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Abstract

The use of wireless power transfer systems, consisting of inductive
electrical coils on the vehicle and the power source may be designed
for dynamic operations where the vehicle will absorb energy at
highway speeds from transmitting coils in the road. This has the
potential to reduce the onboard energy storage requirements for
vehicles while enabling significantly longer missions. This paper
presents an approach to architecting a dynamic wireless power transfer
corridor for heavy duty battery electric commercial freight vehicles.
By considering the interplay of roadway power capacity, roadway and
vehicle coil coverage, seasonal road traffic loading, freight vehicle
class and weight, vehicle mobility energy requirements, on-board
battery  chemistry, non-electrified roadway vehicle range
requirements, grid capacity, substation locations, and variations in
electricity costs, we minimize the vehicle TCO by architecting the
electrified roadway and the vehicle battery simultaneously. The idea
optimizes battery size and chemistry so that the depth of discharge
between recharge events and expected life are balanced, thus fully
utilizing the energy available throughout the course of the battery
system's life. The approach is illustrated by applying it to the 1-75
freight corridor, where the framework developed may be expanded and
applied to a larger interstate system, expanded regional corridor, or
other transportation network.

Introduction

There are four major types of freight transportation available for
shippers to use in the world of freight shipping. The primary ones are
by ground (road), rail, ocean, and air. Although these are the main
categories of freight transportation, each method has their own
processes that differ from one another. According to the American
Trucking Associations (ATA) Trucks move roughly 72.5% of the
nation's freight by weight. There were 4.06 million Class 8 heavy duty
(HD) trucks (including tractors and straight trucks) in operation in
2021, up 2.3% from 2020. All registered freight trucks combined for a
total of 302.14 billion miles traveled in 2020. Out of these 177.26
billion miles were traveled by combination trucks in 2020 [1].
According to the U.S. Environment Protection Agency (EPA), in 2020
the transportation sector generated ~27% of the total Greenhouse gas
(GHG) emissions, constituting the single largest share of GHG
emissions in the U.S. GHG emissions from transportation primarily
come from burning fossil fuel for our cars, trucks, ships, trains, and
planes [2]. Medium and Heavy-Duty trucks constitute approximately
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26% of the total transportation based GHG emissions in the U.S. or
about 7% of the total U.S. GHG emissions [2].

Nations around the world are expected to continue to adopt more
stringent emissions standards for heavy-duty vehicle markets for both
oxides of nitrogen (NOx) and greenhouse gases [3,4,5,6,7].
California’s Air Resource Board (CARB) Omnibus Low NOx rule,
which goes into effect in 2024, requires the manufacturers of heavy-
duty diesel engines to comply with vastly more stringent exhaust
emission standards. In addition, it amends in-use test procedures,
creates modifications to the durability demonstration, lengthens
warranty and useful life periods, and increases emissions collection
and reporting dates [8]. Additionally, 13 other states have policies
mirroring CARB regulations [9]. In addition, CARB’s Advanced
Clean Trucks (ACT) regulation requires manufacturers to sell
increasing percentages of zero-emission trucks and is expected to
further reduce the lifecycle emission of greenhouse gases and
eliminate tailpipe emissions of air pollutants [10].

The Bipartisan Infrastructure Law, passed by the Biden administration
in late 2021, will focus on rebuilding America’s roads, bridges and
rails, expand access to clean drinking water, ensure every American
has access to high-speed internet, tackle the climate crisis, advance
environmental justice, and invest in communities that have too often
been left behind [11]. This law has established a U.S. National Electric
Vehicle Infrastructure Formula Program (“NEVI Formula”) to provide
funding to states to deploy battery electric vehicle (BEV) charging
infrastructure and to establish an interconnected network to facilitate
data collection, access, and reliability [11,12,13]. Initially, funding
under this program is directed to designated Alternative Fuel Corridors
for electric vehicles to build out this national network, particularly
along the Interstate Highway System. This will support and accelerate
equitable adoption of EVs, including for those who cannot reliably
charge at home. It will reduce transportation-related greenhouse gas
emissions and help put the U.S. on a path to net-zero emissions by no
later than 2050. This effort will also position U.S. industries to lead
global transportation electrification efforts and help create family-
sustaining union jobs that cannot be outsourced. [12,13].

In alignment with the Bipartisan Infrastructure Law, the U.S.
Department of Transportation’s Federal Highway Administration
(FHWA) has designated alternative fuel corridors, a national network
of alternative fueling and charging infrastructure, along the National
Highway System. Designation of the corridors began in 2016 and has
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expanded each year since then, for a total of more than 145,000 miles
over 119 Interstates and 100 U.S. highways/state roads. The designated
corridor fuels include electricity, compressed natural gas, liquefied
natural gas, propane, and hydrogen. The FHWA has interactive maps
showing corridors and pending corridors for each fuel (see Figure 1)
[14]. These corridors will form the backbone of a future electrified
transportation (including freight) network. Early deployment of a DC
fast charging network is shown in Figure 2. This represents stations
that have >50kW charging capabilities using Combined Charging
System (CCS) connectors. This represents 5846 fast charging stations
across the U.S. Most of these stations may only serve up to 4 vehicles
at a single time and are largely designed and designated for passenger
vehicles. Given this, there is still a significant challenge ahead to
design and deploy an electrified charging solution that will not only
support both electrified passenger and commercial vehicles (CV).

