and the area target cell area. We already know the target cell width using:

ht = Tstart — Tend (8)

where gqr and Zepnq are the start and end nodes of the target cell. And we have the information needed to
compute the area from search and intersect steps.

To find the area of the target cell, we use the intersected values of each source cell and multiply them by the
corresponding heights (source field at source cell center) of each overlapping source cell. We take the total of
all these values for the total area (See Figure 15). Once the target area is found, we interpolate the field value

10
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Figure 11: Mesh Illustration with labeled cells and field values

at the midpoint with this equation:

22[21 Iy,
e )
t

where 1, is the approximated target field value, N, is the number of source cells the target overlaps with, It is
the intersection amount of the target cell with the overlapped source cells, y;, is their source field values, and
hy is the target cell width. Using this process, we have successfully interpolated the field value of a target mesh
while conserving the area under the source mesh curve.

Yt =

4.4 Numerical Results
4.4.1 Verification Using Linear Function

Because the goal of conservative remap is to conserve the area under the curve, we can verify this by remapping
a target mesh of the same domain as a source mesh. Once the remap is done, the area under the curve of both
the source and target mesh should be equal.

For this verification, we use a source mesh with with 8 cells and a target mesh with 5 cells (the cell centers
are tabulated in Table 3. Our field values lie at the midpoints of these cells. We used the gradient:

y=8x+1/2 (10)

This allows the y-values to increase by 1 each point. Figure 16a shows the source field data and Figure 16b
shows the field data of the target mesh after it is interpolated. The area under the curve was preserved for both
the target and source mesh 4, totaling out to 4.5 for each, making our verification successful.

4.4.2 Interpolation with Quadratic Equation

After verification that area is conserved under the curve, we interpolated a target mesh using a source mesh
with a quadratic equation:
y=—4(z—1/2)%+1 (11)

Our source mesh is equidistant between 0 and 1, and has 10 cells with field data on the midpoints of each
cell. Our target midpoints are between each of the source midpoints. Figure 17a shows the source cells with the
midpoints and field values and Figure 17b shows the interpolated target mesh using the source. We have now
interpolated a target mesh more accurately, because the area under the curve of the line has been conserved.
Table 5 displays the area under the source and target curve (note that our areas are different because the meshes
are over slightly different domains). This method is much more efficient than piece-wise linear approximation.

11
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Figure 13: Search the overlapping source cells with the target cell.

4.4.3 Profiling Results

Again, we timed our linear and binary searches for to see which found our desired information more efficiently.
Figure 18a displays searches going from 1 cell to 10,000 and Figure 18b goes from 1 to 1 million. In both cases,
binary search yields faster results as expected.

5 Conclusion

Overall, the completion of this study lead us to understand data remap of two meshes on a one-dimensional
plane using both Point-wise and Conservative remap. We found that while point-wise does allow us to complete
remap, it doesn’t conserve mass, which is important when dealing with meshes containing specific properties
that require the use and conservation of mass in order to be represented properly. The area of our source mesh
and our remapped target mesh over the same domain were the same in both of our numerical tests, verifying
that we didn’t lose any data when going from the source to the target. We also were able to find differences
in the performances of our searches we used when completing our code, and how binary search was faster in
finding our nodes and cells than linear.

12
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Figure 14: Finding overlap of the target cell with the source cells.

H Source Cell Midpoints

Field Values H

0.0625 0.1
0.1876 0.3
0.3125 0.5
0.4375 0.7
0.5625 0.9
0.6875
0.8125
0.9376

Table 3: Source and Target Cell Centers.

H Area under curve preserved H

Source: 4.5000000000000000
Target: 4.5000000000000000

Table 4: Area under the curve for source and target for linear function.
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Figure 16: Source field and interpolated field on target mesh.

|| Area under curve preserved ||

Source: 0.6700000166893005
Target: 0.6700000166893005

Table 5: Area under the curve for source and target for quadratic function.

14
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Figure 17: Source field using a quadratic function, and interpolated field on target.
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Figure 18: Performance comparison of linear and binary search.
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