Alternative Fuel Corridors
—— EV - Corridor Ready
== EV - Gortidor Pending
0 150 300 450
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Figure 1. United States Alternative Fuel Corridors[15]
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Figure 2. Map of DC fast charging stations with CCS plug type [16]

Currently near-zero/zero emission powertrains in CV are designed for
specific mission use-cases (due to life, price, and weight), resulting in
limitations on the operational diversity for the end-customer [17,18].
As we migrate from a carbon intensive fossil fuel-based freight
transport system to a substantially/completely decarbonized freight
transport system, several challenges need to be addressed. As
compared to BEV or hydrogen powertrains, fossil fuel-based
powertrains provide mission flexibility, and high uptime at a relatively
low TCO. While the incumbent carbon intensive powertrains suffer
from poor efficiency and are not sustainable to support Global Climate
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Change initiatives in transportation decarbonization, techno-economic
challenges continue to create complex barriers to the large-scale
displacement of these with highly electrified powertrains architectures
[19,20,21]. Migration towards sustainable zero emission power in CV
with steady long-term adoption rates is dependent on both vehicle and
infrastructure solutions that are well aligned with CV end-user market
needs. Their priorities are centered on: Availability (i.e., solutions are
ready when it matters), Affordability (i.e., favorable economics),
Efficiency (i.e., lower operational expenditure), Productivity (i.e.,
ability to get the job done), and Sustainability (i.e., emissions or CO2
footprint/TCO/system-of-system capabilities). At present, while
research and development into zero emissions vehicle technologies is
rapidly gaining momentum [22,23], based on the above priorities,
challenges in the near term towards sustainable large scale customer
adoption remains.

Adoption of BEV in HD commercial freight transportation is
hampered by difficult technoeconomic obstacles. To enable
widespread deployment of electrified powertrains, fleet and
operational logistics need high uptime and parity with diesel system
productivity/Total Cost of Ownership (TCO), while meeting safety
compliance. Because of their comparatively high energy storage costs,
greater weight, and recharging durations, BEV powertrains are
currently only practical for shorter-range applications in HD truck
transport. The use of dynamic wireless power transfer (DWPT)
systems, consisting of inductive electrical coils on the vehicle and the
power source may be designed for dynamic operations where the
vehicle will absorb energy at highway speeds from transmitting coils
in the road. This has the potential to reduce the onboard energy storage
requirements for vehicles while enabling significantly longer missions.
This paper presents an approach to architecting a DWPT corridor for
HD battery electric commercial freight vehicles. By considering the
interplay of roadway power capacity, roadway and vehicle coil
coverage, seasonal road traffic loading, freight vehicle class and
weight, vehicle mobility energy requirements, on-board battery
chemistry, non-electrified roadway vehicle range requirements, grid
capacity, substation locations, and variations in electricity costs, we
minimize the vehicle CapEx and Fuel OpEx by architecting the
electrified roadway and the vehicle battery simultaneously. The idea
optimizes battery size and chemistry so that the depth of discharge
between recharge events and expected life are balanced, thus fully
utilizing the energy available throughout the course of the battery
system's life. The approach is illustrated by applying it to the 1-75
freight corridor, where the framework developed may be expanded and
applied to a larger interstate system, expanded regional corridor, or
other transportation network. While this analysis provides a pathway
to architect the electrified roadway of a given freight corridor, it forms
the backbone for a systematic approach that will be needed by
infrastructure planners (both roadways and electric grid), fleets, and
OEM s to sustainably deploy electrified heavy-duty vehicles for long
haul freight transport leveraging DWPT technologies.

This paper is divided as follows. In the next section we will describe
the overall methodology developed in this research. Following this we
will delve into the results and analysis. Next, we will develop and
discuss the technoeconomic solutions and identify conditions where
the DWPT system provides a technology that has superior lifetime cost
(CapEx and Fuel OpEXx) than diesel powertrains from the perspective
of the fleet. And lastly, we will provide concluding remarks.

Methodology

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DOE will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan.



The fundamental assertion that will be explored in this paper is that the
vehicle and infrastructure architecture for a DWPT system are
correlated. Depending on the critical stakeholder, this correlation may
vary. In this study the perspective developed is for the vehicle end-user
and their lifetime cost of vehicle ownership while operating on
roadways that support DWPT. Identifying the optimal balance of
vehicle architecture (onboard battery characteristics) and the roadway
infrastructure (DWPT coil power and coverage) will be critical in
designing sustainable deployment pathways for these electrified
freight transport systems.

ORNL has developed an advanced CV road and freight network, and
energy systems architecture optimization and system-of-systems
analytics using the OR-AGENT (Optimal Regional Architecture
Generation for Electrified National Transport) modeling framework.
This was introduced previously [24]. Through this framework, a
parametric study is conducted using integrated sub-system data and
models of the electrified vehicle powertrain architecture and dynamics,
freight mobility (vehicle Origin-Destination (O-D), schedule, weight),
traffic flow and roadway characteristics, weather (wind, precipitation,
temperature, etc.), and energy flow pathways (grid capability, energy
storage and dispensing, DER capability and siting). This unique
approach to the system-of-systems analysis, combining vehicles,
operations logistics, and energy pathways, provides a regional and
seasonally specific constrained-optimal vehicle and infrastructure
architecture solution based on technoeconomic measures for
application operations. The architecture optimization is based on a
defined system stakeholder (such as fleet, electrified equipment
supplier, energy service provider, utilities, or planning agency) cost
function. This will provide local government agencies, industry end
users/energy suppliers, and equipment providers with a flexible
planning tool to navigate the technology deployment of electrified
freight transportation systems. The flexibility will allow regional
characterization and accommodate constraints imposed by individual
deployment efforts (arising from different stakeholder motivations in
this eco-system). While more common analytical approaches to
assesses infrastructure largely consider a piecewise systems approach
without regional specificity, our approach systematically brings
together a comprehensive assessment in developing clear and
integrated vehicle and energy infrastructure roadmaps. The OR-
AGENT framework has been applied in this paper to the task of
developing both the vehicle and infrastructure architecture for the
DWPT problem described above. The overall framework is shown in
Figure 3. The following subsections will describe the details of each of
the steps.

OR-AGENT early phase construct

Freight flow
information (FAF) B
Electrified
roadway
Future p
augmentation OD, Truck type, economics
with weather & weight, volume
traffic flow count
impacts
Vehicle / I
Traffic count and J powertrain - ‘”g%i};‘ﬁ‘:rre
WIM data simulation

Road grade / J Grid capacity &
speed limit data infrastructure

constraints

Figure 3. OR-AGENT early-stage workflow construct
A. Freight mobility network (O-D) data
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In this study, freight mobility has been characterized using the Freight
Analysis Framework Network (version 2021.05) [17]. The network
contains state primary and secondary roads, National Highway
System, Strategic Highway Network, National Highway Freight
Network and several intermodal connectors as appropriate for the
freight network modeling. The network attribute includes both traffic
direction, function class, facility type, speed limit and adjusted speed
to reflect unusual road characteristics, truck restrictions or
permissions, and toll type. A summary of this is shown in Figure
4. Version 5 of the Freight Analysis Framework (FAF) integrates data
from multiple sources to create a comprehensive picture of freight
movement between states and major metropolitan areas via all modes
of transportation. In the database, the areas are designated as FAF
zones. FAF adopted these geographical areas from the Commodity
Flow Survey (CFS). In the 2017 CFS, there are a total of 132 areas.
The areas are classified into three types: metropolitan areas, the
remainder of the state, and the entire state. These FAF zone points act
as Origin and Destinations for this study. The initial dataset on freight
tonnage moving from origin FAF zone to destination FAF zone
included all FAF zones crossed by or near the 1-75 corridor. Figure 5
shows the 1-75 corridor, a selected FAF zone, and the zone centroids
of all zones within 500 miles of the corridor. Using commercial truck
routing software, combined with the FAF O-D pairs, freight route
networks are identified. The freight network developed using this
approach will closely represent most trucks that will use a part of the
1-75 corridor to carry out their missions. Future work planned with OR-
AGENT for electrification analysis will look at O-D more closely,
down to the GPS coordinates of the origin and the destination.
However, this limited resolution assessment was deemed appropriate
for this study. Additional details of this data modeling on mobility have
been described previously [25,26].

Figure 4. Estimated average FAF daily truck volumes on national
highway system (2017) [27,28]
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Figure 5. Location of Origin and Destinations considered for Heavy
Truck travel along 1-75 [24]

B. Freight weight data

State highway and transportation agencies construct, operate, and
maintain a network of traffic count stations to monitor roadway usage
by collecting data on vehicle volume, vehicle class, and vehicle
weight. These station locations are shown in Figure 6 and Figure 7.
These stations could be permanent or temporary (portable). Permanent
traffic monitoring stations are operational on a year-round basis.
Weigh-in-Motion (WIM) systems record the weight and axle
configurations of vehicles traveling on the state highway system and
provide valuable and necessary data for assessing the performance of
our transportation infrastructure. WIM systems capture vehicle
characteristics while the vehicle is moving at full highway speeds in
the mainline highway lanes, as opposed to static scales, which require
select trucks to exit the highway mainlines to be weighed. WIM
sensors provide a means to estimate current and historical trends in
truck volumes and weights because they operate continuously
throughout the year and measure all passing trucks.

Figure 6. Traffic count and WIM station locations [29]
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Figure 7. Stationary inspection and weigh station locations [30]

WIM systems record gross vehicle weight, dynamic axle loads and
spacing, the number of axles, vehicle speed, lane and direction of
travel, Federal Highway Administration (FHWA) vehicle
classification, axle weights, date and time stamp, and so on. The WIM
stations that are located on I-75 corridor were filtered and used as input
in the modeling performed. HD vehicles were characterized per
FHWA classifications into Class 9 — 13, with an example of this shown
in Figure 8 with seasonality variation captured. Table 1 provides a
summary of these aggregated weights and the percentiles of the
population that will be used later in simulating the vehicle energy
consumption along the I-75 corridor. Additional details of this weight
have been described previously [25,26]. Using this data source, the HD
freight vehicle weight and class seasonal statistical distributions may
be established. This has been shown previously [25,26] and will be
leveraged to determine the roadway energy and power requirements

Class 9 Class 9

) 0 60 80
Winight (1000 Ibs) Waight (1000 ios)

Class 12 Class 12

30 4 50 o
Waight (1000 Ibs) Waight (1000 tbs)

Figure 8. Aggregated weight statistics of Class 9 and Class 12 HD
freight vehicles based on WIM and Weigh stations data along I-75

Table 1. Vehicle Weights for Fuel Economy Simulation

FHWA Class Vehicle Weight (Ibs)

[
[ sthp ile | 25th P ile [ 50th P ile [ 75th P ile [ 90th P ile [ 95th

9 27,558 36,817 50,045 68,784 77,162 80,028
10 32,628 44,533 68,343 91,051 116,183 130,293
11 33,069 47,620 57,541 65,698 72,312 75,839
12 35,274 48,061 58,863 67,461 74,075 78,044
13 40,124 55,997 106,042 133,600 150,796 158,292

C. Road grade and speed data

To simulate the vehicles and characterize the energy consumption or
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needs, the 1-75 roadway needs to be modeled. This includes assessing
the road grade and vehicle admissible speed. For this study the latter
will be treated as the road speed limit. In practice there are deviations
to this [31] and more rigorous analysis is planned as mentioned above.
To determine the roadway grade and speed limits the FAF databases
[28] are refenced to identify the GPS coordinates associated with a
given segment of the 1-75 corridor.

U.S. Interstate 75 - Location

55

50

I B I
o =] o

Latitude (degrees)

w
Q

25

20
-120 =110 =100 =90 -80 =70

Longitude (degrees)

(a) 1-75 corridor (black) indicated among the entire U.S.
interstate road system (blue)
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Figure 9. Characterizing the road grade and speed limits along 1-75.
Data extracted from ORNL FAF [28] and Nokia HERE [32]
databases

These GPS coordinates are used with the Nokia HERE database to
identify the elevation of the road at that point [32]. Due to the higher
precision on elevation data in the Nokia HERE database this data may
be differentiated to determine the road grade at each GPS coordinate.
The summary of these results is shown in Figure 9.

D. Vehicle and powertrain modeling

Using the road-load dynamics developed previously [18] a 1-D HD
BEV powertrain model is constructed (see Figure 10). While the
traction drive (consisting of the MG and PE) feeds the final torque to
the axles and wheels, the electrical power needed for this is produced
through the onboard battery energy stored (with further discussions
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provided later). In addition, the battery efficiency is established given
the internal resistance of a 620V nominal battery as a function of C-
rate and State of Charge (SOC) (see Figure 10). Table 2 summarizes
the key vehicle dynamic parameter set value based on application class
and model year (MY) 2020, 2030 and 2040. Future vehicle dynamic
characteristics have been derived from 215t Century Truck Partnership
(21CTP) roadmaps [33,34].

The vehicle system architecture will be varied based on the battery size
and chemistry. These will be explored to determine the lifetime cost
(CapEx and Fuel OpEXx) that a vehicle end-user will experience given
various viable options for the DWPT vehicle and infrastructure
architecture. Battery costs, weight and capacity will depend on the
chemistry, the degradation period (or life), the roadway energy
characteristics (propulsion and regeneration) the range of the vehicle
without DWPT propulsion assistance, and the amount of energy
required during DWPT propulsion assistance.

Estimating the battery life is complex, and depends on many factors
including the chemistry, charge/discharge rates, fast charge frequency
(based on C-rate), depth of discharge levels, operating temperatures,
compounding throughput, micro-cycling, operational time (calendar
life), cell balancing controls, etc. Detailed characterization of this
requires extensive testing of specific cells and their module/pack
configurations. For this study, we approach quantifying life by
considering the total throughput in a generic Li-ion NMC (Nickel
Manganese Cobalt oxide - representing high energy battery
chemistries) and LTO (Lithium Titanate - representing high power
battery chemistries) based battery. The total throughput is the
cumulative energy flow in-to or out-of the battery during its life. The
available throughput is characterized based on the total energy
throughput during the admissible charge/discharge cycles. This is a
simplified approach and captures the macroscopic behaviors well. In
addition, the range expectations are met by sizing the battery based on
mission type needs and limiting discharge to 80% capacity. The battery
is finally sized to meet both the life and range expectations (while also
meeting the C-rate constraints). The base characteristics for CV grade
batteries used here are given in Table 3 [35]. In practice, the properties
of Li-ion batteries, while generically classified into a few families, are
quite sensitive to the specific cell compositions [35], but this variation
is outside the scope of this paper.
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Figure 10. 1-D BEV powertrain vehicle model

Table 2: Vehicle dynamic parameters set point assumptions [36]
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Class 8 truck 2020 2030 2040

Vehicle GVW klbs 65-80 65-80 65-80
Vehicle aero Cd — Class 9 = 0.5 0.42 0.39
Class 10 - 0.5 0.42 0.39
Class 11 - 0.59453 0.51453 0.48453
Class 12 - 0.62473 0.54473 0.51473
Class 13 - 0.65493 0.57493 0.54493
Vehicle tire Crr - 0.006 0.00496 0.0048
Vehicle frontal area m2 10.66 10.18 10.18
Vehicle tire radius m 0.502 0.502 0.502
Vehicle RAR - 2.47-2.93 2.47-2.93 2.47-2.93
Final Drive efficiency % 97 97 97
Accessory loads kw 3 2.6 2

Table 3: Battery chemistry properties assumptions [35]

Value

Parameter Units NMC LTO
Throughput life charge/discharge cycles (80% DOD @ 1C) Cycles 2500 12500
Cell specific energy density Wh/kg 240 95
Pack specific energy density Wh/kg 150 67
Cycle RMS C-rate limit - 1 3
Max chare C-rate (continuous) - 0.5-2 5
Pack cost S/kWh $200 $600

Results and Analysis
a.  Workflow summary

The overall workflow here is summarized in Figure 11. The analysis
consists of three primary stages as shown including:

e developing the road coil coverage given vehicle energy

Table 4 provides a summary of the energy consumption for the
specific case of a MY2020 HD vehicle operating in the southbound

Table 4 for Class 9 vehicles. This data will provide the inputs to
characterize the road energy and power demands along with the battery
and DWPT road coil coverage requirements of the broader HD freight
vehicle population present on the I-75 corridor.
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demand, coil power levels, vehicle speeds, etc.

o developing the vehicle battery systems characteristics based
on the vehicle energy demand, the battery chemistry, the
amount of mission length spent on DWPT assist roadways

e developing the vehicle end-user TCO (limited to CapEx and
Fuel OpEx) for the various viable architecture options
including both vehicle and roadway architectures

This section will develop the first two stages in greater detail and
explore the variations that have been called out in Figure 11. The third
stage will be developed and discussed in the next section of the paper.

Road coverage requirements

+ Data capture / modeling

~ 175 and truck volume, type & weight
statistics.

~ Energy study for 5 classes x 6 weights
X 68 sub-corridor segments
* Variations
— Month of year
- Model year (2020, 2030 or 2040)
~ Southbound vs Northbound

~ Battery energy use on eRoad (e.g. 0
kWh/mi...charge sustaining; 0.3
KkWh/mi...equivalent to an SUV, ?)

~ Road transmitting coil power limit
~ Vehicle number of receiving coils

~Grid capacity power limit

Vehicle battery characterization

+ Data capture / modeling

~ Size: Considering non-eRoad miles and
eRoad miles traveled in a shift

— Throughput & Cycle Life
- CRate
— Battery life cycle cost

* Variations

~ Battery cost, weight, cycle life

Vehicle TCO characterization

+ Data capture / modeling

~ Battery / DWPT electronics CapEx
increase

~ eRoad electricity cost based on
investment amortization

~ Life cycle OpEx

~ Battery / DWPT electronics weight-
based productivity impact

— Vehicle Life cycle cost
- Battery weight impact to freight
* Variations

~ Infrastructure costs recovery &
residual value

~ Grid demand charges / cost

~ Market adoption levels

Figure 11. Analysis workflow considered in this study consisting of
road coverage computation, vehicle battery characterization, and
vehicle TCO (limited to CapEx and Fuel OpEx) assessment

b. Fuel economy results

In this study we have subdivided the 1-75 corridor into 68 segments
each of which will be used with the vehicle model to assess the energy
consumption aggregated over each segment (see Figure 12). This
approach has been previously discussed and applied for fuel cell
electric vehicle and infrastructure analysis [24].

direction along the 1-75 corridor. The results show the baseline diesel
vehicle fuel economy, the BEV energy needs, and battery throughput.
Other model year and direction variants have also been developed.
Figure 13 illustrates a specific set of data from
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Figure 12. 1-75 Segments for Fuel Economy Averages [24]
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Table 4: Vehicle system energy consumption on 1-75 roadway segments: MY2020 HD Line Haul vehicles operating North to South

(a) Diesel powertrain fuel economy (mpg)

Class 9 Weight (Ibs] Class 12 Weight (Ibs)
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(b) Battery electric powertrain energy needs (kWh/mi)
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Figure 13. Sample of vehicle system energy consumption at different
weights on I-75 roadway segments: MY2020 Class 9 vehicles N =S

¢. Roadway DWPT coil coverage requirements

Next, we assess the roadway coverage requirements using the results
developed above. The specific roadway DWPT coil coverage at a
given location may be determined based on the vehicle energy
requirements to move through that road section, the power capability
of the transmitting coils, the vehicle speed, the number of receiving
coils on the vehicle and the DWPT transfer efficiency. This coverage
requirements are directly computed based on the energy transfer by
integrating the DWPT power transfer capacity over the duration that
the vehicle’s receiving coils will be above the roadway transmitting
coils. The latter duration is determined from the vehicle speed and
length of the coils. A simple construct of this is shown in Figure 14.
Figure 15 shows the specific road coverage use-case of 200kW DWPT
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coils at the road to support a charge sustained solution for HD freight
vehicles with four receiving coils, along the southbound route of the I-
75 corridor. Due to the freight seasonal variations described earlier, we
see some variation in the required road coverage for each month. In
practice the largest value established for each mile along the corridor
will be necessary to establish a functioning corridor. The impact of this
will be discussed in the next sub-section. Figure 16 shows the impact
of coverage for several alternative DWPT power capabilities for
vehicles

Speed Limit 65 mph Number Veh coils |4 Transfereffy  [193%

WPT power (kW)
275 300 325

Energy need (kWh/mi)

Figure 14. Look up table for road coil coverage required based on
DWPT power and vehicle energy needs given vehicle speed, number
of vehicle receiver coils, and transfer efficiency.
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Figure 15. 1-75 road coil coverage and worst-case peak demand
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with four receiving coils. This effectively demonstrates a wide possible
space of solutions that would be capable to maintaining a charge
sustained transport solution of the freight vehicles. Further variations
are possible as the number of receiving coils are changed in each
vehicle. Thus, a complex search space based on DWPT power transfer
capabilities, number of vehicle receiving coils, and the degree to which
the onboard battery charge is sustained, may be generated. The full
range of this optimization is beyond the scope of this paper and will be
discussed in a future publication.

d. Grid capacity and infrastructure constraints

Providing reliable energy is a tremendously difficult technical
challenge, even on the most ordinary of days. It involves monitoring,
regulating, and coordinating the generation of power at thousands of
generators in real-time, transferring electricity via a network of
connected transmission lines, and then distributing electricity to
millions of clients via a distribution network. As shown in Figure 17,
generators fueled by a range of fuel sources, such as nuclear, coal, oil,
natural gas, hydropower, geothermal, solar, and others, produce
electricity at lower voltages (10,000 to 25,000 volts). Others are owned
by independent power producers and customers, notably large
industrial users. Some generators are owned by the same electric
utilities that provide service to the end-use customer. The voltage of
generator electricity is "stepped up" before being sent in large
quantities across transmission lines. Power can be transported
affordably over long distances thanks to high voltage transmission
lines (i.e., 230,000 to 765,000 volts), which also reduce electricity
losses brought on by conductor heating. At switching stations and
substations, transmission lines are connected to create the power grid
network. Before being distributed to customers, power is "stepped
down" to lower voltages when it arrives at a load center. Due to the
simplicity and low cost of converting voltages in AC systems from one
level to another, the bulk power system is primarily an alternating
current (AC) system rather than a direct current (DC) system. Most
residential customers receive their electrical service at 120 and 240
volts, however some larger industrial and commercial clients receive
service at intermediate voltage levels (12,000 to 115,000 volts) [37].

Blue: Transmission
Green:  Distribution d Subtransmission
placks Seneration Transmission Lines b & Cusiomer

765, 500, 345, 230, and 138 kV 26kV and 69kV

2
Substation Primary Customer
Step-Down 13kV and 4kV
Transformer

IGenerating Station Transmission
Generator Step Customer
Up Transformer 138kV or 230kV

Secondary Customer
120V and 240V

Figure 17. Diagram of an electrical power system [37]

The interconnected grid network will form a critical backbone for the
sustainable deployment of any DWPT system for freight transport.
Transmission substations integrate transmission lines into a network
with multiple parallel interconnections, so that power can flow freely
over long distances from any generator to any consumer. Typically,
transmission lines operate at voltages above 138 kV. Transmission
substations often include transformation from one transmission
voltage level to another. Sub-transmission substations typically
operate at 33 kV through 138 kV voltage levels. This kind of
substations transform the high voltages used for efficient long-distance
transmission. Distribution ~ substations  typically  operate
at 11KV/0.4KV voltage levels and deliver electric energy directly to
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industrial and residential consumers [38]. Typical distribution level
substations may not be designed to support the additional roadway load
requirements as shown in Figure 15. However, transmission and sub-
transmission level substations are typical designed for additional
system loads and may have the necessary margin to support the road
loads for DWPT HD truck freight transport. In addition, typical
guidance for the length of radial power feeder main lines from
substations is 2 to 15 miles. When one includes lateral power lines, the
recommended range is 4 to 25 miles [38].

For this study, all transmission and sub-transmission level within 15
miles of the 1-75 corridor have been identified (see Figure 18 and
Figure 19). In addition, the maximum peak demand and maximum
capacity for all transmission and sub-transmission level substations
have been identified. This provides an upper limit on the excess
capacity at each substation (see Figure 18).

Excess capacity

MW hicago
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Figure 18. 2509 transmission substations and their excess capacity
limits (from max peak demand) identified within 15 miles of 1-75
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Figure 19. Close up view of southern Florida electrical substation
shows limited coverage based on lower population demands

With this information it is now possible to establish the capability of
providing road power to support DWPT HD freight transport. As a first
consideration, we consider the road load power deficit if one were to
only connect substations (and their excess power capacity) to the
nearest mile on the I-75 corridor. This is seen in Figure 20a, for all
substations within 5 miles and within 15 miles of the 1-75 corridor.
While there is significant excess capacity available, we still observe an
overall power deficit through most of the 1-75 corridor, as the available
power is concentrated only at the nearest mile of the road to the
substation. On the other hand, if this excess power is uniformly
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distributed along sub-stretches of the road, then this power deficit may
be rapidly overcome, as seen in Figure 20b. The process of distributing
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Figure 20. Assessing road coil power deficit (from transmission
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substations near the 1-75 corridor) given max peak demand

this power capacity is achieved linearly in this study. For example, if
the nearest point to a substation on the roadway has a 100MW power
capacity (per Figure 20a) then this power may be split uniformly along
5 miles of the roadway such that each of those roadway miles has
20MW capacity. It is possible to sufficiently spread the excess power
available while meeting the feeder line constraints of 15 miles such
that the entire 1-75 corridor will have no power deficit to support
DWPT HD truck freight transport (Figure 20b). Planned future work
will explore optimization of this layout so that the overall cost of the
infrastructure is minimized, while also building in redundancy to
mitigate the impact of power failure incidents from any substation.

e. Electrified roadway economics

There are several new components that will be required in standing up
the DWPT electrical grid interface and infrastructure. The basic
concept is shown in Figure 21. Each lane of the road that is equipped
with DWPT coils will require similar transmission substation to road
power infrastructure. This system has been subdivided into three major
subsystems to model the costs of this equipment and installation effort:

e  Substation transformer and feeder line to road costs — shown for
the 1-75 corridor in Figure 22. The transformer equipment costs
are based on the transformer power levels given the substation
capacity and specific road point power demand [39,40]. Feeder
line costs have been estimated at ~$285,000 / mile [37,39,40,41].
An aggregated value of $416,853/mi is used in the study
(including equipment and labor).

e Road shoulder electrical equipment cost — the DWPT scenario
used in this analysis is based on a distribution feeder serving an
interstate DWPT system that consists of:

o feeder on each side of the interstate cover 4 miles of the road

o  Serving twelve (12) 800 V inverters per mile (48 per feeder)
with 25 kV : 800 V pad-mounted transformers, with

o Necessary switches, cabinets, connectors, poles/risers,
elbows, etc.

o  An aggregated value of $240,161/mi is used in this study
(including equipment and labor).

e Road DWPT coils and installation costs — the effort and cost to
install the DWPT coils will include the tear up of the roads and
the base coil costs. These are estimated at $85,000 / mile and
$6/KW x road coverage respectively [33,34,42].
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Figure 21. Transmission substation to road coil distribution
infrastructure for DWPT system
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Figure 22. Infrastructure costs to establish transformers and power
lines from transmission substation to 1-75 road shoulder

Discussions — Technoeconomic assessments

In this section we will develop and discuss the vehicle end-user TCO
(limited to CapEx and Fuel OpEx) for the various viable architecture
options including both vehicle and roadway architectures. Using the
methods and models described above a technoeconomic study is now
conducted to gain a macroscopic understanding of the alternatives and
tradeoffs in the vehicle and infrastructure architecture for the 1-75
DWPT system to support HD truck freight transport.. Several critical
assumptions have been made:

e [t assumed that a vehicle would use the energy stored onboard in
the vehicle battery to propel itself when not operating on
electrified roadways. While the vehicle is operating on the
electrified roadway, the energy available from the onboard
battery is augmented with energy available from the road. This
may allow for onboard battery SOC management (ranging from
no depletion to any prescribed depletion level). We explicitly
consider 0 KWh/mi depletion (charge sustaining) and 0.3 kWh/mi
depletion (representing the energy usage expected from a full-size
Class 1 BEV SUV).

e The results presented here are limited to DWPT transmitter coils
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capable of 200kW with 93% transfer efficiency (given current
technology demonstrations occurring within the U.S. Department
of Energy Vehicle Technologies Office) with 4 receiver coils on
the vehicle but several other settings have been explored.
Receiver coils on the vehicle cost $6/kW [33,34].

e  For this paper the vehicle is limited to MY 2020 setting and travel
is restricted to the southbound lanes.

e  Onboard energy storage is limited to NMC and LTO battery
chemistries, with vehicle operational life limited to 6 years
(comprising of 5.5 operating days per week).

e  Three technology adoption scenarios are explores including 10%,
50%, and 100% electrified roadway and vehicle adoption for the
1-75 corridor.

e  The baseline diesel vehicle engine, transmission, and associated
powertrain components cost are $28,350 with diesel fuel price at
$4-$6/gallon. The associated BEV powertrain and accessories
component costs (excluding the battery pack system) are set at
$22,900 based on 21CTP technology roadmap considerations
[33,34]. The price of electricity obtained at offsite charging
depots is set at the national average of $0.07/kWh for all HD
freight trucks operating under this study. A 30% OEM sales
margin is applied to all costs.

e End of life residual battery equipment has a non-zero value
established as 35% of the battery pack system which includes
housings/insulation, sensors, plumbing, controller boards, valves,
and safety devices, as these are considered reusable. Further, a
30% valuation is placed on any residual battery SOH exceeding
70% as this would result in further use of the battery in the
primary application (prior to any second life usage).

e  Variations in vehicle class, freight weight, and truck count given
month of year, based on the statistics described earlier are applied
to all analysis shown here. Any added weight due to batteries and
the DWPT charging coils is checked to determine if an additional
vehicle trip will be necessary to transport the original freight.

e  The roadway infrastructure has an assumed life of 15 years with
service intervals of 3 years. During the service periods an expense
of 4.5% of the installation price is assumed [33,34,42]. Residual
of value of the roadway infrastructure at the end of life is variably
set between 50% and 75% given that most of the components may
be recycled, repurposed, or remanufactured [38,39,40,41,42].

e  Electricity infrastructure at the road may be amortized through the
additive price of electricity pulled from roadway. We consider
four settings here:

o  No amortization

o  Only infrastructure cost is recovered

o Infrastructure cost and IRR of 5% is recovered
o Infrastructure cost and IRR of 10% is recovered

We will consider four scenarios of operation as indicated in Figure 23
and Figure 24, namely the trucks may operate 100-, 300-, 500-, and
700-mile per day missions where parts of those may be on an
electrified roadway. These two figures show one specific
technoeconomic assessment of LTO and NMC battery chemistries. In
both cases the battery is charge sustained while operating on the
electrified roadway. The battery is sized for the energy requirements
for non-electrified roadway operations, while also holding charge for
travel from DWPT transmitter coil to the next. Battery C-rates are
monitored to mitigate safety violations. The scenario also assumes
10% electrified vehicle technology adoption and the electrified
roadway equipment is not amortized though added cost of electricity.
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It is notable that the NMC battery lifetime chemistry durability is
significantly lower than the LTO battery chemistry durability. This is
manifested in battery replacement cycles that result in increased
ownership costs as shown in the “bumps” in Figure 24c. The diesel
powertrain cost does not change across these views. By assessing a
multitude of scenarios like these it is possible to determine when the
DWPT architecture provides a CapEx + Fuel OpEx superior solution
to the diesel powertrain (see Figure 25 and Figure 26) as well as the
battery only solution (where the battery is sized for the full daily
mission with no opportunity to capture energy through electrified
roadway systems)(see Figure 27 and Figure 28).

From Figure 25 and Figure 26, it is evident that as the adoption
increases the opportunity for DWPT vehicle and roadway technologies
to provide a superior CapEx and Fuel OpEx solutions as compared
with diesel powertrains increases. NMC solutions are largely better
than LTO chemistry solutions in achieving this performance (even
with mid life cycle replacement costs). It is also observed that a charge
depletion architecture while operating on the electrified roadway under
performs the charge sustaining solution. From Figure 27 and Figure 28
it is further evident that the NMC solution outperforms the LTO
solution when comparing battery only solutions against battery with
DWPT architectures. In these figures we show the specific milage
when the DWPT architecture outperforms the battery only solution.

Vehicle Battery size assessment - I-75 corridor
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Vehicle Battery and Electricity lifetime cost
assessment - I-75 corridor
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Figure 23. Technoeconomic impact of LTO chemistry battery packs
on vehicle architecture considering variations in location and weight
along I-75 corridor. Scenario — 10% adoption, charge sustaining, no
roadway electrification infrastructure amortization.

Vehicle Battery size assessment - I-75 corridor
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Vehicle Battery and Electricity lifetime cost
assessment - I-75 corridor
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Figure 24. Technoeconomic impact of NMC chemistry battery packs
on vehicle architecture considering variations in location and weight
along 1-75 corridor. Scenario — 10% adoption, charge sustaining, no
roadway electrification infrastructure amortization.
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BEV DWPT Mileage to achieve Diesel parity @ $6/gal
HD BEV Adoption: 50%
Battery net consumption: 0.0 kWh/mi
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Figure 27. Conditions when DWPT system provides a superior CapEx and Fuel OpEx than a battery only solution (designed capacity for full
mission) — Reference comparison against the same battery pack chemistry for the specific operating scenario
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Figure 28. Conditions when DWPT system provides a superior CapEx and Fuel OpEx than a battery only solution (designed capacity for full
mission) — Reference comparison against the NMC battery pack chemistry for the specific operating scenario

Additionally, Figure 27 only compares the DWPT solutions with a
given battery chemistry against itself for battery only systems.
Whereas Figure 28 compares the DWPT solution with a given battery
chemistry against NMC solutions for battery only systems. Through
these two figures it is evident that LTO solutions provide fewer
opportunities to exceed the battery only solution as compared with
NMC solutions. It is also clear that as amortization targets for the
invested roadway infrastructure increases that the viability (based on
CapEx and Fuel OpEx) of DWPT HD truck freight movement reduces.
This suggests the need for alternative strategies including subsidies or
government support. Additional opportunity may be realized if battery
prices do not come down as rapidly as projected in the electrified CV
segments. Finally, if base depot charging electricity prices show an
increase from the assumed values in this research, further opportunities
for DWPT in HD truck freight movement will be realized
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Conclusions

The usage of wireless power transfer systems, which include inductive
electrical coils on the vehicle and the power source, may be built for
dynamic operations in which the vehicle will collect energy from
transmitting coils in the road while traveling at high speeds. This could
allow for substantially longer missions while lowering the need for
onboard energy storage for vehicles. The method for designing a
dynamic wireless power transfer corridor for heavy-duty battery-
powered commercial freight vehicles is presented in this study. We
reduce the minimize the vehicle TCO by architecting the electrified
roadway and the vehicle battery simultaneously by taking into account
the interaction of the following factors: grid capacity, substation
locations, seasonal road traffic loading, freight vehicle class and
weight, vehicle mobility energy requirements, on-board battery
chemistry, non-electrified roadway vehicle range requirements.
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Applying the method to the 1-75 freight corridor serves as an
illustration of the strategy, and the framework created here can be
enlarged and applied to a bigger interstate system, expanded regional
corridor, or other transportation network.

In this paper we have shown the specific scenarios where DWPT based
HD truck freight mobility systems are superior (lifetime CapEx and
Fuel OpEx) to diesel or battery only powertrains. While DWPT
architectures do not ubiquitously provide superior solutions under all
conditions, there is a significant opportunity space where solutions of
this form not only provide technoeconomic benefits but may also go a
significant way in improving the overall end-user and fleet
experiences, which will be critical in motivating technology adoption.

There are several gaps in this study that are being addressed through
future planned activities. These have been highlighted in the paper and
include a closer study of O-D pairs, down to the GPS coordinates to
assess the specific freight movement energy needs. In addition, there
is a complex optimization space based on DWPT power transfer
capabilities, the number of vehicle receiving coils, and the degree to
which the onboard battery charge is sustained. This has not been fully
explored. Further, cost optimization of the substation grid to road
infrastructure layout may be minimized, while also building in
redundancy to mitigate the impact of power failure incidents from any
substation. Finally, the results presented here are limited to DWPT
transmitter coils capable of 200kW with 4 receiver coils on the vehicle
but several other settings may be explored. The full range of these
optimization studies is beyond the scope of this paper and will be
discussed in a future publication.
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https://peguru.com/substation-cost-estimator/
https://peguru.com/2019/08/power-transformer/

TCO Total Cost of Ownership

WIM Weigh in Motion
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